1
|
Mejía-Jaramillo AM, Fernandez GJ, Ospina-Zapata H, Murillo AM, Jimenez DE, Gómez LA, Triana-Chávez O. PUF3 RNA binding protein of Trypanosoma cruzi regulates mitochondrial morphology and function. Heliyon 2024; 10:e32810. [PMID: 39022037 PMCID: PMC11252720 DOI: 10.1016/j.heliyon.2024.e32810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The RNA-binding PUF proteins are post-transcriptional regulators found throughout the eukaryotic domain. In Trypanosoma cruzi, ten Puf genes termed Puf1 to Puf10 have been identified. Considering that the control of gene expression in this parasite is mainly at the post-transcriptional level, we characterized the PUF3 protein by knocking out and overexpressing the gene in T. cruzi epimastigotes and studied different genetic and biological features. The RNA-seq analyses in both genotypes showed significant changes in the number of regulated transcripts compared with wild-type parasites. Thus, the number of differentially expressed genes in the knockout (ΔTcPuf3) and the overexpressor (pTEXTcPuf3) were 238 and 187, respectively. In the knockout, a more significant proportion of genes was negatively regulated (166 out of 238). In contrast, in the overexpressor, positively regulated genes were predominant (149 out of 170). Additionally, when we predicted the subcellular location of the differentially expressed genes, the results revealed an important representation of nuclear genes encoding mitochondrial proteins. Therefore, we determined whether overexpression or knockout of TcPuf3 could lead to changes in both mitochondrial structure and cellular respiration. When mitochondria from ΔTcPuf3 and pTEXTcPuf3 parasites were analyzed by transmission electron microscopy (TEM), it was observed that the overexpressor had an abnormal mitochondrial morphology, evidenced by swelling. The results associated with cellular respiration showed that both the ΔTcPuf3 and pTEXTcPuf3 had a lower efficiency in routine respiration and the electron transport system capacity. Likewise, the mitochondria from overexpressing parasites showed a slight hyperpolarization. Additionally, several biological features, depending on the function of the mitochondria, were altered, such as growth, cell division, metacyclogenesis, ROS production, and response to benznidazole. In conclusion, our results suggest that although PUF3 is not an essential protein in T. cruzi, it influences mitochondrial transcripts, affecting mitochondrial morphology and function.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Hader Ospina-Zapata
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Ana Milena Murillo
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Dianny Elizabeth Jimenez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Luis A. Gómez
- Área de Ciencias Fundamentales, Universidad Eafit, Medellín, Colombia
| | - Omar Triana-Chávez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Cristovão-Silva AC, Brelaz-de-Castro MCA, Dionisio da Silva E, Leite ACL, Santiago LBAA, Conceição JMD, da Silva Tiburcio R, de Santana DP, Bedor DCG, de Carvalho BÍV, Ferreira LFGR, de Freitas E Silva R, Alves Pereira VR, Hernandes MZ. Trypanosoma cruzi killing and immune response boosting by novel phenoxyhydrazine-thiazole against Chagas disease. Exp Parasitol 2024; 261:108749. [PMID: 38593864 DOI: 10.1016/j.exppara.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 μM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 μM) for trypomastigotes, and LIZ331 (IC50 1.9 μM) for amastigotes. We observed that LIZ311 (IC50 2.5 μM), LIZ431 (IC50 4.1 μM) and LIZ531 (IC50 5 μM) induced 200 μg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.
Collapse
Affiliation(s)
- Ana Catarina Cristovão-Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Maria Carolina Accioly Brelaz-de-Castro
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil; Laboratory of Parasitology, Vitória Academic Center, Federal University of Pernambuco, 55608-680, Vitória de Santo Antão, Pernambuco, Brazil
| | - Elis Dionisio da Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Lizandra Beatriz Amorim Alves Santiago
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Juliana Maria da Conceição
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Robert da Silva Tiburcio
- Laboratory of Planning and Synthesis in Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Davi Pereira de Santana
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Danilo Cesar Galindo Bedor
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Breno Ítalo Valença de Carvalho
- Pharmaceutical and Cosmetic Development Center (NUDFAC), Department of Pharmaceutical Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Rafael de Freitas E Silva
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-42, Recife, Pernambuco, Brazil.
| | - Marcelo Zaldini Hernandes
- Laboratory of Theoretical and Medicinal Chemistry, Pharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Olmo F, Jayawardhana S, Khan AA, Langston HC, Francisco AF, Atherton RL, Ward AI, Taylor MC, Kelly JM, Lewis MD. A panel of phenotypically and genotypically diverse bioluminescent:fluorescent Trypanosoma cruzi strains as a resource for Chagas disease research. PLoS Negl Trop Dis 2024; 18:e0012106. [PMID: 38820564 PMCID: PMC11168640 DOI: 10.1371/journal.pntd.0012106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that displays considerable genetic diversity. Infections result in a range of pathological outcomes, and different strains can exhibit a wide spectrum of anti-parasitic drug tolerance. The genetic determinants of infectivity, virulence and therapeutic susceptibility remain largely unknown. As experimental tools to address these issues, we have generated a panel of bioluminescent:fluorescent parasite strains that cover the diversity of the T. cruzi species. These reporters allow spatio-temporal infection dynamics in murine models to be monitored in a non-invasive manner by in vivo imaging, provide a capability to detect rare infection foci at single-cell resolution, and represent a valuable resource for investigating virulence and host:parasite interactions at a mechanistic level. Importantly, these parasite reporter strains can also contribute to the Chagas disease drug screening cascade by ensuring that candidate compounds have pan-species in vivo activity prior to being advanced into clinical testing. The parasite strains described in this paper are available on request.
Collapse
Affiliation(s)
- Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harry C. Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard L. Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alex I. Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
5
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
6
|
Ajayi O, Metibemu DS, Crown O, Adeyinka OS, Kaiser M, Shoji N, Silva M, Rodriguez A, Ogungbe IV. Discovery of an orally active nitrothiophene-based antitrypanosomal agent. Eur J Med Chem 2024; 263:115954. [PMID: 37984297 PMCID: PMC10843616 DOI: 10.1016/j.ejmech.2023.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.
Collapse
Affiliation(s)
- Oluwatomi Ajayi
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Damilohun S Metibemu
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olamide Crown
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olawale S Adeyinka
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland
| | - Nathalie Shoji
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | | | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
7
|
Ortiz-Perez E, Vazquez-Jimenez LK, Paz-Gonzalez AD, Delgado-Maldonado T, González-González A, Gaona-Lopez C, Moreno-Herrera A, Vazquez K, Rivera G. Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Curr Med Chem 2024; 31:6735-6759. [PMID: 37909441 DOI: 10.2174/0109298673249553231018070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3 - transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.
Collapse
Affiliation(s)
- Eyra Ortiz-Perez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alma D Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Karina Vazquez
- Departamento de Biotecnología Farmacéutica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Gral. Escobedo, 66050, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| |
Collapse
|
8
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
9
|
Rostán S, Porto S, Barbosa CLN, Assis D, Alvarez N, Machado FS, Mahler G, Otero L. A novel palladium complex with a coumarin-thiosemicarbazone hybrid ligand inhibits Trypanosoma cruzi release from host cells and lowers the parasitemia in vivo. J Biol Inorg Chem 2023; 28:711-723. [PMID: 37768364 DOI: 10.1007/s00775-023-02020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.
