1
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
2
|
Prado NDR, Brilhante-Da-Silva N, Sousa RMO, Morais MSDS, Roberto SA, Luiz MB, Assis LCD, Marinho ACM, Araujo LFLD, Pontes RDS, Stabeli RG, Fernandes CFC, Pereira SDS. Single-domain antibodies applied as antiviral immunotherapeutics. J Virol Methods 2023; 320:114787. [PMID: 37516366 DOI: 10.1016/j.jviromet.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.
Collapse
Affiliation(s)
- Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | - Nairo Brilhante-Da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil
| | - Rosa Maria Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Rondônia Campus Guajará-Mirim, IFRO, Guajará-Mirim, RO, Brazil
| | - Livia Coelho de Assis
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil
| | - Anna Carolina M Marinho
- Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rafael de Souza Pontes
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional, Fundação Oswaldo Cruz-USP, Ribeirão Preto, SP, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Laboratório Multiusuário de Pesquisa e Desenvolvimento, Fundação Oswaldo Cruz, Fiocruz unidade Ceará, Eusebio, CE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
3
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
4
|
Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D, Hewitt M, Wen X, Bavananthasivam J, Beitari S, Matte K, Laroche G, Giguère PM, Gervais C, Stuible M, Guimond J, Perret S, Hussack G, Langlois MA, Durocher Y, Tanha J. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun Biol 2022; 5:933. [PMID: 36085335 PMCID: PMC9461429 DOI: 10.1038/s42003-022-03866-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Anh T Tran
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Xiaoxue Wen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Saina Beitari
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
6
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
7
|
Protein and Peptide Substances in the Treatment of Respiratory Syncytial Infection: Current State. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072263. [PMID: 35408661 PMCID: PMC9000545 DOI: 10.3390/molecules27072263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/05/2022]
Abstract
Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.
Collapse
|
8
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Najmeddin A, Bahrololoumi Shapourabadi M, Behdani M, Dorkoosh F. Nanobodies as powerful pulmonary targeted biotherapeutics against SARS-CoV-2, pharmaceutical point of view. Biochim Biophys Acta Gen Subj 2021; 1865:129974. [PMID: 34343644 PMCID: PMC8325376 DOI: 10.1016/j.bbagen.2021.129974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Background Since December 2019, the newly emerged SARS-CoV-2 virus continues to infect humans and many people died from severe Covid-19 during the last 2 years worldwide. Different approaches are being used for treatment of this infection and its consequences, but limited results have been achieved and new therapeutics are still needed. One of the most interesting biotherapeutics in this era are Nanobodies which have shown very promising results in recent researches. Scope of review Here, we have reviewed the potentials of Nanobodies in Covid-19 treatment. We have also discussed the properties of these biotherapeutics that make them very suitable for pulmonary drug delivery, which seems to be very important route of administration in this disease. Major conclusion Nanobodies with their special biological and biophysical characteristics and their resistance against harsh manufacturing condition, can be considered as promising, targeted biotherapeutics which can be administered by pulmonary delivery pharmaceutical systems against Covid-19. General significance Covid-19 has become a global problem during the last two years and with emerging mutant strains, prophylactic and therapeutic approaches are still highly needed. Nanobodies with their specific properties can be considered as valuable and promising candidates in Covid-19 therapy.
Collapse
Affiliation(s)
- Ali Najmeddin
- Department of Pharmaceutics, Faculty of pharmacy, Tehran University of Medical Sciences, Iran.
| | | | - Mahdi Behdani
- Venom and Biotherapeutic Molecules Lab, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of pharmacy, Tehran University of Medical Sciences, Iran; Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Iran.
| |
Collapse
|
10
|
Haga K, Takai-Todaka R, Matsumura Y, Song C, Takano T, Tojo T, Nagami A, Ishida Y, Masaki H, Tsuchiya M, Ebisudani T, Sugimoto S, Sato T, Yasuda H, Fukunaga K, Sawada A, Nemoto N, Murata K, Morimoto T, Katayama K. Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathog 2021; 17:e1009542. [PMID: 34648602 PMCID: PMC8516304 DOI: 10.1371/journal.ppat.1009542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.
