1
|
Baina MT, Djontu JC, Mbama Ntabi JD, Mfoutou Mapanguy CC, Lissom A, Vouvoungui CJ, Boumpoutou RK, Mouanga AM, Nguimbi E, Ntoumi F. Polymorphisms in the Pfcrt, Pfmdr1, and Pfk13 genes of Plasmodium falciparum isolates from southern Brazzaville, Republic of Congo. Sci Rep 2024; 14:27988. [PMID: 39543235 PMCID: PMC11564878 DOI: 10.1038/s41598-024-78670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to analyze polymorphisms in Pfcrt, Pfmdr1, and Pfk13 genes' markers of resistance to Artemisinin-based combination therapy (ACT), in Plasmodium falciparum isolates from southern Brazzaville, 15 years after the adoption of ACT in the Republic of Congo. A total of 369 microscopy-confirmed malaria-infected individuals were enrolled from March to October 2021 in the community and in health facilities during a cross-sectional study. The K76T mutation in the Pfcrt gene, N86Y and Y184F mutations in the Pfmdr1 gene were investigated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) while the codons region (1005-1300) of the Pfmdr1gene, and Pfk13 gene were sequenced. The prevalences of K76T, N86Y, Y184F mutations were 26.0%, 6.8%, and 27.7%, respectively. However, no mutations were detected in codons 1034, 1042, and 1246 of the Pfmdr1 gene. None of the mutations previously associated with artemisinin-based resistance were detected in the Pfk13 gene. The results reveal a significant decrease in the prevalence of K76T, N86Y, Y184F mutations, in Plasmodium falciparum isolates following the change of therapeutic policy. As artemisinin resistance is emerging throughout Africa, continued surveillance for early detection of these mutations and relevant partner markers of drug resistance are recommended in the Republic of Congo.
Collapse
Affiliation(s)
- Marcel Tapsou Baina
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.
| | - Jacques Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Abel Lissom
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Department of Zoology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Christevy Jeannhey Vouvoungui
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Alain Maxime Mouanga
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences de la santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Etienne Nguimbi
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Okore W, Ouma C, Okoth RO, Yeda R, Ingasia LO, Mwakio EW, Ochora DO, Wakoli DM, Amwoma JG, Chemwor GC, Juma JA, Okudo CO, Cheruiyot AC, Opot BH, Juma D, Egbo TE, Andagalu B, Roth A, Kamau E, Akala HM. Increased sensitivity of malaria parasites to common antimalaria drugs after the introduction of artemether-lumefantrine: Implication of policy change and implementation of more effective drugs in fight against malaria. PLoS One 2024; 19:e0298585. [PMID: 38900782 PMCID: PMC11189199 DOI: 10.1371/journal.pone.0298585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 06/22/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.
Collapse
Affiliation(s)
- Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Luicer O. Ingasia
- Sydney Brenner Institute of Molecular Biosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Douglas O. Ochora
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Duncan M. Wakoli
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joseph G. Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Charles O. Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Amanda Roth
- Medical Communications for Combat Casualty Care, Fort Detrick, Maryland, United States of America
| | - Edwin Kamau
- Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, Honolulu, United States of America
| | - Hoseah M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| |
Collapse
|
3
|
Schreidah C, Giesbrecht D, Gashema P, Young NW, Munyaneza T, Muvunyi CM, Thwai K, Mazarati JB, Bailey JA, Juliano JJ, Karema C. Expansion of artemisinin partial resistance mutations and lack of histidine rich protein-2 and -3 deletions in Plasmodium falciparum infections from Rukara, Rwanda. Malar J 2024; 23:150. [PMID: 38755607 PMCID: PMC11100144 DOI: 10.1186/s12936-024-04981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyaw Thwai
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Jonathan J Juliano
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Corine Karema
- Quality Equity Health Care, Kigali, Rwanda
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
van Loon W, Schallenberg E, Igiraneza C, Habarugira F, Mbarushimana D, Nshimiyimana F, Ngarambe C, Ntihumbya JB, Ndoli JM, Mockenhaupt FP. Escalating Plasmodium falciparum K13 marker prevalence indicative of artemisinin resistance in southern Rwanda. Antimicrob Agents Chemother 2024; 68:e0129923. [PMID: 38092677 PMCID: PMC10869333 DOI: 10.1128/aac.01299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
In 2023, we updated data collected since 2010 on Plasmodium falciparum K13 and MDR1 drug resistance markers in Huye district, southern Rwanda. Artemisinin resistance-associated PfK13 markers occurred in 17.5% of 212 malaria patients (561H, 9.0%; 675V, 5.7%; and 469F, 2.8%), nearly double the frequency from 2019. PfMDR1 N86, linked with lumefantrine tolerance, was close to fixation at 98%. In southern Rwanda, markers signaling resistance to artemisinin and lumefantrine are increasing, albeit at a relatively slow rate.