Collapse
Affiliation(s)
- Santiago Rostán
- Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Samuel Porto
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cesar L N Barbosa
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Diego Assis
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Natalia Alvarez
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Fabiana Simão Machado
- Laboratorio de Inmunorregulación y Enfermedades Infecciosas (LIDIN), Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
10
|
Jayawardhana S, Ward AI, Francisco AF, Lewis MD, Taylor MC, Kelly JM, Olmo F. Benznidazole treatment leads to DNA damage in Trypanosoma cruzi and the persistence of rare widely dispersed non-replicative amastigotes in mice. PLoS Pathog 2023; 19:e1011627. [PMID: 37956215 PMCID: PMC10681306 DOI: 10.1371/journal.ppat.1011627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment.
Collapse
Affiliation(s)
- Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alexander I. Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
12
|
Nunes EAC, da Silva MC, Cardoso MH, Preza SLE, de Oliveira LS, Frihling BEF, Charneau SO, Grellier P, Franco OL, Migliolo L. Anti-Protozoan Activities of Polar Fish-Derived Polyalanine Synthetic Peptides. Mar Drugs 2023; 21:434. [PMID: 37623715 PMCID: PMC10456387 DOI: 10.3390/md21080434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Chagas disease, sleeping sickness and malaria are infectious diseases caused by protozoan parasites that kill millions of people worldwide. Here, we performed in vitro assays of Pa-MAP, Pa-MAP1.9, and Pa-MAP2 synthetic polyalanine peptides derived from the polar fish Pleuronectes americanus toward Trypanosoma cruzi, T. brucei gambiense and Plasmodium falciparum activities. We demonstrated that the peptides Pa-MAP1.9 and Pa-MAP2 were effective to inhibit T. brucei growth. In addition, structural analyses using molecular dynamics (MD) studies showed that Pa-MAP2 penetrates deeper into the membrane and interacts more with phospholipids than Pa-MAP1.9, corroborating the previous in vitro results showing that Pa-MAP1.9 acts within the cell, while Pa-MAP2 acts via membrane lysis. In conclusion, polyalanine Pa-MAP1.9 and Pa-MAP2 presented activity against bloodstream forms of T. b. gambiense, thus encouraging further studies on the application of these peptides as a treatment for sleeping sickness.
Collapse
Affiliation(s)
| | - Maria Cláudia da Silva
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14040-900, Brazil
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57020-600, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
- Center for Proteomics and Biochemical Analysis, Catholic University of Brasília, Brasilia 71966-700, Brazil
| | | | - Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 73345-010, Brazil
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 75005 Paris, France
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 73345-010, Brazil
| | | | - Sébastien Olivier Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasilia 73345-010, Brazil
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 73345-010, Brazil
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d'Histoire Naturelle, CNRS, 75005 Paris, France
| | - Octávio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
- Center for Proteomics and Biochemical Analysis, Catholic University of Brasília, Brasilia 71966-700, Brazil
| | - Ludovico Migliolo
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, Brazil
- Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
13
|
Krishnan SR, Skiba A, Luca SV, Marcourt L, Wolfender JL, Skalicka-Woźniak K, Gertsch J. Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species. PHYTOCHEMISTRY 2023:113770. [PMID: 37331573 DOI: 10.1016/j.phytochem.2023.113770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 μg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 μM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery.
Collapse
Affiliation(s)
- Sandhya R Krishnan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Adrianna Skiba
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093, Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany; Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Krystyna Skalicka-Woźniak
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Department of Chemistry of Natural Products, Medical University of Lublin, 20-093, Lublin, Poland.
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Muñoz-Calderón A, Ramírez JL, Díaz-Bello Z, Alarcón de Noya B, Noya O, Schijman AG. Genetic Characterization of Trypanosoma cruzi I Populations from an Oral Chagas Disease Outbreak in Venezuela: Natural Resistance to Nitroheterocyclic Drugs. ACS Infect Dis 2023; 9:582-592. [PMID: 36780430 DOI: 10.1021/acsinfecdis.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The oral transmission of Chagas disease (oCD) in Venezuela announced its appearance in 2007. Different from other populations affected by oCD and despite close supervision during treatment with nitroheterocyclic drugs, the result was treatment failure. We studied genetic features of natural bloodstream parasite populations and populations after treatment of nine patients of this outbreak. In total, we studied six hemoculture isolates, eight Pre-Tx blood samples, and 17 samples collected at two or three Post-Tx time-points between 2007 and 2015. Parasitic loads were determined by quantitative polymerase chain reaction (qPCR), and discrete typing units (DTU), minicircle signatures, and Tcntr-1 gene sequences were searched from blood samples and hemocultures. Half-maximal inhibitory concentration (IC50) values were measured from the hemocultures. All patients were infected by TcI. Significant decrease in parasitic loads was observed between Pre-Tx and Post-Tx samples, suggesting the evolution from acute to chronic phase of Chagas disease. 60% of intra-DTU-I variability was observed between Pre-Tx and Post-Tx minicircle signatures in the general population, and 43 single-nucleotide polymorphisms (SNPs) were detected in a total of 12 Tcntr-1 gene sequences, indicative of a polyclonal source of infection. SNPs in three post-Tx samples produced stop codons giving rise to putative truncated proteins or displaced open reading frames, which would render resistance genes. IC50 values varied from 5.301 ± 1.973 to 104.731 ± 4.556 μM, demonstrating a wide range of susceptibility. The poor drug response in the Pre-Tx parasite populations may be associated with the presence of naturally resistant parasite clones. Therefore, any information that can be obtained on drug susceptibility from in vitro assays, in vivo assays, or molecular characterization of natural populations of Trypanosoma cruzi becomes essential when therapeutic guidelines are designed in a given geographical area.
Collapse
Affiliation(s)
- Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| | - José Luis Ramírez
- Centro de Biotecnología, Fundación Instituto de Estudios Avanzados, Caracas CP1080, Venezuela
| | - Zoraida Díaz-Bello
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Belkisyolé Alarcón de Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Oscar Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela.,Centro de Estudios sobre Malaria, Instituto de Altos Estudios, Ministerio del Poder Popular para la Salud, Caracas CP1050, Venezuela
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| |
Collapse
|
15
|
Urán Landaburu L, Didier Garnham M, Agüero F. Targeting trypanosomes: how chemogenomics and artificial intelligence can guide drug discovery. Biochem Soc Trans 2023; 51:195-206. [PMID: 36606702 DOI: 10.1042/bst20220618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism of action for many of these chemicals is currently unknown. Recently, chemogenomic screens assessing the susceptibility or resistance of parasites carrying genome-wide modifications started to define the mechanism of action of drugs at large scale. In this review, we discuss how genomics is being used for drug discovery in trypanosomatids, how integration of chemical and genomics data from these and other organisms has guided prioritisations of candidate therapeutic targets and additional chemical starting points, and how these data can fuel the expansion of drug discovery pipelines into the era of artificial intelligence.
Collapse
Affiliation(s)
- Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Mercedes Didier Garnham
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
16
|
Caroli AP, Mansoldo FRP, Cardoso VS, Lage CLS, Carmo FL, Supuran CT, Beatriz Vermelho A. Are patents important indicators of innovation for Chagas disease treatment? Expert Opin Ther Pat 2023; 33:193-209. [PMID: 36786067 DOI: 10.1080/13543776.2023.2176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.
