1
|
Ding S, Zhao P, Song S, Yang Y, Peng C, Chang X, Liu C. A novel enzyme-linked immunosorbent assay tool to evaluate plasma soluble CD226 in primary Sjögren's syndrome. Anal Biochem 2024; 692:115573. [PMID: 38768695 DOI: 10.1016/j.ab.2024.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
CD226 is an important receptor constitutively expressed on most immune cells, performing vital functions in immune responses. However, the levels of soluble CD226 (sCD226) and its roles in primary Sjögren syndrome (pSS) remain unclear. In this study, we developed two novel mouse anti-human CD226 monoclonal antibodies (mAbs) and established a novel sandwich enzyme-linked immunosorbent assay (ELISA) system, which proved to be highly effective in detecting human sCD226. We then analyzed the expression of sCD226 in the plasma of pSS patients. Our results showed that the levels of sCD226 were significantly lower in patients with pSS compared to healthy controls. The significant decline was also observed in active group and the patients with high levels of IgG or positive anti-SSB. Additionally, reduced sCD226 was found to be negatively correlated with the disease activity of pSS and several clinical manifestations, including arthralgia, fatigue, decayed tooth and interstitial lung disease (ILD). Furthermore, receiver operator characteristics (ROC) curve analysis showed that sCD226 displayed outstanding capacity in discriminating pSS and predicting the disease activity. Altogether, plasma sCD226 emerges as a promising candidate for diagnostic markers in the context of pSS.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Saizhe Song
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Yang Zhou J. Innate immunity and early liver inflammation. Front Immunol 2023; 14:1175147. [PMID: 37205101 PMCID: PMC10187146 DOI: 10.3389/fimmu.2023.1175147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The innate system constitutes a first-line defence mechanism against pathogens. 80% of the blood supply entering the human liver arrives from the splanchnic circulation through the portal vein, so it is constantly exposed to immunologically active substances and pathogens from the gastrointestinal tract. Rapid neutralization of pathogens and toxins is an essential function of the liver, but so too is avoidance of harmful and unnecessary immune reactions. This delicate balance of reactivity and tolerance is orchestrated by a diverse repertoire of hepatic immune cells. In particular, the human liver is enriched in many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells - namely Natural Killer T cells (NKT), γδ T cells and Mucosal-associated Invariant T cells (MAIT). These cells reside in the liver in a memory-effector state, so they respond quickly to trigger appropriate responses. The contribution of aberrant innate immunity to inflammatory liver diseases is now being better understood. In particular, we are beginning to understand how specific innate immune subsets trigger chronic liver inflammation, which ultimately results in hepatic fibrosis. In this review, we consider the roles of specific innate immune cell subsets in early inflammation in human liver disease.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- *Correspondence: Jordi Yang Zhou,
| |
Collapse
|
3
|
Wang D, Fu B, Shen X, Guo C, Liu Y, Zhang J, Sun R, Ye Y, Li J, Tian Z, Wei H. Restoration of HBV-specific CD8 + T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy. Signal Transduct Target Ther 2021; 6:376. [PMID: 34737296 PMCID: PMC8569154 DOI: 10.1038/s41392-021-00776-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic hepatitis B (CHB) undergoing interferon (IFN)-α-based therapies often exhibit a poor HBeAg serological response. Thus, there is an unmet need for new therapies aimed at CHB. This study comprised two clinical trials, including 130 CHB patients, who were treatment-naïve; in the first, 92 patients were systematically analyzed ex vivo for interleukin-2 receptor (IL-2R) expression and inhibitory molecules expression after receiving Peg-IFN-α-2b therapy. In our second clinical trial, 38 non-responder patients, in whom IFN-α therapy had failed, were treated with or without low-dose IL-2 for 24 weeks. We then examined the hepatitis B virus (HBV)-specific CD8+ T-cell response and the clinical outcome, in these patients. Although the majority of the participants undergoing Peg-IFN-α-2b therapy were non-responders, we observed a decrease in CD25 expression on their CD4+ T cells, suggesting that IFN-α therapy may provide a rationale for sequential IL-2 treatment without increasing regulatory T cells (Tregs). Following sequential therapy with IL-2, we demonstrated that the non-responders experienced a decrease in the numbers of Tregs and programmed cell death protein 1 (PD-1) expression. In addition, sequential IL-2 administration rescued effective immune function, involving signal transducer and activator of transcription 1 (STAT1) activation. Importantly, IL-2 therapy significantly increased the frequency and function of HBV-specific CD8+ T cells, which translated into improved clinical outcomes, including HBeAg seroconversion, among the non-responder CHB patients. Our findings suggest that sequential IL-2 therapy shows efficacy in rescuing immune function in non-responder patients with refractory CHB.
Collapse
Affiliation(s)
- Dongyao Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaokun Shen
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chuang Guo
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yanyan Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230027, China
| | - Junfei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ying Ye
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230027, China
| | - Jiabin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230027, China.
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Rosen HR, Golden-Mason L. Control of HCV Infection by Natural Killer Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037101. [PMID: 31871225 PMCID: PMC7447067 DOI: 10.1101/cshperspect.a037101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host defense against invading pathogens within the liver is dominated by innate immunity. Natural killer (NK) cells have been implicated at all stages of hepatitis C virus (HCV) infection, from providing innate protection to contributing to treatment-induced clearance. Decreased NK cell levels, altered NK cell subset distribution, activation marker expression, and functional polarization toward a cytolytic phenotype are hallmarks of chronic HCV infection. Interferon α (IFN-α) is a potent activator of NK cells; therefore, it is not surprising that NK cell activation has been identified as a key factor associated with sustained virological response (SVR) to IFN-α-based therapies. Understanding the role of NK cells, macrophages, and other innate immune cells post-SVR remains paramount for prevention of disease pathogenesis and progression. Novel strategies to treat liver disease may be aimed at targeting these cells.