Collapse
Affiliation(s)
- Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yuta Matsumura
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takuto Tojo
- Biological Science Laboratories, Kao Corporation, Wakayama, Japan
| | - Atsushi Nagami
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | - Yuki Ishida
- Safety Science Laboratories, Kao Corporation, Tokyo, Japan
| | | | | | - Toshiki Ebisudani
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihito Sawada
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Naoto Nemoto
- Epsilon Molecular Engineering Inc., Saitama, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Wang R, Zhang H, Peng C, Shi J, Zhang H, Gong R. Identification and Characterization of a Novel Single Domain Antibody Against Ebola Virus. Virol Sin 2021; 36:1600-1610. [PMID: 34632543 PMCID: PMC8502631 DOI: 10.1007/s12250-021-00454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) belongs to the Filoviridae family and causes severe illnesses such as hemorrhagic fever with a high mortality rate up to 90%. Now two antibody drugs termed Inmazeb and Ebanga have been approved for treating EBOV infection. However, clinical studies have demonstrated that the mortality rate of the patients who received these two antibody drugs remains above 30%. Therefore, novel therapeutics with better efficacy is still desired. The isolated human IgG1 constant domain 2 (CH2 domain) has been proposed as a scaffold for the development of C-based single domain antibodies (C-sdAbs) as therapeutic candidates against viral infections and other diseases. Here, we screened and identified a novel C-sdAb termed M24 that targets EBOV glycoprotein (GP) from a C-sdAb phage display library. M24 neutralizes the pseudotype EBOV with IC50 of 0.8 nmol/L (12 ng/mL) and has modest neutralizing activity against authentic EBOV. Epitope determination, including molecular docking and site mutation analysis, discloses that M24 binds to the internal fusion loop (IFL) within GP2, a transmembrane subunit of GP. Interestingly, we found that the binding of M24 to GP at pH 5.5 has dramatically decreased compared to the binding at pH 7.5, which may lead to weak efficacy in the neutralization of authentic EBOV. Since no sdAb against EBOV infection has been reported to date, our results not only give a proof of concept that sdAbs could be utilized for the development of potential therapeutic candidates against EBOV infection, but also provide useful information for the discovery and improvement of anti-EBOV agents.
Collapse
Affiliation(s)
- Rui Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Sroga P, Sloan A, Warner BM, Tierney K, Lew J, Liu G, Chan M, Deschambault Y, Stein DR, Soule G, Banadyga L, Falzarano D, Safronetz D. Polyclonal alpaca antibodies protect against hantavirus pulmonary syndrome in a lethal Syrian hamster model. Sci Rep 2021; 11:17440. [PMID: 34465819 PMCID: PMC8408274 DOI: 10.1038/s41598-021-96884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
The use of antibody-based therapies for the treatment of high consequence viral pathogens has gained interest over the last fifteen years. Here, we sought to evaluate the use of unique camelid-based IgG antibodies to prevent lethal hantavirus pulmonary syndrome (HPS) in Syrian hamsters. Using purified, polyclonal IgG antibodies generated in DNA-immunized alpacas, we demonstrate that post-exposure treatments reduced viral burdens and organ-specific pathology associated with lethal HPS. Antibody treated animals did not exhibit signs of disease and were completely protected. The unique structures and properties, particularly the reduced size, distinct paratope formation and increased solubility of camelid antibodies, in combination with this study support further pre-clinical evaluation of heavy-chain only antibodies for treatment of severe respiratory diseases, including HPS.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Angela Sloan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryce M Warner
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Guodong Liu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael Chan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Yvon Deschambault
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Derek R Stein
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Cadham Provincial Laboratory, Winnipeg, MB, Canada
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada. .,Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat Protoc 2021; 16:3639-3671. [PMID: 34035500 DOI: 10.1038/s41596-021-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12-14 d.
Collapse
|
14
|
Sroga P, Safronetz D, Stein DR. Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Future Virol 2020. [DOI: 10.2217/fvl-2019-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | |
Collapse
|
15
|
Single-Domain Antibodies and Their Formatting to Combat Viral Infections. Antibodies (Basel) 2018; 8:antib8010001. [PMID: 31544807 PMCID: PMC6640686 DOI: 10.3390/antib8010001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Since their discovery in the 1990s, single-domain antibodies (VHHs), also known as Nanobodies®, have changed the landscape of affinity reagents. The outstanding solubility, stability, and specificity of VHHs, as well as their small size, ease of production and formatting flexibility favor VHHs over conventional antibody formats for many applications. The exceptional ease by which it is possible to fuse VHHs with different molecular modules has been particularly explored in the context of viral infections. In this review, we focus on VHH formats that have been developed to combat viruses including influenza viruses, human immunodeficiency virus-1 (HIV-1), and human respiratory syncytial virus (RSV). Such formats may significantly increase the affinity, half-life, breadth of protection of an antiviral VHH and reduce the risk of viral escape. In addition, VHHs can be equipped with effector functions, for example to guide components of the immune system with high precision to sites of viral infection.