Collapse
Affiliation(s)
- Andrea Pestana Caroli
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Veronica S Cardoso
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Celso Luiz Salgueiro Lage
- National Institute of Intellectual Property (INPI), Graduate and Research Division, Rio de Janeiro-RJ, Brazil
| | - Flavia L Carmo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, LEMM - Molecular Microbial Ecology Laboratory
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Alane Beatriz Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti- T. cruzi Activity. Microorganisms 2023; 11:microorganisms11020476. [PMID: 36838441 PMCID: PMC9967867 DOI: 10.3390/microorganisms11020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite, Trypanosoma cruzi. The disease causes ~12,000 deaths annually and is one of the world's 20 neglected tropical diseases, as defined by the World Health Organisation. The drug discovery pipeline for Chagas disease currently has few new clinical candidates, with high attrition rates an ongoing issue. To determine if the Trypanosoma cruzi strain utilised to assess in vitro compound activity impacts activity, a comparison of laboratory-adapted T. cruzi strains from differing geographical locations was undertaken for a selection of compounds with anti-T. cruzi activity. To minimise the possible effect of differences in experimental methodology, the same host cell and multiplicity of infection were utilised. To determine whether the compound exposure time influenced results, activity was determined following exposure for 48 and 72 h of incubation. To ascertain whether replication rates affected outcomes, comparative rates of replication of the T. cruzi strains were investigated, using the nucleoside analogue, 5-ethynyl-2'-deoxyuridine. Minimal differences in the in vitro activity of compounds between strains were observed following 48 h incubation, whereas significant differences were observed following 72 h incubation, in particular for the cytochrome P450 inhibitors tested and the cell cycle inhibitor, camptothecin. Thus, the use of panels of laboratory adapted strains in vitro may be dependent on the speed of action that is prioritised. For the identification of fast-acting compounds, an initial shorter duration assay using a single strain may be used. A longer incubation to identify compound activity may alternatively require profiling of compounds against multiple T. cruzi strains.
Collapse
|
18
|
de Azevedo SLC, Catanho M, Guimarães ACR, Galvão TC. Genomic surveillance: a potential shortcut for effective Chagas disease management. Mem Inst Oswaldo Cruz 2023; 117:e220164. [PMID: 36700581 PMCID: PMC9870261 DOI: 10.1590/0074-02760220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease is an enduring public health issue in many Latin American countries, receiving insufficient investment in research and development. Strategies for disease control and management currently lack efficient pharmaceuticals, commercial diagnostic kits with improved sensitivity, and vaccines. Genetic heterogeneity of Trypanosoma cruzi is a key aspect for novel drug design since pharmacological technologies rely on the degree of conservation of parasite target proteins. Therefore, there is a need to expand the knowledge regarding parasite genetics which, if fulfilled, could leverage Chagas disease research and development, and improve disease control strategies. The growing capacity of whole-genome sequencing technology and its adoption as disease surveillance routine may be key for solving this long-lasting problem.
Collapse
Affiliation(s)
- Sophia Lincoln Cardoso de Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Teca Calcagno Galvão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
19
|
Identification of Aryl Polyamines Derivatives as Anti- Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics 2022; 15:pharmaceutics15010140. [PMID: 36678771 PMCID: PMC9863987 DOI: 10.3390/pharmaceutics15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Chagas disease (CD) is a tropical and potentially fatal infection caused by Trypanosoma cruzi. Although CD was limited to Latin America as a silent disease, CD has become widespread as a result of globalization. Currently, 6-8 million people are infected worldwide, and no effective treatment is available. Here, we identify new effective agents against T. cruzi. In short, 16 aryl polyamines were screened in vitro against different T. cruzi strains, and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections. The mode of action was also evaluated at the energetic level, and its high activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme. We present compound 15 as a potential compound that provides a step forward for the development of new agents to combat CD.
Collapse
|
20
|
Rossi IV, Nunes MAF, Sabatke B, Ribas HT, Winnischofer SMB, Ramos ASP, Inal JM, Ramirez MI. An induced population of Trypanosoma cruzi epimastigotes more resistant to complement lysis promotes a phenotype with greater differentiation, invasiveness, and release of extracellular vesicles. Front Cell Infect Microbiol 2022; 12:1046681. [PMID: 36590580 PMCID: PMC9795005 DOI: 10.3389/fcimb.2022.1046681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi, which uses blood-feeding triatomine bugs as a vector to finally infect mammalian hosts. Upon entering the host, the parasite needs to effectively evade the attack of the complement system and quickly invade cells to guarantee an infection. In order to accomplish this, T. cruzi expresses different molecules on its surface and releases extracellular vesicles (EVs). Methods Here, we have selected a population of epimastigotes (a replicative form) from T. cruzi through two rounds of exposure to normal human serum (NHS), to reach 30% survival (2R population). This 2R population was characterized in several aspects and compared to Wild type population. Results The 2R population had a favored metacyclogenesis compared with wild-type (WT) parasites. 2R metacyclic trypomastigotes had a two-fold increase in resistance to complementmediated lysis and were at least three times more infective to eukaryotic cells, probably due to a higher GP82 expression in the resistant population. Moreover, we have shown that EVs from resistant parasites can transfer the invasive phenotype to the WT population. In addition, we showed that the virulence phenotype of the selected population remains in the trypomastigote form derived from cell culture, which is more infective and also has a higher rate of release of trypomastigotes from infected cells. Conclusions Altogether, these data indicate that it is possible to select parasites after exposure to a particular stress factor and that the phenotype of epimastigotes remained in the infective stage. Importantly, EVs seem to be an important virulence fator increasing mechanism in this context of survival and persistence in the host.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil,Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil
| | | | - Bruna Sabatke
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Hennrique Taborda Ribas
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sheila Maria Brochado Winnischofer
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil,Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Jameel Malhador Inal
- School of Human Sciences, London Metropolitan University, London, United Kingdom,School of Life and Medical Sciences, University of Hertfordshire, London, United Kingdom
| | - Marcel Ivan Ramirez
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,*Correspondence: Marcel Ivan Ramirez,
| |
Collapse
|
21
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
22
|
Cirqueira ML, Bortot LO, Bolean M, Aleixo MAA, Luccas PH, Costa-Filho AJ, Ramos AP, Ciancaglini P, Nonato MC. Trypanosoma cruzi nitroreductase: Structural features and interaction with biological membranes. Int J Biol Macromol 2022; 221:891-899. [PMID: 36100001 DOI: 10.1016/j.ijbiomac.2022.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.