Collapse
Affiliation(s)
- Hugo R Rosen
- Department of Medicine, University of Southern California (USC), Los Angeles, California 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, California 90033, USA
| | - Lucy Golden-Mason
- Department of Medicine, University of Southern California (USC), Los Angeles, California 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, California 90033, USA
| |
Collapse
|
5
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med 2020; 9:jcm9041030. [PMID: 32268490 PMCID: PMC7230811 DOI: 10.3390/jcm9041030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection develops into chronic hepatitis in over two-thirds of acute infections. While current treatments with direct-acting antivirals (DAAs) achieve HCV eradication in >95% of cases, no vaccine is available and re-infection can readily occur. Natural killer (NK) cells represent a key cellular component of the innate immune system, participating in early defence against infectious diseases, viruses, and cancers. When acute infection becomes chronic, however, NK cell function is altered. This has been well studied in the context of HCV, where changes in frequency and distribution of NK cell populations have been reported. While activating receptors are downregulated on NK cells in both acute and chronic infection, NK cell inhibiting receptors are upregulated in chronic HCV infection, leading to altered NK cell responsiveness. Furthermore, chronic activation of NK cells following HCV infection contributes to liver inflammation and disease progression through enhanced cytotoxicity. Consequently, the NK immune response is a double-edged sword that is a significant component of the innate immune antiviral response, but persistent activation can drive tissue damage during chronic infection. This review will summarise the role of NK cells in HCV infection, and the changes that occur during HCV therapy.
Collapse
Affiliation(s)
- Gaitan Fabrice Njiomegnie
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
| | - Scott A. Read
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Jacob George
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Westmead Hospital, Westmead 2145, NSW, Australia
| | - Fiona McKay
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead 2145, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School and Research Centre, Western Sydney University, Blacktown 2148, NSW, Australia (S.A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead 2145, NSW, Australia
- Correspondence: ; Tel.: +61-2-9851-6073
| |
Collapse
|
7
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
8
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Cytokine-Modulated Natural Killer Cells Differentially Regulate the Activity of the Hepatitis C Virus. Int J Mol Sci 2018; 19:ijms19092771. [PMID: 30223493 PMCID: PMC6163477 DOI: 10.3390/ijms19092771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
HCV genotype 2a strain JFH-1 replicates and produces viral particles efficiently in human hepatocellular carcinoma (huh) 7.5 cells, which provide a stable in vitro cell infection system for the hepatitis C virus (HCVcc system). Natural killer (NK) cells are large lymphoid cells that recognize and kill virus-infected cells. In this study, we investigated the interaction between NK cells and the HCVcc system. IL-10 is a typical immune regulatory cytokine that is produced mostly by NK cells and macrophages. IL-21 is one of the main cytokines that stimulate the activation of NK cells. First, we used anti-IL-10 to neutralize IL-10 in a coculture of NK cells and HCVcc. Anti-IL-10 treatment increased the maturation of NK cells by enhancing the frequency of the CD56+dim population in NK-92 cells. However, with anti-IL-10 treatment of NK cells in coculture with J6/JFH-1-huh 7.5 cells, there was a significant decrease in the expression of STAT1 and STAT5 proteins in NK-92 cells and an increase in the HCV Core and NS3 proteins. In addition, rIL-21 treatment increased the frequency of the CD56+dim population in NK-92 cells, Also, there was a dramatic increase in the expression of STAT1 and STAT5 proteins in rIL-21 pre-stimulated NK cells and a decrease in the expression of HCV Core protein in coculture with J6/JFH-1-huh 7.5 cells. In summary, we found that the functional activation of NK cells can be modulated by anti-IL-10 or rIL-21, which controls the expression of HCV proteins as well as HCV RNA replication.
Collapse
|
10
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
11
|
Pollmann J, Götz JJ, Rupp D, Strauss O, Granzin M, Grünvogel O, Mutz P, Kramer C, Lasitschka F, Lohmann V, Björkström NK, Thimme R, Bartenschlager R, Cerwenka A. Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. J Hepatol 2018; 68:421-430. [PMID: 29100993 DOI: 10.1016/j.jhep.2017.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells are found at increased frequencies in patients with hepatitis C virus (HCV). NK cell activation has been shown to correlate with HCV clearance and to predict a favourable treatment response. The aim of our study was to dissect mechanisms leading to NK cell activation and proliferation in response to HCV. METHODS NK cell phenotype, proliferation, and function were assessed after the 6-day co-culture of human peripheral blood mononuclear cells with either HCV replicon-containing HuH6 hepatoblastoma cells or HCV-infected HuH7.5 cells. The results obtained were confirmed by immunohistochemistry of liver biopsies from patients with HCV and from HCV-negative controls. RESULTS In HCV-containing co-cultures, a higher frequency of NK cells upregulated the expression of the high-affinity IL-2 receptor chain CD25, proliferated more rapidly, and produced higher amounts of interferon γ compared with NK cells from control co-cultures. This NK cell activation was dependent on IL-2, cell-cell contact-mediated signals, and HCV replicon-exposed monocytes. The tumour necrosis factor-receptor superfamily member OX40 was induced on the activated CD25± NK cell subset and this induction was abrogated by the depletion of CD14+ monocytes. Moreover, OX40L was upregulated on CD14± monocyte-derived cells co-cultured with HCV-containing cells and also observed in liver biopsies from patients with HCV. Importantly, blocking of the OX40/OX40L interaction abolished both NK cell activation and proliferation. CONCLUSIONS Our results uncover a previously unappreciated cell-cell contact-mediated mechanism of NK cell activation and proliferation in response to HCV, mediated by monocyte-derived cells and the OX40/OX40L axis. These results reveal a novel mode of crosstalk between innate immune cells during viral infection. LAY SUMMARY Using a cell-culture model of hepatitis C virus (HCV) infection, our study revealed that natural killer (NK) cells become activated and proliferate when they are co-cultured with HCV-containing liver cells. The mechanism of this activation involves crosstalk with other innate immune cells and a cell-cell contact interaction mediated by the cell surface molecules OX40 and OX40L. Our study reveals a novel pathway leading to NK cell proliferation and activation against virus-infected cells that might be of relevance in antiviral immunity.
Collapse
Affiliation(s)
- Julia Pollmann
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany
| | - Jana-Julia Götz
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Otto Strauss
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Granzin
- Miltenyi Biotec Inc. Clinical Research, Gaithersburg, MD, USA
| | - Oliver Grünvogel
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pascal Mutz
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Catharina Kramer
- Department of Medicine, University Medical Center, Freiburg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Thimme
- Department of Medicine, University Medical Center, Freiburg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany; Division of Immunbiochemistry, University Heidelberg, Medical Faculty Mannheim, Germany.