Collapse
|
16
|
Linero F, Sepúlveda C, Christopoulou I, Hulpiau P, Scolaro L, Saelens X. Neutralization of Junín virus by single domain antibodies targeted against the nucleoprotein. Sci Rep 2018; 8:11451. [PMID: 30061671 PMCID: PMC6065417 DOI: 10.1038/s41598-018-29508-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023] Open
Abstract
The syndrome viral haemorrhagic fever (VHF) designates a broad range of diseases that are caused by different viruses including members of the family Arenaviridae. Prophylaxis for Argentine Haemorrhagic Fever (AHF), caused by the arenavirus Junín (JUNV), has been achieved by the use of a live attenuated vaccine, named Candid#1. The standard treatment of AHF is transfusion of convalescent human plasma. Our aim was to develop an alternative and safer treatment for AHF based on the use of virus-neutralizing single domain antibodies (VHHs). We describe the first reported VHHs directed against an arenavirus. These VHHs could neutralize Candid#1 by altering virion binding/fusion. Surprisingly, the neutralizing VHHs appeared to be specific for the viral nucleoprotein (N) that is not known to be involved in arenavirus entry. Candid#1 VHH-escape viruses had acquired a predicted N-glycosylation site in the surface glycoprotein GP1 that is present in highly pathogenic JUNV strains. Accordingly, the Candid#1-neutralizing VHHs could not neutralize pathogenic JUNV strains, but they could still bind to cells infected with a pathogenic strain or the escape mutant viruses. These results show that the attenuated strains of JUNV can be potently neutralized by nucleoprotein-specific VHHs.
Collapse
Affiliation(s)
- Florencia Linero
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Claudia Sepúlveda
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Ioanna Christopoulou
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.,VIB Center for Inflammation Research, VIB, Ghent, B-9052, Belgium
| | - Luis Scolaro
- Laboratory of Virology, Faculty of Sciences, University of Buenos Aires, C1428EGA, Caba, Argentina
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, Ghent, B-9052, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.
| |
Collapse
|
17
|
Simões EAF, Bont L, Manzoni P, Fauroux B, Paes B, Figueras-Aloy J, Checchia PA, Carbonell-Estrany X. Past, Present and Future Approaches to the Prevention and Treatment of Respiratory Syncytial Virus Infection in Children. Infect Dis Ther 2018; 7:87-120. [PMID: 29470837 PMCID: PMC5840107 DOI: 10.1007/s40121-018-0188-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The REGAL (RSV Evidence - A Geographical Archive of the Literature) series has provided a comprehensive review of the published evidence in the field of respiratory syncytial virus (RSV) in Western countries over the last 20 years. This seventh and final publication covers the past, present and future approaches to the prevention and treatment of RSV infection among infants and children. METHODS A systematic review was undertaken of publications between January 1, 1995 and December 31, 2017 across PubMed, Embase and The Cochrane Library. Studies reporting data on the effectiveness and tolerability of prophylactic and therapeutic agents for RSV infection were included. Study quality and strength of evidence (SOE) were graded using recognized criteria. A further nonsystematic search of the published literature and Clinicaltrials.gov on antiviral therapies and RSV vaccines currently in development was also undertaken. RESULTS The systematic review identified 1441 studies of which 161 were included. Management of RSV remains centered around prophylaxis with the monoclonal antibody palivizumab, which has proven effective in reducing RSV hospitalization (RSVH) in preterm infants < 36 weeks' gestational age (72% reduction), children with bronchopulmonary dysplasia (65% reduction), and infants with hemodynamically significant congenital heart disease (53% reduction) (high SOE). Palivizumab has also shown to be effective in reducing recurrent wheezing following RSVH (high SOE). Treatment of RSV with ribavirin has conflicting success (moderate SOE). Antibodies with increased potency and extended half-life are currently entering phase 3 trials. There are approximately 15 RSV vaccines in clinical development targeting the infant directly or indirectly via the mother. CONCLUSION Palivizumab remains the only product licensed for RSV prophylaxis, and only available for high-risk infants. For the general population, there are several promising vaccines and monoclonal antibodies in various stages of clinical development, with the aim to significantly reduce the global healthcare impact of this common viral infection. FUNDING AbbVie.