Collapse
Affiliation(s)
- Marília L Cirqueira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Leandro O Bortot
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Laboratory of Computational Biology (LBC), Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Maytê Bolean
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Mariana A A Aleixo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Pedro H Luccas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Physics Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Ana Paula Ramos
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Martín-Escolano R, Rosales MJ, Marín C. Biological characteristics of the Trypanosoma cruzi Arequipa strain make it a good model for Chagas disease drug discovery. Acta Trop 2022; 236:106679. [PMID: 36096184 DOI: 10.1016/j.actatropica.2022.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), is a genuine parasite with tremendous genetic diversity and a complex life cycle. Scientists have studied this disease for more than 100 years, and CD drug discovery has been a mainstay due to the absence of an effective treatment. Technical advances in several areas have contributed to a better understanding of the complex biology and life cycle of this parasite, with the aim of designing the ideal profile of both drug and therapeutic options to treat CD. Here, we present the T. cruzi Arequipa strain (MHOM/Pe/2011/Arequipa) as an interesting model for CD drug discovery. We characterized acute-phase parasitaemia and chronic-phase tropism in BALB/c mice and determined the in vitro and in vivo benznidazole susceptibility profile of the different morphological forms of this strain. The tropism of this strain makes it an interesting model for the screening of new compounds with a potential anti-Chagas profile for the treatment of this disease.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | - María José Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, Granada 18071, Spain.
| |
Collapse
|
24
|
Jaime LD, Aracely LM, Paulina OM, Dumonteil E, Barnabé C, Waleckx E, Hernández-Giles RG, Ramos-Ligonio A. Molecular Characterization of Four Mexican Isolates of Trypanosoma cruzi and Their Profile Susceptibility to Nifurtimox. Acta Parasitol 2022; 67:1584-1593. [PMID: 36029434 DOI: 10.1007/s11686-022-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective of this study was to molecularly characterize Mexican isolates of T. cruzi obtained from infected triatomine bugs (the vectors of T. cruzi) and to evaluate their susceptibility to Nifurtimox (NFX). METHODS Three isolates obtained from Triatoma dimidiata (collected in the State of Veracruz) and one isolate obtained from Triatoma bassolsae (collected in the State of Puebla) were molecularly characterized and the expression of genes associated with natural resistance to NFX was analyzed by qPCR. RESULTS Molecular characterization by PCR showed that isolates Zn3, Zn5, and SRB1 belong to the DTU TcI, while isolate Sum3 belongs to TcIV. The latter was also confirmed by sequencing of mitochondrial genes. Isolate Zn5 was the most sensitive to treatment with NFX (IC50, 6.8 μM), isolates SRB1 and Zn3 were partially resistant (IC50, 12.8 μM and 12.7 μM) and isolate Sum3 showed a high degree of resistance to NFX (IC50, 21.4 µM). We also found an association between decreased NTR1 or OYE gene expression with NFX resistance. CONCLUSION Our results also evidenced a high variability in the susceptibility to NFX of these T. cruzi isolates Central and Southeastern Mexico, suggesting the presence of naturally resistant isolates circulating in the country. These results have important implications for defining treatment policies for patients with Chagas disease.
Collapse
Affiliation(s)
- López-Domínguez Jaime
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - López-Monteon Aracely
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico
| | - Ochoa-Martínez Paulina
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Christian Barnabé
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Etienne Waleckx
- Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico.,Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rubén Gustavo Hernández-Giles
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Maestría en Ciencias en Procesos Biológicos, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | - Angel Ramos-Ligonio
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico. .,Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico.
| |
Collapse
|
25
|
Rodriguez ME, Tekiel V, Campo VA. In vitro evaluation of Resveratrol as a potential pre-exposure prophylactic drug against Trypanosoma cruzi infection. Int J Parasitol Drugs Drug Resist 2022; 20:54-64. [PMID: 36099853 PMCID: PMC9474288 DOI: 10.1016/j.ijpddr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Chagas' disease or American trypanosomiasis, caused by Trypanosoma cruzi infection, is an endemic disease in Latin America, which has spread worldwide in the past years. The drugs presently used for treatment have shown limited efficacy due to the appearance of resistant parasites and severe side effects. Some of the most recent studies on anti-parasitic drugs have been focused on protein acetylation, a reversible reaction modulated by Acetyl Transferases (KATs) and Deacetylases (KDACs). We have previously reported the anti-parasite activity of resveratrol (RSV), an activator of KDACs type III (or sirtuins), and showed that this drug can reduce the growth of T. cruzi epimastigotes and the infectivity of trypomastigotes. Since RSV is now widely used in humans due to its beneficial effects as an antioxidant, it has become an attractive candidate as a repurposing drug. In this context, the aim of the present study was to evaluate the ability of this drug to protect three different types of host cells from parasite infection. RSV treatment before parasite infection reduced the percentage of infected cells by 50-70% depending on the cell type. Although the mammalian cell lines tested showed different sensitivity to RSV, apoptosis was not significantly affected, showing that RSV was able to protect cells from infection without the activation of this process. Since autophagy has been described as a key process in parasite invasion, we also monitored this process on host cells pretreated with RSV. The results showed that, at the concentrations and incubation times tested, autophagy was not induced in any of the cell types evaluated. Our results show a partial protective effect of RSV in vitro, which justifies extending studies to an in vivo model to elucidate the mechanism by which this effect occurs.
Collapse
Affiliation(s)
| | | | - Vanina A. Campo
- Corresponding author. IIB: Instituto de Investigaciones Biotecnologicas, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Almeida-Silva J, Menezes DS, Fernandes JMP, Almeida MC, Vasco-Dos-Santos DR, Saraiva RM, Viçosa AL, Perez SAC, Andrade SG, Suarez-Fontes AM, Vannier-Santos MA. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol 2022; 12:926699. [PMID: 35967878 PMCID: PMC9372510 DOI: 10.3389/fcimb.2022.926699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.
Collapse
Affiliation(s)
- Juliana Almeida-Silva
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Diego Silva Menezes
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Juan Mateus Pereira Fernandes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Márcio Cerqueira Almeida
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Deyvison Rhuan Vasco-Dos-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roberto Magalhães Saraiva
- Laboratory of Clinical Research on Chagas Disease, Evandro Chagas Infectious Disease Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alessandra Lifsitch Viçosa
- Experimental Pharmacotechnics Laboratory, Department of Galenic Innovation, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Technical Assistance, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sônia Gumes Andrade
- Experimental Chagas Disease Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Ana Márcia Suarez-Fontes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcos André Vannier-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Martín-Escolano J, Marín C, Rosales MJ, Tsaousis AD, Medina-Carmona E, Martín-Escolano R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infect Dis 2022; 8:1107-1115. [PMID: 35652513 PMCID: PMC9194904 DOI: 10.1021/acsinfecdis.2c00123] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chagas disease (CD)
is a parasitic, systemic, chronic, and often
fatal illness caused by infection with the protozoan Trypanosoma
cruzi. The World Health Organization classifies CD as the
most prevalent of poverty-promoting neglected tropical diseases, the
most important parasitic one, and the third most infectious disease
in Latin America. Currently, CD is a global public health issue that
affects 6–8 million people. However, the current approved treatments
are limited to two nitroheterocyclic drugs developed more than 50
years ago. Many efforts have been made in recent decades to find new
therapies, but our limited understanding of the infection process,
pathology development, and long-term nature of this disease has made
it impossible to develop new drugs, effective treatment, or vaccines.