| |
Collapse
|
12
|
Chu PS, Nakamoto N, Taniki N, Ojiro K, Amiya T, Makita Y, Murata H, Yamaguchi A, Shiba S, Miyake R, Katayama T, Ugamura A, Ikura A, Takeda K, Ebinuma H, Saito H, Kanai T. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C. PLoS One 2017; 12:e0179096. [PMID: 28617830 PMCID: PMC5472371 DOI: 10.1371/journal.pone.0179096] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background and aims Interferon (IFN)- free direct antiviral agents (DAAs) with rapid HCV eradication might evoke immunological reconstitutions, and some early recurrences of HCC after IFN-free DAAs have been reported. This study aimed to investigate whether natural killer group 2, member D (NKG2D) predicts early emergence of HCC after IFN-free DAAs. Methods We conducted a clinical practice-based observational study of 101 patients infected with genotype 1 HCV who received IFN-free (DAAs), and stratified them into those who did or did not develop early (i.e., during the 6-month surveillance period following treatment.) recurrence or occurrence of clinically evident HCC. We also analyzed the peripheral blood mononuclear cells, both before treatment and at end of treatment (EOT), of 24 of the patients who received IFN-free DAAs, and 16 who received IFN-combined protease inhibitor. Results We found early emergence of clinically evident HCC after IFN-free DAAs in 12 (12%) patients. Higher pre-treatment NKG2D expression, higher FIB-4 score, previous HCC history and failure to achieve sustained viral response were significant factors correlating to early HCC emergence. After IFN-free DAAs, a rapid decrease of NKG2D at EOT correlated with early HCC emergence in the IFN-free DAA-treated patients, but not in patients treated with the IFN-combined regimen. The decrease of NKG2D until EOT was predictive of early HCC emergence at a cut-off of -52% (AUC = 0.92). Conclusions On-treatment decrease of NKG2D may be a useful predictor of early emerging HCC in patients treated with IFN-free DAAs.
Collapse
Affiliation(s)
- Po-sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (PSC); (TK)
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Keisuke Ojiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takeru Amiya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yuko Makita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Kitasato University Kitasato Institute Hospital, 5-9-1 Shiragane-dai, Minato-ku, Tokyo, Japan
| | - Hiroko Murata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Eiju Hospital, 2-23-16 Higashi-ueno, Ueno-ku, Tokyo, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Rei Miyake
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Katayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Aya Ugamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Ikura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Karin Takeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, Japan
| | - Hidetsugu Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Division of Pharmacotherapeutics, Keio University School of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (PSC); (TK)
| |
Collapse
|
13
|
Wang Y, Wang W, Shen C, Wang Y, Jiao M, Yu W, Yin H, Shang X, Liang Q, Zhao C. NKG2D modulates aggravation of liver inflammation by activating NK cells in HBV infection. Sci Rep 2017; 7:88. [PMID: 28273905 PMCID: PMC5427972 DOI: 10.1038/s41598-017-00221-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection is thought to be an immune-mediated liver disease. The mechanisms underlying natural killer (NK) cell group 2D receptor (NKG2D) that activates NK cells and participates in anti-HBV immunity and immunopathology has not been thoroughly elucidated. Peripheral NKG2D+ and IFN-γ+ NK cells frequencies and intrahepatic NKG2D and IFN-γ mRNA and protein expressions were determined in HBV-infected patients. Levels of NKG2D and IFN-γ mRNA and protein in NK cells, co-cultured with HBV-replicating HepG2 cells with or without NKG2D blockade, were analyzed. Serum and supernatant IFN-γ, TNF-α, perforin and granzyme B were measured. In results, peripheral NKG2D+ and IFN-γ+ NK cells frequencies, intrahepatic NKG2D and IFN-γ mRNA and protein levels, and serum IFN-γ, TNF-α, perforin and granzyme B levels were all highest in HBV-related acute-on-chronic liver failure group, followed by chronic hepatitis B and chronic HBV carrier groups. In vitro, NKG2D and IFN-γ mRNA and protein levels were higher in NK cells with IFN-α stimulation than without stimulation. Supernatant IFN-γ, TNF-α, perforin and granzyme B levels were increased under co-culture or IFN-α stimulating conditions, but were partially blocked by NKG2DmAb. In conclusion, NKG2D regulates immune inflammation and anti-viral response partly through activation of NK cells during HBV infection.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Shen
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Wang
- Department of Scientific Research, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingjing Jiao
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weiyan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhu Yin
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobo Shang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qianfei Liang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
14
|
Tatsumi T, Takehara T. Impact of natural killer cells on chronic hepatitis C and hepatocellular carcinoma. Hepatol Res 2016; 46:416-22. [PMID: 26574168 DOI: 10.1111/hepr.12619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 01/20/2023]
Abstract
Natural killer (NK) cells are involved in the pathogenesis of hepatitis C viral (HCV) infection and hepatocellular carcinoma (HCC). Recent immunological progresses have revealed the molecular mechanisms of activation or inhibition of NK cells. In patients infected with HCV, the percentages of NK cells are decreased and the NK receptor expression and function of NK cells including cytotoxicity and cytokine production are altered. These alterations in NK cells are associated with persistent infection with HCV, liver injury, liver fibrosis and liver carcinogenesis. In HCV treatment, NK cells play a role in the eradication of HCV in both interferon (IFN)-based therapy and IFN-free therapy using direct-acting antivirals (DAA). In HCC patients, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may contribute to the progression of HCC. Several immunotherapies targeting NK cells have been reported. NK cell transfer and NK-activating gene therapy have been demonstrated to be effective in mouse liver cancer models and several clinical trials are ongoing. Recently, the role of major histocompatibility complex class I-related chain A (MICA), a human ligand of NKG2D, has attracted attention in the development of HCC. The expression of MICA could be controlled by anti-HCC drugs including sorafenib. A new chemo-immunotherapy may be expected in the treatment of HCC. In this review, we summarize the impact of NK cells on chronic hepatitis C and HCC.
Collapse
Affiliation(s)
- Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Clinical Efficacy of Therapy with Recombinant Human Interferon α1b in Hand, Foot, and Mouth Disease with Enterovirus 71 Infection. PLoS One 2016; 11:e0148907. [PMID: 26882102 PMCID: PMC4755579 DOI: 10.1371/journal.pone.0148907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED A rapid expansion of HFMD with enterovirus 71 infection outbreaks has occurred and caused deaths in recent years in China, but no vaccine or antiviral drug is currently available for EV71 infection. This study aims to provide treatment programs for HFMD patients. We conducted a randomized, double-blind, controlled trial and evaluated clinical efficacy of therapy with rHuIFN-α1b in HFMD patients with EV71 infection. There were statistical differences in outcomes including the fever clearance time, healing time of typical skin or oral mucosa lesions, and EV71 viral load of the HFMD patients among ultrasonic aerosol inhalation group, intramuscular injection group and control group. rHuIFN-α1b therapy reduced the fever clearance time, healing time of typical skin or oral mucosa lesions, and EV71 viral load in children with HFMD. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-TRC-14005153.