Collapse
Affiliation(s)
- Eric A F Simões
- Center for Global Health, Colorado School of Public Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - Louis Bont
- University Medical Center Utrecht, Utrecht, The Netherlands
- ReSViNET (Respiratory Syncytial Virus Network), Utrecht, The Netherlands
| | - Paolo Manzoni
- ReSViNET (Respiratory Syncytial Virus Network), Utrecht, The Netherlands
- Neonatology and NICU, Sant'Anna Hospital, Turin, Italy
| | - Brigitte Fauroux
- Necker University Hospital and Paris 5 University, Paris, France
| | - Bosco Paes
- Department of Paediatrics (Neonatal Division), McMaster University, Hamilton, Canada
| | - Josep Figueras-Aloy
- Hospital Clínic, Catedràtic de Pediatria, Universitat de Barcelona, Barcelona, Spain
| | - Paul A Checchia
- Baylor College of Medicine, Texas Children's Hospital Houston, Houston, TX, USA
| | - Xavier Carbonell-Estrany
- Hospital Clinic, Institut d'Investigacions Biomediques August Pi Suñer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
18
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
19
|
Koromyslova AD, Hansman GS. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization. PLoS Pathog 2017; 13:e1006636. [PMID: 29095961 PMCID: PMC5667739 DOI: 10.1371/journal.ppat.1006636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses. We determined the binding sites of six novel human norovirus specific Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) using X-ray crystallography. The unique Nanobody recognition epitopes were correlated with their potential neutralizing capacities. We showed that one Nanobody (Nano-26) bound numerous genogroup II genotypes and interacted with highly conserved capsid residues. Four Nanobodies (Nano-4, Nano-26, Nano-27, and Nano-42) bound to occluded regions on the intact particles and impaired normal capsid morphology and particle integrity. One Nanobody (Nano-14) bound contiguous to the HBGA pocket and interacted with several residues involved in binding HBGAs. We found that the Nanobodies delivered multiple inhibition mechanisms, which included steric obstruction, allosteric interference, and disruption of the capsid stability. Our data suggested that the HBGA pocket might not be an ideal target for drug development, since the surrounding region is highly variable and inherently suffers from lack of conservation among the genetically diverse genotypes. Instead, we showed that the capsid contained other highly susceptible regions that could be targeted for virus inhibition.
Collapse
Affiliation(s)
- Anna D. Koromyslova
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| | - Grant S. Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (ADK); (GSH)
| |
Collapse
|
20
|
Clinical Potential of Prefusion RSV F-specific Antibodies. Trends Microbiol 2017; 26:209-219. [PMID: 29054341 DOI: 10.1016/j.tim.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 11/23/2022]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in the very young. The RSV fusion protein (F) is essential for virus entry because it mediates viral and host membrane fusion. During this fusion process F is converted from a metastable prefusion conformation into an energetically favored postfusion state. Antibodies that target F can prevent viral entry and reduce disease caused by RSV. During recent years, many prefusion F-specific antibodies have been described. These antibodies typically have stronger RSV-neutralizing activity compared to those that also bind F in the postfusion conformation. Here, we describe how F-specific antibodies protect against RSV and why specifically targeting prefusion F could have great clinical potential.
Collapse
|
21
|
Gray ER, Brookes JC, Caillat C, Turbé V, Webb BLJ, Granger LA, Miller BS, McCoy LE, El Khattabi M, Verrips CT, Weiss RA, Duffy DM, Weissenhorn W, McKendry RA. Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights. ACS Infect Dis 2017; 3:479-491. [PMID: 28591513 DOI: 10.1021/acsinfecdis.6b00189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Preventing the spread of infectious diseases remains an urgent priority worldwide, and this is driving the development of advanced nanotechnology to diagnose infections at the point of care. Herein, we report the creation of a library of novel nanobody capture ligands to detect p24, one of the earliest markers of HIV infection. We demonstrate that these nanobodies, one tenth the size of conventional antibodies, exhibit high sensitivity and broad specificity to global HIV-1 subtypes. Biophysical characterization indicates strong 690 pM binding constants and fast kinetic on-rates, 1 to 2 orders of magnitude better than monoclonal antibody comparators. A crystal structure of the lead nanobody and p24 was obtained and used alongside molecular dynamics simulations to elucidate the molecular basis of these enhanced performance characteristics. They indicate that binding occurs at C-terminal helices 10 and 11 of p24, a negatively charged region of p24 complemented by the positive surface of the nanobody binding interface involving CDR1, CDR2, and CDR3 loops. Our findings have broad implications on the design of novel antibodies and a wide range of advanced biomedical applications.
Collapse
Affiliation(s)
- Eleanor R. Gray
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Jennifer C. Brookes
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Christophe Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Valérian Turbé
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Benjamin L. J. Webb
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Luke A. Granger
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Benjamin S. Miller
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Laura E. McCoy
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | - C. Theo Verrips
- QVQ Holding B.V., Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A. Weiss
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Dorothy M. Duffy
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Rachel A. McKendry
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| |
Collapse
|
22
|
Rossey I, Gilman MSA, Kabeche SC, Sedeyn K, Wrapp D, Kanekiyo M, Chen M, Mas V, Spitaels J, Melero JA, Graham BS, Schepens B, McLellan JS, Saelens X. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun 2017; 8:14158. [PMID: 28194013 PMCID: PMC5316805 DOI: 10.1038/ncomms14158] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV.