This Review aims to provide a comprehensive update on our understanding
of the current life cycle, new morphological forms, and genetic diversity
of T. cruzi, as well as identify intervention points
in the life cycle where new drugs and treatments could achieve a parasitic
cure.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - María J. Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
28
|
Pardo-Rodriguez D, Lasso P, Mateus J, Mendez J, Puerta CJ, Cuéllar A, Robles J, Cuervo C. A terpenoid-rich extract from Clethra fimbriata exhibits anti- Trypanosoma cru zi activity and induces T cell cytokine production. Heliyon 2022; 8:e09182. [PMID: 35368545 PMCID: PMC8968664 DOI: 10.1016/j.heliyon.2022.e09182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Chagas disease, a worldwide public health concern, is a chronic infection caused by Trypanosoma cruzi. Considering T. cruzi chronic persistence correlates with CD4+ and CD8+ T cell dysfunction and the safety and efficacy profiles of Benznidazol and Nifurtimox, the two drugs currently used for its etiological treatment, are far from ideal, the search of new trypanocidal treatment options is a highly relevant issue. Therefore, the objective of this work was to evaluate the trypanocidal effect and cytokine production induction of three extracts (hexane, dichloromethane and hydroalcoholic) obtained from Clethra fimbriata, a plant traditionally used as a febrifuge in Colombia. Additionally, the extracts' major components with the highest trypanocidal activity were determined. It was evidenced C. fimbriata hexane extract exhibited the highest activity capable of inhibiting the three parasite developmental stages with an IC50/EC50 of 153.9 ± 29.5 (epimastigotes), 39.3 ± 7.2 (trypomastigotes), and 45.6 ± 10.5 (amastigotes) μg/mL, presenting a low cytotoxicity in VERO cells with a selectivity index ranging from 6.49 to 25.4. Moreover, this extract induced trypomastigote apoptotic death and inhibited parasite cell infection. The extract also induced IFN-γ and TNF production in CD4+ and CD8+ T cells, as well as de novo production of the cytotoxic molecules granzyme B and perforin in CD8+ T cells from healthy donors. Fatty acids and terpenes represented C. fimbriata key compounds. Thus, the trypanocidal activity and cytokine production induction of the hexane extract may be associated with terpene presence, particularly, triterpenes.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigación Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - José Mateus
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mendez
- Grupo de Productos Naturales, Universidad del Tolima, Tolima, Colombia
| | - Concepción J. Puerta
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo en Ciencias de Laboratorio Clínico, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jorge Robles
- Grupo de Investigación Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
29
|
Antimicrobials and Resistance Part II: Antifungals, Antivirals, and Antiparasitics. J Am Acad Dermatol 2022; 86:1207-1226. [DOI: 10.1016/j.jaad.2021.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
|
30
|
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15020135. [PMID: 35215248 PMCID: PMC8879015 DOI: 10.3390/ph15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.
Collapse
Affiliation(s)
- Sabina Beilstein
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Radhia El Phil
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Suzanne Sherihan Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Kaiser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-284-8338
| |
Collapse
|
31
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
32
|
García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed Pharmacother 2021; 142:112020. [PMID: 34392087 DOI: 10.1016/j.biopha.2021.112020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is treated with only two drugs; benznidazole and nifurtimox. These drugs have some disadvantages, including their efficacy only in the acute or early infection phases, adverse effects during their use, and the resistance that the parasite has developed to their activity. Therefore, it is necessary to identify new, safe and effective therapeutic alternatives to treat Chagas disease, though governments and the pharmaceutical industry have shown a lack of interest in contributing to this solution. Institutions and research groups on the other hand have worked on some strategies that can help to address the problem. Some of these include the modification of conventional drug dosages, drug repurposing, and combined therapy. Plants and derived compounds with antiparasitic effects have also been studied, taking advantage of traditional medicinal knowledge. Others have studied the parasite to identify essential genes that can be used as therapeutic targets to design new, targeted drugs. Some of these studies have generated promising results, but few reach clinical phase studies. Institutions and research groups should be encouraged to unify efforts and cover all aspects of drug development according to resources and knowledge availability. In the end, this exchange of knowledge would lead to the development of new therapeutic alternatives to treat Chagas disease and benefit the populations it affects.
Collapse
Affiliation(s)
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| |
Collapse
|
33
|
Green SB, Lanier RJ, Carey SM, Morgan DR, Gracz H, Sherman J, Rodriguez A, D'Antonio EL. Synthesis, biochemical, and biological evaluation of C2 linkage derivatives of amino sugars, inhibitors of glucokinase from Trypanosoma cruzi. Bioorg Med Chem Lett 2021; 47:128227. [PMID: 34174398 DOI: 10.1016/j.bmcl.2021.128227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
Eighteen amino sugar analogues were screened against Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the protozoan parasite in order to assess for viable enzyme inhibition. The analogues were divided into three amino sugar scaffolds that included d-glucosamine (d-GlcN), d-mannosamine (d-ManN), and d-galactosamine (d-GalN); moreover, all but one of these compounds were novel. TcGlcK is an important metabolic enzyme that has a role in producing G6P for glycolysis and the pentose phosphate pathway (PPP). The inhibition of these pathways via glucose kinases (i.e., glucokinase and hexokinase) appears to be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P and the formed G6P enters both pathways for catabolism. The compound screen revealed five on-target confirmed inhibitors that were all from the d-GlcN series, such as compounds 1, 2, 4, 5, and 6. Four of these compounds were strong TcGlcK inhibitors (1, 2, 4, and 6) since they were found to have micromolar inhibitory constant (Ki) values around 20 μM. Three of the on-target confirmed inhibitors (1, 5, and 6) revealed notable in vitro anti-T. cruzi activity with IC50 values being less than 50 μM. Compound 1 was benzoyl glucosamine (BENZ-GlcN), a known TcGlcK inhibitor that was the starting point for the design of the compounds in this study; in addition, TcGlcK - compound 1 inhibition properties were previously determined [D'Antonio, E. L. et al. (2015) Mol. Biochem. Parasitol. 204, 64-76]. As such, compounds 5 and 6 were further evaluated biochemically, where formal Ki values were determined as well as their mode of TcGlcK inhibition. The Ki values determined for compounds 5 and 6 were 107 ± 4 μM and 15.2 ± 3.3 μM, respectively, and both of these compounds exhibited the competitive inhibition mode.
Collapse
Affiliation(s)
- Scott B Green
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Robert J Lanier
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Shane M Carey
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | | | - Hanna Gracz
- NMRService LLC, Raleigh, NC 27612, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA.