Collapse
|
16
|
Yoon JC, Yang CM, Song Y, Lee JM. Natural killer cells in hepatitis C: Current progress. World J Gastroenterol 2016; 22:1449-1460. [PMID: 26819513 PMCID: PMC4721979 DOI: 10.3748/wjg.v22.i4.1449] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Patients infected with the hepatitis C virus (HCV) are characterized by a high incidence of chronic infection, which results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The functional impairment of HCV-specific T cells is associated with the evolution of an acute infection to chronic hepatitis. While T cells are the important effector cells in adaptive immunity, natural killer (NK) cells are the critical effector cells in innate immunity to virus infections. The findings of recent studies on NK cells in hepatitis C suggest that NK cell responses are indeed important in each phase of HCV infection. In the early phase, NK cells are involved in protective immunity to HCV. The immune evasion strategies used by HCV may target NK cells and might contribute to the progression to chronic hepatitis C. NK cells may control HCV replication and modulate hepatic fibrosis in the chronic phase. Further investigations are, however, needed, because a considerable number of studies observed functional impairment of NK cells in chronic HCV infection. Interestingly, the enhanced NK cell responses during interferon-α-based therapy of chronic hepatitis C indicate successful treatment. In spite of the advances in research on NK cells in hepatitis C, establishment of more physiological HCV infection model systems is needed to settle unsolved controversies over the role and functional status of NK cells in HCV infection.
Collapse
|
17
|
Longitudinal analysis of peripheral and intrahepatic NK cells in chronic HCV patients during antiviral therapy. Antiviral Res 2015; 123:86-92. [DOI: 10.1016/j.antiviral.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 02/08/2023]
|
18
|
Interferon-β Modulates the Innate Immune Response against Glioblastoma Initiating Cells. PLoS One 2015; 10:e0139603. [PMID: 26441059 PMCID: PMC4595134 DOI: 10.1371/journal.pone.0139603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/14/2015] [Indexed: 01/16/2023] Open
Abstract
Immunotherapy targeting glioblastoma initiating cells (GIC) is considered a promising strategy. However, GIC are prone to evade immune response and there is a need for potent adjuvants. IFN-β might enhance the immune response and here we define its net effect on the innate immunogenicity of GIC. The transcriptomes of GIC treated with IFN-β and controls were assessed by microarray-based expression profiling for altered expression of immune regulatory genes. Several genes involved in adaptive and innate immune responses were regulated by IFN-β. We validated these results using reverse transcription (RT)-PCR and flow cytometry for corresponding protein levels. The up-regulation of the NK cell inhibitory molecules HLA-E and MHC class I was balanced by immune stimulating effects including the up-regulation of nectin-2. In 3 out of 5 GIC lines tested we found a net immune stimulating effect of IFN-β in cytotoxicity assays using NKL cells as effectors. IFN-β therefore warrants further investigation as an adjuvant for immunotherapy targeting GIC.
Collapse
|
19
|
Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology 2015; 146:369-78. [PMID: 26235210 DOI: 10.1111/imm.12516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor-ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy.
Collapse
Affiliation(s)
- Peng Xiong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Wei Sang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Rogalska-Taranta M, Markova AA, Taranta A, Lunemann S, Schlaphoff V, Flisiak R, Manns MP, Cornberg M, Kraft ARM, Wedemeyer H. Altered effector functions of NK cells in chronic hepatitis C are associated with IFNL3 polymorphism. J Leukoc Biol 2015; 98:283-94. [PMID: 26034208 DOI: 10.1189/jlb.4a1014-520r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/12/2015] [Indexed: 12/14/2022] Open
Abstract
Interferon α-mediated effector functions of NK cells may contribute to the control of HCV replication and the pathogenesis of liver disease. The single-nucleotide polymorphism rs12979860 near IFNL3 (previously known as IL28B) is important in response to IFN-α treatment and in spontaneous resolution of acute hepatitis C. The role of the IFNL3 polymorphism in NK cell function is unclear. Thus, we investigated the role of IFNL3 polymorphism in type I IFN-dependent regulation of NK cell functions in patients with cHC and healthy control subjects. We demonstrated a marked polarization of NK cells toward cytotoxicity in response to IFN-α stimulation in patients with hepatitis C. That TRAIL up-regulation was present, particularly in patients with the IFNL3-TT allele, was supported by a shift in the pSTAT-1:pSTAT-4 ratios toward pSTAT-1. In patients bearing the IFNL3-TT allele, NK cell effector function correlated with liver disease activity. In contrast, higher cytokine production of NK cells was observed in healthy individuals with the IFNL3-CC genotype, which may support spontaneous HCV clearance in acute infection. Overall, these findings show that the role of NK cells may differ in chronic infection vs. early antiviral defense and that the IFNL3 genotype differentially influences NK cell function.
Collapse
Affiliation(s)
- Magdalena Rogalska-Taranta
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Antoaneta A Markova
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Andrzej Taranta
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Sebastian Lunemann
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Verena Schlaphoff
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Robert Flisiak
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Michael P Manns
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Markus Cornberg
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Anke R M Kraft
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Heiner Wedemeyer
- *Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland; and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
21
|
De Re V, Caggiari L, De Zorzi M, Repetto O, Zignego AL, Izzo F, Tornesello ML, Buonaguro FM, Mangia A, Sansonno D, Racanelli V, De Vita S, Pioltelli P, Vaccher E, Beretta M, Mazzaro C, Libra M, Gini A, Zucchetto A, Cannizzaro R, De Paoli P. Genetic diversity of the KIR/HLA system and susceptibility to hepatitis C virus-related diseases. PLoS One 2015; 10:e0117420. [PMID: 25700262 PMCID: PMC4336327 DOI: 10.1371/journal.pone.0117420] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/21/2014] [Indexed: 01/22/2023] Open
Abstract
Background The variability in the association of host innate immune response to Hepatitis C virus (HCV) infection requires ruling out the possible role of host KIR and HLA genotypes in HCV-related disorders: therefore, we therefore explored the relationships between KIR/HLA genotypes and chronic HCV infection (CHC) as they relate to the risk of HCV-related hepatocarcinoma (HCC) or lymphoproliferative disease progression. Methods and Findings We analyzed data from 396 HCV-positive patients with CHC (n = 125), HCC (118), and lymphoproliferative diseases (153), and 501 HCV-negative patients. All were HIV and HBV negative. KIR-SSO was used to determine the KIR typing. KIR2DL5 and KIR2DS4 variants were performed using PCR and GeneScan analysis. HLA/class-I genotyping was performed using PCR-sequence-based typing. The interaction between the KIR gene and ligand HLA molecules was investigated. Differences in frequencies were estimated using Fisher’s exact test, and Cochran-Armitage trend test. The non-random association of KIR alleles was estimated using the linkage disequilibrium test. We found an association of KIR2DS2/KIR2DL2 genes, with the HCV-related lymphoproliferative disorders. Furthermore, individuals with a HLA-Bw6 KIR3DL1+ combination of genes showed higher risk of developing lymphoma than cryoglobulinemia. KIR2DS3 gene was found to be the principal gene associated with chronic HCV infection, while a reduction of HLA-Bw4 + KIR3DS1+ was associated with an increased risk of developing HCC. Conclusions Our data highlight a role of the innate-system in developing HCV-related disorders and specifically KIR2DS3 and KIR2D genes demonstrated an ability to direct HCV disease progression, and mainly towards lymphoproliferative disorders. Moreover the determination of KIR3D/HLA combination of genes direct the HCV progression towards a lymphoma rather than an hepatic disease. In this contest IFN-α therapy, a standard therapy for HCV-infection and lymphoproliferative diseases, known to be able to transiently enhance the cytotoxicity of NK-cells support the role of NK cells to counterstain HCV-related and lymphoproliferative diseases.