Collapse
Affiliation(s)
- Iebe Rossey
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Morgan S A Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Stephanie C Kabeche
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Koen Sedeyn
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Daniel Wrapp
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jan Spitaels
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| |
Collapse
|
23
|
Guibas GV, Papadopoulos NG. Viral Upper Respiratory Tract Infections. VIRAL INFECTIONS IN CHILDREN, VOLUME II 2017. [PMCID: PMC7121526 DOI: 10.1007/978-3-319-54093-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The upper respiratory system is one of the most common sites of infection for adults, but even more so for children. Several viruses, from variable families, cause upper respiratory infections which, although generally underestimated due to their typically self-limiting nature, underlie enormous healthcare resource utilization and financial burden. Such, otherwise “benign” infections, can have very significant sequelae both in the form of bringing about local complications but also inducing asthma attacks, thus greatly increasing morbidity. Their enormous prevalence also indicates that rigorous research should be undertaken in order to tackle them, in both the prevention and treatment field.
Collapse
|
24
|
Trivalency of a Nanobody Specific for the Human Respiratory Syncytial Virus Fusion Glycoprotein Drastically Enhances Virus Neutralization and Impacts Escape Mutant Selection. Antimicrob Agents Chemother 2016; 60:6498-6509. [PMID: 27550346 DOI: 10.1128/aac.00842-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
Abstract
ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.
Collapse
|
25
|
Mejias A, Garcia-Maurino C, Rodriguez-Fernandez R, Peeples ME, Ramilo O. Development and clinical applications of novel antibodies for prevention and treatment of respiratory syncytial virus infection. Vaccine 2016; 35:496-502. [PMID: 27692523 DOI: 10.1016/j.vaccine.2016.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/04/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
Respiratory syncytial virus (RSV) remains a significant cause of morbidity and mortality in infants and young children, immunocompromised patients and the elderly. Despite the high disease burden, an effective and safe vaccine is lacking, although several candidates are currently in development. Current treatment for RSV infection remains largely supportive and RSV-specific options for prophylaxis are limited to palivizumab. In the past few years, novel therapeutic options including nanobodies, polyclonal and monoclonal antibodies have emerged and there are several products in preclinical and Phase-I, -II or -III clinical trials. The major target for antiviral drug development is the surface fusion (F) glycoprotein, which is crucial for the infectivity and pathogenesis of the virus. Solving the structures of the two conformations of the RSV F protein, the prefusion and postfusion forms, has revolutionized RSV research. It is now known that prefusion F is highly superior in inducing neutralizing antibodies. In this section we will review the stages of development and availability of different antibodies directed against RSV for the prevention and also for treatment of acute RSV infections. Some of these newer anti-RSV agents have shown enhanced potency, are being explored through alternative routes of administration, have improved pharmacokinetic profiles with an extended half-life, and may reduce design and manufacturing costs. Management strategies will require targeting not only high-risk populations (including adults or immunocompromised patients), but also previously healthy children who, in fact, represent the majority of children hospitalized with RSV infection. Following treated patients longitudinally is essential for determining the impact of these strategies on the acute disease as well as their possible long-term benefits on lung morbidity.
Collapse
Affiliation(s)
- Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Cristina Garcia-Maurino
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rosa Rodriguez-Fernandez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, Hospital Infantil Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
26
|
Drysdale SB, Green CA, Sande CJ. Best practice in the prevention and management of paediatric respiratory syncytial virus infection. Ther Adv Infect Dis 2016; 3:63-71. [PMID: 27034777 PMCID: PMC4784570 DOI: 10.1177/2049936116630243] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is ubiquitous with almost all infants having been infected by 2 years of age and lifelong repeated infections common. It is the second largest cause of mortality, after malaria, in infants outside the neonatal period and causes up to 200,000 deaths per year worldwide. RSV results in clinical syndromes that include upper respiratory tract infections, otitis media, bronchiolitis (up to 80% of cases) and lower respiratory tract disease including pneumonia and exacerbations of asthma or viral-induced wheeze. For the purposes of this review we will focus on RSV bronchiolitis in infants in whom the greatest disease burden lies. For infants requiring hospital admission, the identification of the causative respiratory virus is used to direct cohorting or isolation and infection control procedures to minimize nosocomial transmission. Nosocomial RSV infections are associated with poorer clinical outcomes, including increased mortality, the need for mechanical ventilation and longer length of hospital stay. Numerous clinical guidelines for the management of infants with bronchiolitis have been published, although none are specific for RSV bronchiolitis. Ribavirin is the only licensed drug for the specific treatment of RSV infection but due to drug toxicity and minimal clinical benefit it has not been recommended for routine clinical use. There is currently no licensed vaccine to prevent RSV infection but passive immunoprophylaxis using a monoclonal antibody, palivizumab, reduces the risk of hospitalization due to RSV infection by 39-78% in various high-risk infants predisposed to developing severe RSV disease. The current management of RSV bronchiolitis is purely supportive, with feeding support and oxygen supplementation until the infant immune system mounts a response capable of controlling the disease. The development of a successful treatment or prophylactic agent has the potential to revolutionize the care and outcome for severe RSV infections in the world's most vulnerable infants.