| |
Collapse
|
34
|
Dattani A, Drammeh I, Mahmood A, Rahman M, Szular J, Wilkinson SR. Unraveling the antitrypanosomal mechanism of benznidazole and related 2-nitroimidazoles: From prodrug activation to DNA damage. Mol Microbiol 2021; 116:674-689. [PMID: 34061384 DOI: 10.1111/mmi.14763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/27/2022]
Abstract
Nitroheterocycles represent an important class of compound used to treat trypanosomiasis. They often function as prodrugs and can undergo type I nitroreductase (NTR1)-mediated activation before promoting their antiparasitic activities although the nature of these downstream effects has yet to be determined. Here, we show that in an NTR1-dependent process, benznidazole promotes DNA damage in the nuclear genome of Trypanosoma brucei, providing the first direct link between activation of this prodrug and a downstream trypanocidal mechanism. Phenotypic and protein expression studies revealed that components of the trypanosome's homologous recombination (HR) repair pathway (TbMRE11, γH2A, TbRAD51) cooperate to resolve the benznidazole-induced damage, indicating that the prodrug-induced lesions are most likely double stand DNA breaks, while the sequence/recruitment kinetics of these factors parallels that in other eukaryotes HR systems. When extended to other NTR1-activated 2-nitroimidazoles, some were shown to promote DNA damage. Intriguingly, the lesions induced by these required TbMRE11 and TbCSB activities to fix leading us to postulate that TbCSB may operate in systems other than the transcription-coupled nucleotide excision repair pathway. Understanding how existing trypanosomal drugs work will aid future drug design and help unlock novel reactions/pathways that could be exploited as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ambika Dattani
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Isatou Drammeh
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Aishah Mahmood
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Mahbubur Rahman
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Joanna Szular
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Martín-Escolano R, Molina-Carreño D, Plano D, Espuelas S, Rosales MJ, Moreno E, Aydillo C, Sanmartín C, Sánchez-Moreno M, Marín C. Library of Selenocyanate and Diselenide Derivatives as In Vivo Antichagasic Compounds Targeting Trypanosoma cruzi Mitochondrion. Pharmaceuticals (Basel) 2021; 14:ph14050419. [PMID: 34062791 PMCID: PMC8147293 DOI: 10.3390/ph14050419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is usually caused by tropical infection with the insect-transmitted protozoan Trypanosoma cruzi. Currently, Chagas disease is a major public health concern worldwide due to globalization, and there are no treatments neither vaccines because of the long-term nature of the disease and its complex pathology. Current treatments are limited to two obsolete drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Taking into account the urgent need for strict research efforts to find new therapies, here, we describe the in vitro and in vivo trypanocidal activity of a library of selected forty-eight selenocyanate and diselenide derivatives that exhibited leishmanicidal properties. The inclusion of selenium, an essential trace element, was due to the well-known extensive pharmacological activities for selenium compounds including parasitic diseases as T. cruzi. Here we present compound 8 as a potential compound that exhibits a better profile than benznidazole both in vitro and in vivo. It shows a fast-acting behaviour that could be attributed to its mode of action: it acts in a mitochondrion-dependent manner, causing cell death by bioenergetic collapse. This finding provides a step forward for the development of a new antichagasic agent.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (R.M.-E.); (C.M.)
| | - Daniel Molina-Carreño
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Daniel Plano
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - María J. Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Esther Moreno
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea, E-31008 Pamplona, Spain; (D.P.); (S.E.); (E.M.); (C.A.); (C.S.)
- Instituto de Salud Tropical, Universidad de Navarra, ISTUN, Irunlarrea, E-31008 Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Irunlarrea, E-31008 Pamplona, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain; (D.M.-C.); (M.J.R.); (M.S.-M.)
- Correspondence: (R.M.-E.); (C.M.)
| |
Collapse
|
36
|
Sijm M, Maes L, de Esch IJP, Caljon G, Sterk GJ, Leurs R. Structure Activity Relationship of N-Substituted Phenyldihydropyrazolones Against Trypanosoma cruzi Amastigotes. Front Chem 2021; 9:608438. [PMID: 33996737 PMCID: PMC8120161 DOI: 10.3389/fchem.2021.608438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Current drugs for Chagas disease have long treatment regimens with occurrence of adverse drug effects leading to poor treatment compliance. Novel and efficacious medications are therefore highly needed. We previously reported on the discovery of NPD-0227 (2-isopropyl-5-(4-methoxy-3-(pyridin-3-yl)phenyl)-4,4-dimethyl-2,4-dihydro-3H-pyrazol-3-one) as a potent in vitro inhibitor of Trypanosoma cruzi (pIC50 = 6.4) with 100-fold selectivity over human MRC-5 cells. The present work describes a SAR study on the exploration of substituents on the phenylpyrazolone nitrogen. Modifications were either done directly onto this pyrazolone nitrogen or alternatively by introducing a piperidine linker. Attention was pointed toward the selection of substituents with a cLogP preferably below NPD-0227s cLogP of 3.5. Generally the more apolar compounds showed better activities then molecules with cLogPs <2.0. Several new compounds were identified with potencies that are in the same range as NPD-0227 (pIC50 = 6.4) and promising selectivities. While the potency could not be improved, valuable SAR was obtained. Furthermore the introduction of a piperidine linker offers new opportunities for derivatization as valuable novel starting points for future T. cruzi drug discovery.
Collapse
Affiliation(s)
- Maarten Sijm
- Division of Medicinal Chemistry, Faculty of Sciences, The Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, The Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of Sciences, The Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, The Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Toro PM, Peralta F, Oyarzo J, Wilkinson SR, Zavala M, Arancibia R, Moncada-Basualto M, Brito I, Cisterna J, Klahn AH, López C. Evaluation of trypanocidal properties of ferrocenyl and cyrhetrenyl N-acylhydrazones with pendant 5-nitrofuryl group. J Inorg Biochem 2021; 219:111428. [PMID: 33774450 DOI: 10.1016/j.jinorgbio.2021.111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Four N-acylhydrazones of general formulae [R1-C(O)-NH-N=C(R2)(5-nitrofuryl)] with (R1 = ferrocenyl or cyrhetrenyl and R2 = H or Me) are synthesized and characterized in solution and in the solid-state. Comparative studies of their stability in solution under different experimental conditions and their electrochemical properties are reported. NMR studies reveal that the four compounds are stable in DMSO‑d6 and complementary UV-Vis studies confirm that they also exhibit high stability in mixtures DMSO:H2O at 37 °C. Electrochemical studies show that the half-wave potential of the nitro group of the N-acylhydrazones is smaller than that of the standard drug nifurtimox and the reduction process follows a self-protonation mechanism. In vitro studies on the antiparasitic activities of the four complexes and the nifurtimox against Trypanosoma cruzi and Trypanosoma brucei reveal that: i) the N-acylhydrazones have a potent inhibitory growth activity against both parasites [EC50 in the low micromolar (in T. cruzi) or even in the nanomolar (in T. brucei) range] and ii) cyrhetrenyl derivatives are more effective than their ferrocenyl analogs. Parallel studies on the L6 rat skeletal myoblast cell line have also been conducted, and the selectivity indexes determined. Three of the four N-acylhydrazones showed higher selectivity towards T. brucei than the standard drug nifurtimox. Additional studies suggest that the organometallic compounds are bioactivated by type I nitroreductase enzymes.
Collapse
Affiliation(s)
- Patricia M Toro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
| | - Francisco Peralta
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Juan Oyarzo
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Shane R Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mónica Zavala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Mauricio Moncada-Basualto
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta, Chile
| | - A Hugo Klahn
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Concepción López
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
38
|
Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009269. [PMID: 33750958 PMCID: PMC8016252 DOI: 10.1371/journal.pntd.0009269] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/01/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. CONCLUSIONS/SIGNIFICANCE Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.