Collapse
Affiliation(s)
- Valli De Re
- Facility Bio-proteomica/Dir. Sc, CRO National Cancer Institute, Aviano, Pordenone, Italy
- * E-mail:
| | - Laura Caggiari
- Facility Bio-proteomica/Dir. Sc, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Mariangela De Zorzi
- Facility Bio-proteomica/Dir. Sc, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Ombretta Repetto
- Facility Bio-proteomica/Dir. Sc, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Linda Zignego
- Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Izzo
- Hepatobiliary Unit, National Cancer Institute “Fondazione Pascale”, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, National Cancer Institute “Fondazione Pascale”, Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, National Cancer Institute “Fondazione Pascale”, Naples, Italy
| | - Alessandra Mangia
- Liver, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Domenico Sansonno
- Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Salvatore De Vita
- Medical and Biological Sciences, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Pietro Pioltelli
- Hematology and Transplant Unit, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Emanuela Vaccher
- Medical Oncology, Centro di riferimento oncologico, Aviano, Pordenone, Italy
| | | | - Cesare Mazzaro
- Medical Oncology, Centro di riferimento oncologico, Aviano, Pordenone, Italy
| | - Massimo Libra
- Biomedical Sciences, University of Catania, Catania, Italy
| | - Andrea Gini
- Epidemiology and Biostatistics, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Antonella Zucchetto
- Epidemiology and Biostatistics, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Renato Cannizzaro
- Gastroenterology, CRO National Cancer Institute, Aviano, Pordenone, Italy
| | - Paolo De Paoli
- Facility Bio-proteomica/Dir. Sc, CRO National Cancer Institute, Aviano, Pordenone, Italy
| |
Collapse
|
22
|
Thoens C, Berger C, Trippler M, Siemann H, Lutterbeck M, Broering R, Schlaak J, Heinemann FM, Heinold A, Nattermann J, Scherbaum N, Alter G, Timm J. KIR2DL3⁺NKG2A⁻ natural killer cells are associated with protection from productive hepatitis C virus infection in people who inject drugs. J Hepatol 2014; 61:475-81. [PMID: 24780303 DOI: 10.1016/j.jhep.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Despite continuous high-risk behavior, a subgroup among people who inject drugs (PWID) remains seronegative for hepatitis C virus (HCV) suggesting that a state of "natural resistance" to HCV Infection may exist. Homozygosity for KIR2DL3 and its ligand HLA-C1 group alleles has been associated with control of HCV infection, however, the mechanism mediating this protective effect remained unclear. METHODS Peripheral NK cells from PWID (n=104) were phenotypically and functionally characterized by multicolor flow cytometry. Expression levels of the NK cell receptor ligands were analysed in liver biopsies and primary human hepatocytes. RESULTS HCV seronegative PWID (n=34) had increased levels of KIR2DL3(+)NKG2A(-) NK cells compared to healthy controls (n=10; p<0.001) and PWID with chronic (n=38; p<0.001) or resolved infection (n=37; p<0.001). There was an inverse correlation between the frequency of KIR2DL3(+) and NKG2A(+) NK cells (r=-0.53; p<0.0001). Importantly, expression of HLA-E, the ligand for NKG2A, was significantly upregulated in liver biopsies of HCV infected patients (n=51) compared to HBV infected patients (n=22; p<0.01) and correlated with HCV viral load (r=0.32; p<0.0029). In functional analyses KIR2DL3(-)NKG2A(+) NK cells but not KIR2DL3(+)NKG2A(-) NK cells were significantly inhibited by HLA-E ligation. Accordingly, interferon gamma secretion of NK cells from PWID with chronic infection but not from HCV seronegative PWID was significantly suppressed in the presence of HLA-E. CONCLUSIONS KIR2DL3(+)NKG2A(-) NK cells are not sensitive to HLA-E-mediated inhibition and may thereby control early HCV infection prior to seroconversion and result in an apparent state of "natural resistance" to HCV in PWID.
Collapse
Affiliation(s)
- Christine Thoens
- Institute of Virology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | | | - Martin Trippler
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Holger Siemann
- Addiction Research Group, Department of Psychiatry and Psychotherapy, Rhine State Hospital, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Melanie Lutterbeck
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Ruth Broering
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jörg Schlaak
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine, University of Bonn, Bonn, Germany
| | - Norbert Scherbaum
- Addiction Research Group, Department of Psychiatry and Psychotherapy, Rhine State Hospital, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Boston, USA
| | - Joerg Timm
- Institute of Virology, University of Duisburg-Essen, University Hospital, Essen, Germany.
| |
Collapse
|
23
|
Recent advances in the anti-HCV mechanisms of interferon. Acta Pharm Sin B 2014; 4:241-7. [PMID: 26579391 PMCID: PMC4629091 DOI: 10.1016/j.apsb.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN) in combination with ribavirin has been the standard of care (SOC) for chronic hepatitis C for the past few decades. Although the current SOC lacks the desired efficacy, and 4 new direct-acting antiviral agents have been recently approved, interferons are still likely to remain the cornerstone of therapy for some time. Moreover, as an important cytokine system of innate immunity, host interferon signaling provides a powerful antiviral response. Nevertheless, the mechanisms by which HCV infection controls interferon production, and how interferons, in turn, trigger anti-HCV activities as well as control the outcome of HCV infection remain to be clarified. In this report, we review current progress in understanding the mechanisms of IFN against HCV, and also summarize the knowledge of induction of interferon signaling by HCV infection.