Collapse
|
27
|
Schepens B, Schotsaert M, Saelens X. Small hydrophobic protein of respiratory syncytial virus as a novel vaccine antigen. Immunotherapy 2016; 7:203-6. [PMID: 25804473 DOI: 10.2217/imt.15.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Bert Schepens
- Department of Medical Protein Research, VIB, 9052, Ghent, Belgium
| | | | | |
Collapse
|
28
|
Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, Millar A, Power UF, Stortelers C, Allosery K, Melero JA, Depla E. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 2016; 60:6-13. [PMID: 26438495 PMCID: PMC4704182 DOI: 10.1128/aac.01802-15] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F protein with subnanomolar affinity. ALX-0171 demonstrated in vitro neutralization superior to that of palivizumab against prototypic RSV subtype A and B strains. Moreover, ALX-0171 completely blocked replication to below the limit of detection for 87% of the viruses tested, whereas palivizumab did so for 18% of the viruses tested at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.
Collapse
Affiliation(s)
| | | | - Concepción Palomo
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrena Millar
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Ultan F Power
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
29
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Schepens B, Sedeyn K, Vande Ginste L, De Baets S, Schotsaert M, Roose K, Houspie L, Van Ranst M, Gilbert B, van Rooijen N, Fiers W, Piedra P, Saelens X. Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein. EMBO Mol Med 2015; 6:1436-54. [PMID: 25298406 PMCID: PMC4237470 DOI: 10.15252/emmm.201404005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with human respiratory syncytial virus (HRSV) occur globally in all age groups and can have devastating consequences in young infants. We demonstrate that a vaccine based on the extracellular domain (SHe) of the small hydrophobic (SH) protein of HRSV, reduced viral replication in challenged laboratory mice and in cotton rats. We show that this suppression of viral replication can be transferred by serum and depends on a functional IgG receptor compartment with a major contribution of FcγRI and FcγRIII. Using a conditional cell depletion method, we provide evidence that alveolar macrophages are involved in the protection by SHe-specific antibodies. HRSV-infected cells abundantly express SH on the cell surface and are likely the prime target of the humoral immune response elicited by SHe-based vaccination. Finally, natural infection of humans and experimental infection of mice or cotton rats does not induce a strong immune response against HRSV SHe. Using SHe as a vaccine antigen induces immune protection against HRSV by a mechanism that differs from the natural immune response and from other HRSV vaccination strategies explored to date. Hence, HRSV vaccine candidates that aim at inducing protective neutralizing antibodies or T-cell responses could be complemented with a SHe-based antigen to further improve immune protection.
Collapse
Affiliation(s)
- Bert Schepens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Koen Sedeyn
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Liesbeth Vande Ginste
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah De Baets
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lieselot Houspie
- Laboratory of Clinical Virology, Rega Institute for Medical Research KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research KU Leuven, Leuven, Belgium
| | - Brian Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Walter Fiers
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pedro Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xavier Saelens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
|
32
|
Melero JA, Mas V. The Pneumovirinae fusion (F) protein: A common target for vaccines and antivirals. Virus Res 2015; 209:128-35. [PMID: 25738581 DOI: 10.1016/j.virusres.2015.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022]
Abstract
The Pneumovirinae fusion (F) protein mediates fusion of the virus and cell membrane, an essential step for entry of the viral genome in the cell cytoplasm and initiation of a new infectious cycle. Accordingly, potent inhibitors of virus infectivity have been found among antibodies and chemical compounds that target the Pneumovirinae F protein. Recent developments in structure-based vaccines have led to a deeper understanding of F protein antigenicity, unveiling new conformations and epitopes which should assist in development of efficacious vaccines. Similarly, structure-based studies of potent antiviral inhibitors have provided information about their mode of action and mechanisms of resistance. The advantages and disadvantages of the different options to battle against important pathogens, such as human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are summarized and critically discussed in this review.
Collapse
Affiliation(s)
- José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
33
|
Terryn S, Francart A, Lamoral S, Hultberg A, Rommelaere H, Wittelsberger A, Callewaert F, Stohr T, Meerschaert K, Ottevaere I, Stortelers C, Vanlandschoot P, Kalai M, Van Gucht S. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One 2014; 9:e109367. [PMID: 25347556 PMCID: PMC4210127 DOI: 10.1371/journal.pone.0109367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies.