Collapse
Affiliation(s)
- Andrea Vela
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Marco Coral-Almeida
- One Health Research group, Facultad de Ciencias de la salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito, Ecuador
| | - Denis Sereno
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Christian Barnabé
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Simone Frédérique Brenière
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
39
|
Martín-Escolano R, Guardia JJ, Martín-Escolano J, Cirauqui N, Fernández A, Rosales MJ, Chahboun R, Sánchez-Moreno M, Alvarez-Manzaneda E, Marín C. In Vivo Biological Evaluation of a Synthetic Royleanone Derivative as a Promising Fast-Acting Trypanocidal Agent by Inducing Mitochondrial-Dependent Necrosis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3571-3583. [PMID: 33253573 DOI: 10.1021/acs.jnatprod.0c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The life-long and life-threatening Chagas disease is one of the most neglected tropical diseases caused by the protozoan parasite Trypanosoma cruzi. It is a major public health problem in Latin America, as six to seven million people are infected, being the principal cause of mortality in many endemic regions. Moreover, Chagas disease has become widespread due to migrant populations. Additionally, there are no vaccines nor effective treatments to fight the disease because of its long-term nature and complex pathology. Therefore, these facts emphasize how crucial the international effort for the development of new treatments against Chagas disease is. Here, we present the in vitro and in vivo trypanocidal activity of some oxygenated abietane diterpenoids and related compounds. The 1,4-benzoquinone 15, not yet reported, was identified as a fast-acting trypanocidal drug with efficacy against different strains in vitro and higher activity and lower toxicity than benznidazole in both phases of murine Chagas disease. The mode of action was also evaluated, suggesting that quinone 15 kills T. cruzi by inducing mitochondrion-dependent necrosis through a bioenergetics collapse caused by a mitochondrial membrane depolarization and iron-containing superoxide dismutase inhibition. Therefore, the abietane 1,4-benzoquinone 15 can be considered as a new candidate molecule for the development of an appropriate and commercially accessible anti-Chagas drug.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Juan J Guardia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Nuria Cirauqui
- Molecular Microbiology and Structural Biochemistry, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, 69367 Lyon Cedex 07, France
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Maria J Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
40
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
41
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
42
|
Sijm M, Sterk GJ, Caljon G, Maes L, de Esch IJP, Leurs R. Structure-Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi. ChemMedChem 2020; 15:1310-1321. [PMID: 32249532 PMCID: PMC7496920 DOI: 10.1002/cmdc.202000136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Indexed: 11/10/2022]
Abstract
Chagas disease is a neglected parasitic disease caused by the parasitic protozoan Trypanosoma cruzi and currently affects around 8 million people. Previously, 2-isopropyl-5-(4-methoxy-3-(pyridin-3-yl)phenyl)-4,4-dimethyl-2,4-dihydro-3H-pyrazol-3-one (NPD-0227) was discovered to be a sub-micromolar inhibitor (pIC50 =6.4) of T. cruzi. So far, SAR investigations of this scaffold have focused on the alkoxy substituent, the pyrazolone nitrogen substituent and the aromatic substituent of the core phenylpyrazolone. In this study, modifications of the phenyldihydropyrazolone scaffold are described. Variations were introduced by installing different substituents on the phenyl core, modifying the geminal dimethyl and installing various bio-isosteres of the dihydropyrazolone group. The anti T. cruzi activity of NPD-0227 could not be surpassed as the most potent compounds show pIC50 values of around 6.3. However, valuable additional SAR data for this interesting scaffold was obtained, and the data suggest that a scaffold hop is feasible as the pyrazolone moiety can be replaced by a oxazole or oxadiazole with minimal loss of activity.
Collapse
Affiliation(s)
- Maarten Sijm
- Division of Medicinal Chemistry, Faculty of SciencesAmsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of SciencesAmsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH)University of AntwerpUniversiteitsplein 12610AntwerpenBelgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH)University of AntwerpUniversiteitsplein 12610AntwerpenBelgium
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of SciencesAmsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of SciencesAmsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
43
|
Zhang H, Collins J, Nyamwihura R, Crown O, Ajayi O, Ogungbe IV. Vinyl sulfone-based inhibitors of trypanosomal cysteine protease rhodesain with improved antitrypanosomal activities. Bioorg Med Chem Lett 2020; 30:127217. [PMID: 32527539 PMCID: PMC7305937 DOI: 10.1016/j.bmcl.2020.127217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The number of reported cases of Human African Trypanosmiasis (HAT), caused by kinetoplastid protozoan parasite Trypanosoma brucei, is declining in sub-Saharan Africa. Historically, such declines are generally followed by periods of higher incidence, and one of the lingering public health challenges of HAT is that its drug development pipeline is historically sparse. As a continuation of our work on new antitrypanosomal agents, we found that partially saturated quinoline-based vinyl sulfone compounds selectively inhibit the growth of T. brucei but displayed relatively weak inhibitory activity towards T. brucei's cysteine protease rhodesain. While two nitroaromatic analogues of the quinoline-based vinyl sulfone compounds displayed potent inhibition of T. brucei and rhodesain. The quinoline derivatives and the nitroaromatic-based compounds discovered in this work can serve as leads for ADME-based optimization and pre-clinical investigations.
Collapse
Affiliation(s)
- Huaisheng Zhang
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jasmine Collins
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Rogers Nyamwihura
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Olamide Crown
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA; Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwatomi Ajayi
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
44
|
Martín-Escolano R, Martín-Escolano J, Ballesteros-Garrido R, Cirauqui N, Abarca B, Rosales MJ, Sánchez-Moreno M, Ballesteros R, Marín C. Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition. Parasitol Res 2020; 119:2943-2954. [PMID: 32607710 DOI: 10.1007/s00436-020-06779-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Trypanosomatidae is a family of unicellular parasites belonging to the phylum Euglenozoa, which are causative agents in high impact human diseases such as Leishmaniasis, Chagas disease and African sleeping sickness. The impact on human health and local economies, together with a lack of satisfactory chemotherapeutic treatments and effective vaccines, justifies stringent research efforts to search for new disease therapies. Here, we present in vitro trypanocidal activity data and mode of action data, repositioning leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts against Trypanosoma cruzi, the aetiological agent of Chagas disease. This disease is one of the most neglected tropical diseases and is a major public health issue in Central and South America. The disease affects approximately 6-7 million people and is widespread due to increased migratory movements. We screened a suite of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salt compounds, of which compounds 13, 20 and 21 were identified as trypanocidal drugs. These compounds caused cell death in a mitochondrion-dependent manner through a bioenergetic collapse. Moreover, compounds 13 and 20 showed a remarkable inhibition of iron superoxide dismutase activity of T. cruzi, a key enzyme in the protection from the damage produced by oxidative stress.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Rafael Ballesteros-Garrido
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Nuria Cirauqui
- Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, 69367, Lyon Cedex 07, France
| | - Belén Abarca
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Rafael Ballesteros
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain.
| |
Collapse
|
45
|
Francisco AF, Jayawardhana S, Olmo F, Lewis MD, Wilkinson SR, Taylor MC, Kelly JM. Challenges in Chagas Disease Drug Development. Molecules 2020; 25:E2799. [PMID: 32560454 PMCID: PMC7355550 DOI: 10.3390/molecules25122799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process.