Collapse
Key Words
- Antiviral agent
- CHC, chronic hepatitis C
- DCs, dendritic cells
- DNAM1, DNAX accessory molecule-1
- E2, envelop 2
- GAS, IFN-γ-activated site
- GWAS, genome-wide association studies
- Hepatitis C virus
- IFN, interferon
- IFN-α, interferon-α
- IFNAR1, interferon-alpha receptor 1
- IFNAR2, interferon-alpha receptor 2
- IFNGR1, interferon gamma receptor 1
- IFNGR2, interferon gamma receptor 2
- IFNL4, IFN-lambda 4
- IL-10R2, interleukin-10 receptor 2
- IL-29, interleukin-29
- IRF-3, interferon regulatory factor 3
- IRGs, IFN regulatory genes
- ISG15, interferon-stimulated gene 15
- ISGF3, IFN-stimulated gene factor 3
- ISGs, IFN-stimulated genes
- ISREs, IFN-stimulated response elements
- Interferon
- JAKs, Janus activated kinases
- MAVS, mitochondrial antiviral signaling protein
- MDA-5, melanoma differentiation-associated gene-5
- MHC, major histocompatibility complex
- Molecular mechanism
- NKCs, natural killer cells
- NKTCs, natural killer T cells
- OAS, 2′-5′-oligoadenylate synthetase
- PAMPs, pathogen-associated molecular patterns
- PBMCs, peripheral blood mononuclear cells
- PKR, protein kinase R
- PRRs, pattern recognition receptors
- RIG-I, retinoic acid-inducible gene-I
- RLRs, RIG-I-like receptors
- RdRp, RNA dependent RNA polymerase
- SNPs, single-nucleotide polymorphisms
- SOC, standard of care
- STAT1, signal transducer and activator of transcription 1
- STAT2, signal transducer and activator of transcription 2
- SVR, sustained virological response
- TH1, T-helper-1
- TH2, T-helper-2
- TLRs, Toll-like receptors
- TYK2, tyrosine kinase 2
- USP18, ubiquitin specific peptidase 18
- dsRNA, double-stranded RNA
- pDC, plasmacytoid dendritic cell
Collapse
|
24
|
Extracellular HCV-core protein induces an immature regulatory phenotype in NK cells: implications for outcome of acute infection. PLoS One 2014; 9:e103219. [PMID: 25076408 PMCID: PMC4116173 DOI: 10.1371/journal.pone.0103219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Hepatitis C viral (HCV) proteins, including core, demonstrate immuno-modulatory properties; however, the effect of extracellular core on natural killer (NK) cells has not previously been investigated. Aims To characterise NKs in acute HCV infection over time, and, to examine the effect of exogenous HCV-core protein on NK cell phenotype and function. Methods Acute HCV patients (n = 22), including 10 subjects who spontaneously recovered, were prospectively studied. Flow-cytometry was used to measure natural cytotoxicity and to phenotype NKs directly ex vivo and after culture with HCV-core protein. Microarray analysis was used to identify pathways involved in the NK cell response to exogenous HCV-core. Results Direct ex vivo analysis demonstrated an increased frequency of immature/regulatory CD56bright NKs early in acute HCV infection per se which normalized with viral clearance. Natural cytotoxicity was reduced and did not recover after viral clearance. There was a statistically significant correlation between the frequency of CD56bright NKs and circulating serum levels of HCV core protein. In vitro culture of purified CD56bright NK cells with HCV-core protein in the presence of IL-15 maintained a significant proportion of NKs in the CD56bright state. The in vitro effect of core closely correlates with NK characteristics measured directly ex vivo in acute HCV infection. Pathway analysis suggests that HCV-core protein attenuates NK interferon type I responses. Conclusions Our data suggest that HCV-core protein alters NK cell maturation and may influence the outcome of acute infection.
Collapse
|
25
|
Markova AA, Mihm U, Schlaphoff V, Lunemann S, Filmann N, Bremer B, Berg T, Sarrazin C, Zeuzem S, Manns MP, Cornberg M, Herrmann E, Wedemeyer H. PEG-IFN alpha but not ribavirin alters NK cell phenotype and function in patients with chronic hepatitis C. PLoS One 2014; 9:e94512. [PMID: 24751903 PMCID: PMC3994015 DOI: 10.1371/journal.pone.0094512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/17/2014] [Indexed: 12/11/2022] Open
Abstract
Background Ribavirin (RBV) remains part of several interferon-free treatment strategies even though its mechanisms of action are still not fully understood. One hypothesis is that RBV increases responsiveness to type I interferons. Pegylated Interferon alpha (PEG-IFNa) has recently been shown to alter natural killer (NK) cell function possibly contributing to control of hepatitis C virus (HCV) infection. However, the effects of ribavirin alone or in combination with IFNa on NK cells are unknown. Methods Extensive ex vivo phenotyping and functional analysis of NK cells from hepatitis C patients was performed during antiviral therapy. Patients were treated for 6 weeks with RBV monotherapy (n = 11), placebo (n = 13) or PEG-IFNa-2a alone (n = 6) followed by PEG-IFNa/RBV combination therapy. The effects of RBV and PEG-IFNa-2a on NK cells were also studied in vitro after co-culture with K562 or Huh7.5 cells. Results Ribavirin monotherapy had no obvious effects on NK cell phenotype or function, neither ex vivo in patients nor in vitro. In contrast, PEG-IFNa-2a therapy was associated with an increase of CD56bright cells and distinct changes in expression profiles leading to an activated NK cell phenotype, increased functionality and decline of terminally differentiated NK cells. Ribavirin combination therapy reduced some of the IFN effects. An activated NK cell phenotype during therapy was inversely correlated with HCV viral load. Conclusions PEG-IFNa activates NK cells possibly contributing to virological responses independently of RBV. The role of NK cells during future IFN-free combination therapies including RBV remains to be determined.