Collapse
Affiliation(s)
- Sanne Terryn
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium; Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Aurélie Francart
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Sophie Lamoral
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | - Michael Kalai
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Steven Van Gucht
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium; Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
34
|
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett 2014; 162:237-47. [PMID: 25268876 DOI: 10.1016/j.imlet.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
Human Respiratory Syncytial Virus (hRSV) is the leading cause of lower respiratory tract diseases, affecting particularly newborns and young children. This virus is able to modulate the immune response, generating a pro-inflammatory environment in the airways that causes obstruction and pulmonary alterations in the infected host. To date, no vaccines are available for human use and the first vaccine that reached clinical trials produced an enhanced hRSV-associated pathology 50 years ago, resulting in the death of two children. Currently, only two therapeutic approaches have been used to treat hRSV infection in high risk children: 1. Palivizumab, a humanized antibody against the F glycoprotein that reduces to half the number of hospitalized cases and 2. Ribavirin, which fails to have a significant therapeutic effect. A major caveat for these approaches is their high economical cost, which highlights the need of new and affordable therapeutic or prophylactic tools to treat or prevents hRSV infection. Accordingly, several efforts are in progress to understand the hRSV-associated pathology and to characterize the immune response elicited by this virus. Currently, preclinical and clinical trials are being conducted to evaluate safety and efficacy of several drugs and vaccines, which have shown promising results. In this article, we discuss the most important advances in the development of drugs and vaccines, which could eventually lead to better strategies to treat or prevent the detrimental inflammation triggered by hRSV infection.
Collapse
Affiliation(s)
- Roberto S Gomez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | | | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
35
|
Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014; 134:e620-38. [PMID: 25070304 DOI: 10.1542/peds.2014-1666] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Guidance from the American Academy of Pediatrics (AAP) for the use of palivizumab prophylaxis against respiratory syncytial virus (RSV) was first published in a policy statement in 1998. Guidance initially was based on the result from a single randomized, placebo-controlled clinical trial conducted in 1996-1997 describing an overall reduction in RSV hospitalization rate from 10.6% among placebo recipients to 4.8% among children who received prophylaxis. The results of a second randomized, placebo-controlled trial of children with hemodynamically significant heart disease were published in 2003 and revealed a reduction in RSV hospitalization rate from 9.7% in control subjects to 5.3% among prophylaxis recipients. Because no additional controlled trials regarding efficacy were published, AAP guidance has been updated periodically to reflect the most recent literature regarding children at greatest risk of severe disease. Since the last update in 2012, new data have become available regarding the seasonality of RSV circulation, palivizumab pharmacokinetics, the changing incidence of bronchiolitis hospitalizations, the effects of gestational age and other risk factors on RSV hospitalization rates, the mortality of children hospitalized with RSV infection, and the effect of prophylaxis on wheezing and palivizumab-resistant RSV isolates. These data enable further refinement of AAP guidance to most clearly focus on those children at greatest risk.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacokinetics
- Antiviral Agents/therapeutic use
- Child, Preschool
- Comorbidity
- Cystic Fibrosis/epidemiology
- Down Syndrome/epidemiology
- Gestational Age
- Hospitalization/statistics & numerical data
- Humans
- Immunocompromised Host
- Indians, North American/statistics & numerical data
- Infant
- Infant, Premature
- Injections, Intramuscular
- Neuromuscular Diseases/epidemiology
- Palivizumab
- Respiratory Sounds
- Respiratory Syncytial Virus Infections/epidemiology
- Respiratory Syncytial Virus Infections/ethnology
- Respiratory Syncytial Virus Infections/prevention & control
- Risk Factors
- Seasons
Collapse
|
36
|
Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 2014; 88:8278-96. [PMID: 24829341 DOI: 10.1128/jvi.03178-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses. Here we show that single-domain antibody fragments that are specific for NA can bind and inhibit H5N1 viruses in vitro and can protect laboratory mice against a challenge with an H5N1 virus, including an oseltamivir-resistant virus. In addition, plant-produced VHH fused to a conventional Fc domain can protect in vivo even in the absence of NA-inhibitory activity. Thus, NA of influenza virus can be effectively targeted by single-domain antibody fragments, which are amenable to further engineering.
Collapse
|
37
|
Abstract
The common cold is the most frequent, although generally mild, human disease. Human Rhinoviruses are the prevalent causative agents, but other viruses are also implicated. Being so common, viral colds, have significant implications on public health and quality of life, but may also be life-threatening for vulnerable groups of patients. Specific diagnosis and treatment of the common cold still remain unmet needs. Molecular diagnostic techniques allow specific detection of known pathogens as well as the identification of newly emerging viruses. Although a number of medications or natural treatments have been shown to have some effect, either on the number or on the severity of common colds, no single agent is considerably effective. Virus-specific management remains in most cases a challenging potential as many factors have to be taken into account, including the diversity of the viral genomes, the heterogeneity of affected individuals, as well as the complexity of this long standing host-virus relationship.