Collapse
Affiliation(s)
- Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shane R. Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road, London E1 4NS, UK;
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| |
Collapse
|
46
|
Freire KA, Torres MDT, Lima DB, Monteiro ML, Bezerra de Menezes RRPP, Martins AMC, Oliveira VX. Wasp venom peptide as a new antichagasic agent. Toxicon 2020; 181:71-78. [PMID: 32360153 DOI: 10.1016/j.toxicon.2020.04.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi and affects approximately 10 million people a year worldwide. The only two treatment options, benznidazole and nifurtimox, have low efficacy and high toxicity towards human cells. Mastoporan peptide (MP) a small cationic AMP from the venom of the wasp Polybia paulista has been reported as a potent trypanocidal agent. Thus, we evaluated the antichagasic effect of another AMP from the venom of the same wasp Polybia paulista, polybia-CP (ILGTILGLLSKL-NH2), and investigated its mechanism of action against different stages of the trypanosomal cells life cycle. Polybia-CP was tested against the epimastigote, trypomastigote and amastigote forms of the T. cruzi Y strain (benznidazole-resistant strain) and inhibited the development of these forms. We also assessed the selectivity of the AMP against mammalian cells by exposing LLC-MK2 cells to polybia-CP, the peptide presented a high selectivity index (>106). The mechanism of action of polybia-CP on trypanosomal cells was investigated by flow cytometry, scanning electron microscopy (SEM) and enzymatic assays with T. cruzi GAPDH (tcGAPDH), enzyme that catalyzes the sixth step of glycolysis. Polybia-CP induced phosphatidylserine exposure, it also increased the formation of reactive species of oxigen (ROS) and reduced the transmembrane mitochondrial potential. Polybia-CP also led to cell shrinkage, evidencing apoptotic cell death. We did not observe the inhibition of tcGAPDH or autophagy induction. Altogether, polybia-CP has shown the features of a promising template for the development of new antichagasic agents.
Collapse
Affiliation(s)
| | - Marcelo Der Torossian Torres
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Dânya Bandeira Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE 60430372, Brazil
| | - Marilia Lopes Monteiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE 60430372, Brazil
| | | | - Alice Maria Costa Martins
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, CE 60430372, Brazil
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210580, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044020, Brazil.
| |
Collapse
|
47
|
Ribeiro V, Dias N, Paiva T, Hagström-Bex L, Nitz N, Pratesi R, Hecht M. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020; 12:7-17. [PMID: 31862616 PMCID: PMC6928327 DOI: 10.1016/j.ijpddr.2019.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease (CD) is a tropical neglected illness, affecting mainly populations of low socioeconomic status in Latin America. An estimated 6 to 8 million people worldwide are infected with Trypanosoma cruzi, the etiological agent of CD. Despite being one of the main global health problems, this disease continues without effective treatment during the chronic phase of the infection. The limitation of therapeutic strategies has been one of the biggest challenges on the fight against CD. Nifurtimox and benznidazole, developed in the 1970s, are still the only commercial options with established efficacy on CD. However, the efficacy of these drugs have a proven efficacy only during early infection and the benefits in the chronic phase are questionable. Consequently, there is a growing need for new pharmacological alternatives, either by optimization of existing drugs or by the formulation of new compounds. In the present study, a literature review of the currently adopted therapy, its concomitant combination with other drugs, and potential future treatments for CD was performed, considering articles published from 2012. The revised articles were selected according to the protocol of treatment: evaluation of drug association, drug repositioning and research of new drugs. As a result of the present revision, it was possible to conclude that the use of benznidazole in combination with other compounds showed better results when compared with its use as a single therapy. The search of new drugs has been the strategy most used in pursuing more effective forms of treatment for CD. However, studies have still focused on basic research, that is, they are still in a pre-clinical stage, using methodologies based on in vitro or in animal studies.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Taís Paiva
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
48
|
Chasen NM, Coppens I, Etheridge RD. Identification and Localization of the First Known Proteins of the Trypanosoma cruzi Cytostome Cytopharynx Endocytic Complex. Front Cell Infect Microbiol 2020; 9:445. [PMID: 32010635 PMCID: PMC6978632 DOI: 10.3389/fcimb.2019.00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is an obligate intracellular parasite that infects an estimated 7 million people in the Americas, with an at-risk population of 70 million. Despite its recognition as the highest impact parasitic infection of the Americas, Chagas disease continues to receive insufficient attention and resources in order to be effectively combatted. Unlike the other parasitic trypanosomatids that infect humans (Trypanosoma brucei and Leishmania spp.), T. cruzi retains an ancestral mode of phagotrophic feeding via an endocytic organelle known as the cytostome-cytopharynx complex (SPC). How this tubular invagination of the plasma membrane functions to bring in nutrients is poorly understood at a mechanistic level, partially due to a lack of knowledge of the protein machinery specifically targeted to this structure. Using a combination of CRISPR/Cas9 mediated endogenous tagging, fluorescently labeled overexpression constructs and endocytic assays, we have identified the first known SPC targeted protein (CP1). The CP1 labeled structure co-localizes with endocytosed protein and undergoes disassembly in infectious forms and reconstitution in replicative forms. Additionally, through the use of immunoprecipitation and mass spectrometry techniques, we have identified two additional CP1-associated proteins (CP2 and CP3) that also target to this endocytic organelle. Our localization studies using fluorescently tagged proteins and surface lectin staining have also allowed us, for the first time, to specifically define the location of the intriguing pre-oral ridge (POR) surface prominence at the SPC entrance through the use of super-resolution light microscopy. This work is a first glimpse into the proteome of the SPC and provides the tools for further characterization of this enigmatic endocytic organelle. A better understanding of how this deadly pathogen acquires nutrients from its host will potentially direct us toward new therapeutic targets to combat infection.
Collapse
Affiliation(s)
- Nathan Michael Chasen
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| | - Isabelle Coppens
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| |
Collapse
|
49
|
Petravicius PO, Costa-Martins AG, Silva MN, Reis-Cunha JL, Bartholomeu DC, Teixeira MM, Zingales B. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop 2019; 200:105161. [PMID: 31494121 DOI: 10.1016/j.actatropica.2019.105161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
The nitro-heterocyclic compound benznidazole (BZ) is the first-line drug for the treatment of Chagas disease, caused by the protozoan Trypanosoma cruzi. However, therapeutic failures are common for reasons that include the influences of parasite and host genetics, the effects of toxicity on adherence to treatment, and difficulties in demonstrating parasitological cure. To obtain information on the origin of the resistance to BZ and eliminate from the scenery the participation of the host, initially we mapped the susceptibility to the drug in thirteen species of seven genera of the family Trypanosomatidae. We verified that all Trypanosoma species are sensitive to low concentrations of the drug (IC50 2.7 to 25 µM) while Non-Trypanosoma species are highly resistant to these concentrations. The two groups of parasites correspond to the major phylogenetic lineages of trypanosomatids. Next, we searched in the trypanosomatid genome databases homologs of two type-I nitroreductases (NTR-1 and OYE) and an ABC transporter (ABCG1) that have been associated with BZ resistance in T. cruzi. The predicted proteins were characterized regarding domains and used for phylogenetic analyses. Homologous NTR-1 genes were found in all trypanosomatids investigated and the structural characteristics of the enzyme suggest that it may be functional. OYE genes were absent in BZ-sensitive African trypanosomes, which excludes the participation of this enzyme in BZ bio-activation. Two copies of ABCG1 genes were observed in most BZ resistant species, while Trypanosoma species exhibit only one copy per haploid genome. Functional studies are required to verify the involvement of these genes in BZ resistance. In addition, since multiple mechanisms can contribute to BZ susceptibility, our study poses a range of organisms highly resistant to BZ in which these aspects can be investigated. Preliminary studies on BZ uptake indicate marked differences between BZ-sensitive and BZ-resistant species.
Collapse
|
50
|
Din ZU, Lazarin-Bidóia D, Kaplum V, Garcia FP, Nakamura CV, Rodrigues-Filho E. The structure design of biotransformed unsymmetrical nitro-contained 1,5-diaryl-3-oxo-1,4-pentadienyls for the anti-parasitic activities. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|