Collapse
Affiliation(s)
- Antoaneta A. Markova
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ulrike Mihm
- Department of Medicine 1, JW Goethe-University Hospital, Frankfurt am Main, Germany
| | - Verena Schlaphoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sebastian Lunemann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modelling, Faculty of Medicine, JW Goethe-University, Frankfurt am Main, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas Berg
- Department of Internal Medicine, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Christoph Sarrazin
- Department of Medicine 1, JW Goethe-University Hospital, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, JW Goethe-University Hospital, Frankfurt am Main, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Faculty of Medicine, JW Goethe-University, Frankfurt am Main, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
26
|
Kokordelis P, Krämer B, Körner C, Boesecke C, Voigt E, Ingiliz P, Glässner A, Eisenhardt M, Wolter F, Kaczmarek D, Nischalke HD, Rockstroh JK, Spengler U, Nattermann J. An effective interferon-gamma-mediated inhibition of hepatitis C virus replication by natural killer cells is associated with spontaneous clearance of acute hepatitis C in human immunodeficiency virus-positive patients. Hepatology 2014; 59:814-27. [PMID: 24382664 DOI: 10.1002/hep.26782] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/25/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) coinfection is an increasing health problem in human immunodeficiency virus-positive (HIV(+) ) individuals. However, a considerable proportion of HIV(+) patients manage to overcome acute hepatitis C (AHC) spontaneously. In the present study, we analyzed the role of natural killer (NK) cells in modulating the course of AHC in HIV(+) patients. Twenty-seven HIV(+) patients with AHC (self-limited course: n = 10; chronic course: n = 17), 12 HIV(+) patients with chronic hepatitis C (CHC), 8 HIV monoinfected individuals, and 12 healthy controls were studied. NK cells were phenotypically analyzed by flow cytometry. Interferon-gamma (IFN-γ) secretion, degranulation (CD107a), and anti-HCV (= inhibition of HCV replication) activity of NK subpopulations were analyzed using the HuH7A2 HCVreplicon cell system. NK cell frequency did not differ significantly between HIV(+) patients with chronic and self-limited course of AHC. However, we found NK cells from patients with self-limiting infection to be significantly more effective in inhibiting HCV replication in vitro than NK cells from patients developing CHC. Of note, antiviral NK cell activity showed no significant correlation with NK cell degranulation, but was positively correlated with IFN-γ secretion, and blocking experiments confirmed an important role for IFN-γ in NK cell-mediated inhibition of HCV replication. Accordingly, NK cells from patients that spontaneously cleared the virus displayed a stronger IFN-γ secretion than those developing chronic infection. Finally, we observed high expression of NKG2D and NKp46, respectively, to be associated with self-limiting course of aHCV. Accordingly, we found that blocking of these NK cell receptors significantly impaired antiviral NK cell activity. CONCLUSION Our data suggest a strong IFN-γ-mediated antiviral NK cell response to be associated with a self-limited course of AHC in HIV(+) patients.
Collapse
Affiliation(s)
- Pavlos Kokordelis
- Department of Internal Medicine I, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahlenstiel G. The natural killer cell response to HCV infection. Immune Netw 2013; 13:168-76. [PMID: 24198741 PMCID: PMC3817297 DOI: 10.4110/in.2013.13.5.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-γ responses. Furthermore, some data suggests certain chronically activated subsets that are NKp46high may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.
Collapse
Affiliation(s)
- Golo Ahlenstiel
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
28
|
Lunemann S, Malone DFG, Hengst J, Port K, Grabowski J, Deterding K, Markova A, Bremer B, Schlaphoff V, Cornberg M, Manns MP, Sandberg JK, Ljunggren HG, Björkström NK, Wedemeyer H. Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis 2013; 209:1362-73. [PMID: 24154737 DOI: 10.1093/infdis/jit561] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are an integral part of the innate immune system. They have been suggested to play an important role in both defense against viral hepatitis and the pathogenesis of other liver diseases. METHODS NK cells from 134 individuals including patients with acute hepatitis B and C as well as chronic hepatitis B, C, and delta (D) patients were studied. RESULTS Infection with viral hepatitis was associated with increased frequencies of NK cells in the peripheral blood; that NK cells showed a less activated phenotype and were compromised in cytolotytic function and cytokine production in all viral hepatitis infections: Hepatitis virus infections did not alter NK cell differentiation, and the activity and severity of liver disease were reflected by alterations of NK cell surface receptors as demonstrated by principal component analysis. CONCLUSION NK cell phenotypic and functional alterations can equally be observed in HBV, HCV, and HDV infections. Instead, patterns of NK cell alterations differ in acute and chronic infections. Thus, our data suggest a common mechanism in the alteration of NK cell phenotype and function with unique variations that depend on disease activity rather than virus-specific factors.
Collapse
Affiliation(s)
- Sebastian Lunemann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Björkström NK, Kekäläinen E, Mjösberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology 2013; 139:416-27. [PMID: 23489335 DOI: 10.1111/imm.12098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans.
Collapse
Affiliation(s)
- Niklas K Björkström
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev 2013; 255:68-81. [PMID: 23947348 PMCID: PMC3765000 DOI: 10.1111/imr.12090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Natural killer cells (NKs) are involved in every stage of hepatitis C viral (HCV) infection, from protection against HCV acquisition and resolution in the acute phase to treatment-induced clearance. In addition to their direct antiviral actions, NKs are involved in the induction and priming of appropriate downstream T-cell responses. In the setting of chronic HCV, overall NK cell levels are decreased, subset distribution is altered, and changes in NK receptor (NKR) expression have been demonstrated, although the contribution of individual NKRs to viral clearance or persistence remains to be clarified. Enhanced NK cell cytotoxicity accompanied by insufficient interferon-γ production may promote liver damage in the setting of chronic infection. Treatment-induced clearance is associated with activation of NK cells, and it will be of interest to monitor NK cell responses to triple therapy. Activated NK cells also have anti-fibrotic properties, and the same hepatic NK cell populations that are actively involved in control of HCV may also be involved in control of HCV-associated liver damage. We still have much to learn, in particular: how do liver-derived NKs influence the outcome of HCV infection? Do NK receptors recognize HCV-specific components? And, are HCV-specific memory NK populations generated?