Collapse
|
38
|
Hawkinson D, Hinthorn D, Danziger-Isakov L. Novel antiviral agents for respiratory viral infection in immunocompromised adults. Curr Infect Dis Rep 2013; 15:497-503. [PMID: 24146257 PMCID: PMC7089160 DOI: 10.1007/s11908-013-0370-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory viruses cause significant morbidity and mortality in immunocompromised populations such as stem cell transplant and solid organ transplant patients. Few viruses causing respiratory tract infection have an approved therapy, and many of the viruses have no therapeutic options at all. In this article, we describe novel agents under development for treatment options against several respiratory viruses.
Collapse
Affiliation(s)
- Dana Hawkinson
- Department of Medicine, Division of Infectious Diseases, University of Kansas Medical Center, Kansas City, KS, USA,
| | | | | |
Collapse
|
39
|
Haynes LM. Progress and Challenges in RSV Prophylaxis and Vaccine Development. J Infect Dis 2013; 208 Suppl 3:S177-83. [DOI: 10.1093/infdis/jit512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Abstract
Nanobodies (Nbs) are small antibody fragments derived from camelid heavy chain antibodies through recombinant gene technology. Their exceptional physicochemical properties, possibility of humanization and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components. Several different therapeutic approaches based on the novel camelid Nbs have been developed to treat a wide range of diseases ranging from immune, bone, blood and neurological disorders; infectious diseases and cancer. This review provides a comprehensive overview of the current state of the use of camelid-derived Nbs as novel therapeutic agents against multiple diseases.
Collapse
|
41
|
A novel influenza virus hemagglutinin-respiratory syncytial virus (RSV) fusion protein subunit vaccine against influenza and RSV. J Virol 2013; 87:10792-804. [PMID: 23903841 DOI: 10.1128/jvi.01724-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus and respiratory syncytial virus (RSV) cause substantial morbidity and mortality afflicting the ends of the age spectrum during the autumn through winter months in the United States. The benefit of vaccination against RSV and influenza using a subunit vaccine to enhance immunity and neutralizing antibody was investigated. Influenza virus hemagglutinin (HA) and RSV fusion (F) protein were tested as vaccine components alone and in combination to explore the adjuvant properties of RSV F protein on HA immunity. Mice vaccinated with HA and F exhibited robust immunity that, when challenged, had reduced viral burden for both influenza and RSV. These studies show an enhancing and cross-protective benefit of F protein for anti-HA immunity.
Collapse
|
42
|
Sperandio D, Mackman R. Respiratory Syncytial Virus Fusion Inhibitors. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Infections with the respiratory syncytical virus (RSV) are the leading cause of lower respiratory tract infections and a serious health concern in infants less than 2 years of age, the immunocompromised and the geriatric population. Numerous research programs directed at small‐molecule inhibitors of RSV have been initiated over the last 50 years. RSV inhibitors that target the fusion event have shown a lot of promise and are reviewed in this chapter. However, none of these programs have yet reached the market or late‐stage clinical development. Therefore, focus in this review is given to the challenges in the preclinical development phase and the ideal target product profile. The challenges in clinical development are also discussed, including the use of a new RSV challenge strain (Memphis 37), clinical trial design in immunosupressed patients, patients with chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) and clinical trials in infants.
Collapse
Affiliation(s)
- David Sperandio
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| | - Richard Mackman
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| |
Collapse
|
43
|
Benefit and harm from immunity to respiratory syncytial virus: implications for treatment. Curr Opin Infect Dis 2013; 25:687-94. [PMID: 23086186 DOI: 10.1097/qco.0b013e32835a1d92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Human respiratory syncytial virus (RSV) infection is a major cause of morbidity in children and of morbidity and mortality in elderly or immunocompromised adults. Given prophylactically, antibody can protect against infection, but natural levels are poorly protective. Vaccination may enhance disease, and there is no well tolerated and effective vaccine or antiviral treatment. Despite over 50 years of research, therapy remains nonspecific and supportive. RECENT FINDINGS Experimental human challenge in adult volunteers is beginning to elucidate the dynamics of viral shedding and causes of disease, but investigations of naturally infected children remain logistically challenging. RSV was known to bind several surface ligands, but the recent demonstration that nucleolin acts as a receptor for the RSV fusion protein was unexpected. Recent studies increasingly emphasize the relevance of innate immune responses and the dysregulation of inflammation as key factors in causing the pathological effects of infection. Studies in both human infants and mice indicate that interleukin-17 plays a role in some forms of RSV disease and regulatory T cells may be important in controlling inflammation. SUMMARY Improved understanding of the human immune response to RSV infection continues to be needed in order to accelerate the development of vaccines and new treatments for bronchiolitis.
Collapse
|
44
|
Graham BS. Future opportunities for passive immunity against viral diseases. J Infect Dis 2011; 204:1648-50. [PMID: 21998473 PMCID: PMC3218645 DOI: 10.1093/infdis/jir628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 05/13/2024] Open
|