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, CO, USA
| | | |
Collapse
|
31
|
Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. Proc Natl Acad Sci U S A 2013; 110:11970-5. [PMID: 23818644 DOI: 10.1073/pnas.1302090110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Control of HIV replication in elite controller (EC) and long-term nonprogressor (LTNP) patients has been associated with efficient CD8(+)cytotoxic T-lymphocyte function. However, innate immunity may play a role in HIV control. We studied the expression of natural cytotoxicity receptors (NKp46, NKp30, and NKp44) and their induction over a short time frame (2-4 d) on activation of natural killer (NK) cells in 31 HIV controller patients (15 ECs, 16 LTNPs). In EC/LTNP, induction of NKp46 expression was normal but short (2 d), and NKp30 was induced to lower levels vs. healthy donors. Notably, in antiretroviral-treated aviremic progressor patients (TAPPs), no induction of NKp46 or NKp30 expression occurred. More importantly, EC/LTNP failed to induce expression of NKp44, a receptor efficiently induced in activated NK cells in TAPPs. The specific lack of NKp44 expression resulted in sharply decreased capability of killing target cells by NKp44, whereas TAPPs had conserved NKp44-mediated lysis. Importantly, conserved NK cell responses, accompanied by a selective defect in the NKp44-activating pathway, may result in lack of killing of uninfected CD4(+)NKp44Ligand(+) cells when induced by HIVgp41 peptide-S3, representing a relevant mechanism of CD4(+) depletion. In addition, peripheral NK cells from EC/LTNP had increased NKG2D expression, significant HLA-DR up-regulation, and a mature (NKG2A-CD57(+)killer cell Ig-like receptor(+)CD85j(+)) phenotype, with cytolytic function also against immature dendritic cells. Thus, NK cells in EC/LTNP can maintain substantially unchanged functional capabilities, whereas the lack of NKp44 induction may be related to CD4 maintenance, representing a hallmark of these patients.
Collapse
|
32
|
Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1061-9. [PMID: 23022478 PMCID: PMC3552008 DOI: 10.1016/j.bbadis.2012.09.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
The liver lymphocyte population is enriched with natural killer (NK) cells, which play a key role in host defense against viral infection and tumor transformation. Recent evidence from animal models suggests that NK cells also play an important role in inhibiting liver fibrosis by selectively killing early or senescence activated hepatic stellate cells (HSCs) and by producing the anti-fibrotic cytokine IFN-γ. Furthermore, clinical studies have revealed that human NK cells can kill primary human HSCs and that the ability of NK cells from HCV patients to kill HSCs is enhanced and correlates inversely with the stages of liver fibrosis. IFN-α treatment enhances, while other factors (e.g., alcohol, TGF-β) attenuate, the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver fibrogenesis. In addition, the mouse liver lymphocyte population is also enriched for natural killer T (NKT) cells, whereas human liver lymphocytes have a much lower percentage of NKT cells. Many studies suggest that NKT cells promote liver fibrogenesis by producing pro-fibrotic cytokines such as IL-4, IL-13, hedgehog ligands, and osteopontin; however, NKT cells may also attenuate liver fibrosis under certain conditions by killing HSCs and by producing IFN-γ. Finally, the potential for NK and NKT cells to be used as therapeutic targets for anti-fibrotic therapy is discussed. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
Bozzano F, Marras F, Biassoni R, De Maria A. Natural killer cells in hepatitis C virus infection. Expert Rev Clin Immunol 2013; 8:775-88. [PMID: 23167689 DOI: 10.1586/eci.12.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection induces the long-term risk of liver cirrhosis or hepatocellular carcinoma and in adults represents the most common cause of liver transplantation. Natural killer (NK) cells participate in innate immune responses with efficient direct antitumor and antiviral defense. Over the years, their complex interaction with downstream adaptive responses and with the regulation of immune responses has been increasingly recognized. Considerable advances have been made particularly in understanding the role of NK cells in the pathophysiology of HCV infection and their possible use as biological markers for clinical purposes. This review summarizes the available data on the role of NK cells in the natural history of HCV infection and their role in the outcome of treatment. The main objective of this review is to summarize recent advancements in the basic understanding of NK cell function highlighting their possible translational use in clinical practice. An integrated practical view on the possible use of currently available predictive immunogenetic and NK cell functional tests is provided, to support clinical management choices for optimal treatment of patients with both standard and new drug regimens.
Collapse
Affiliation(s)
- Federica Bozzano
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | | | | |
Collapse
|
34
|
Boesecke C, Wedemeyer H, Rockstroh JK. Diagnosis and treatment of acute hepatitis C virus infection. Infect Dis Clin North Am 2013; 26:995-1010. [PMID: 23083829 DOI: 10.1016/j.idc.2012.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first 6 months after exposure to hepatitis C virus (HCV) are regarded as acute hepatitis C (AHC). Two patient populations worldwide share the highest prevalence of AHC virus infection: injection drug users and HIV-positive men who have sex with men. Diagnosis of AHC is often difficult in both patient populations as the acute inflammatory phase can be clinically asymptomatic and patients at highest risk for acquiring AHC (injection drug users) tend to evade regular medical care. This article addresses similarities and differences in the epidemiology, diagnosis, and management of AHC monoinfection and coinfection.
Collapse
Affiliation(s)
- Christoph Boesecke
- Department of Internal Medicine I, Bonn University Hospital, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | | | | |
Collapse
|
35
|
Abstract
Donor T cells play pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects following bone marrow transplantation (BMT). DNAX accessory molecule 1 (DNAM-1) is a costimulatory and adhesion molecule, expressed mainly by natural killer cells and CD8(+) T cells at steady state to promote adhesion to ligand-expressing targets and enhance cytolysis. We have analyzed the role of this pathway in GVHD and GVL. The absence of DNAM-1 on the donor graft attenuated GVHD in major histocompatibility complex (MHC)-mismatched and MHC-matched BMT following conditioning with lethal and sublethal irradiation. In contrast, DNAM-1 was not critical for GVL effects against ligand (CD155) expressing and nonexpressing leukemia. The effects on GVHD following myeloablative conditioning were independent of CD8(+) T cells and dependent on CD4(+) T cells, and specifically donor FoxP3(+) regulatory T cells (Treg). The absence of DNAM-1 promoted the expansion and suppressive function of Treg after BMT. These findings provide support for therapeutic DNAM-1 inhibition to promote tolerance in relevant inflammatory-based diseases characterized by T-cell activation.
Collapse
|
36
|
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden. Hepatitis C causes significant liver-related morbidity and mortality due to hepatic decompensation and development of hepatocellular carcinoma. In addition, extra-hepatic manifestations of hepatitis C are frequent. There is a very large interindividual variability in the natural history of both acute and chronic hepatitis C which can be explained in part by a combination of various host, viral and environmental factors. Successful antiviral treatment can prevent short- and long-term complications of HCV infection in many patients. Still, the relative contribution of distinct risk factors for disease progression in different phases of HCV infection needs to be better defined. Personalized treatment approaches for HCV infection should consider individual risk profiles to avoid both under- and over-treatment - which will remain important also in upcoming era of interferon-free treatment of hepatitis C.
Collapse
Affiliation(s)
- Benjamin Maasoumy
- Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | |
Collapse
|