Collapse
Affiliation(s)
- Welmoed van Loon
- Charité Center for Global Health, Institute of International Health, Charité—Universitaetsmedizin Berlin, Berlin, Germany
| | - Emma Schallenberg
- Charité Center for Global Health, Institute of International Health, Charité—Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | - Frank P. Mockenhaupt
- Charité Center for Global Health, Institute of International Health, Charité—Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Schreidah C, Giesbrecht D, Gashema P, Young N, Munyaneza T, Muvunyi CM, Thwai K, Mazarati JB, Bailey J, Juliano JJ, Karema C. Expansion of Artemisinin Partial Resistance Mutations and Lack of Histidine Rich Protein-2 and -3 Deletions in Plasmodium falciparum infections from Rukara, Rwanda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.17.23300081. [PMID: 38196592 PMCID: PMC10775326 DOI: 10.1101/2023.12.17.23300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Emerging artemisinin resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (K13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. K13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015 but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, we sought to assess recent K13-561H prevalence changes, as well as for other key mutations. Prevalence of hrp2/3 deletions was also assessed. Methods We genotyped samples collected in Rukara in 2021 for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. Results Clinically validated K13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of artemisinin resistance mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of K13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other antimalarials were variable, with high levels of multidrug resistance 1 (MDR1) N86 (95.5%) associated with lumefantrine resistance and dihydrofolate reductase (DHFR) 164L (24.7%) associated with antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (CRT ) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. Conclusions Increasing prevalence of artemisinin partial resistance due to K13-561H and the rapid expansion of K13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative mRDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.
Collapse
|
6
|
Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, Crudal RM, Reichert E, Juliano JJ, Cunningham J, Mamo H, Solomon H, Tasew G, Petros B, Parr JB, Bailey JA. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol 2023; 8:1911-1919. [PMID: 37640962 PMCID: PMC10522486 DOI: 10.1038/s41564-023-01461-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Diagnosis and treatment of Plasmodium falciparum infections are required for effective malaria control and are pre-requisites for malaria elimination efforts; hence we need to monitor emergence, evolution and spread of drug- and diagnostics-resistant parasites. We deep sequenced key drug-resistance mutations and 1,832 SNPs in the parasite genomes of 609 malaria cases collected during a diagnostic-resistance surveillance study in Ethiopia. We found that 8.0% (95% CI 7.0-9.0) of malaria cases were caused by P. falciparum carrying the candidate artemisinin partial-resistance kelch13 (K13) 622I mutation, which was less common in diagnostic-resistant parasites mediated by histidine-rich proteins 2 and 3 (pfhrp2/3) deletions than in wild-type parasites (P = 0.03). Identity-by-descent analyses showed that K13 622I parasites were significantly more related to each other than to wild type (P < 0.001), consistent with recent expansion and spread of this mutation. Pfhrp2/3-deleted parasites were also highly related, with evidence of clonal transmissions at the district level. Of concern, 8.2% of K13 622I parasites also carried the pfhrp2/3 deletions. Close monitoring of the spread of combined drug- and diagnostic-resistant parasites is needed.
Collapse
Affiliation(s)
- Abebe A Fola
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca M Crudal
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Emily Reichert
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Tojjari A, Giles FJ, Vilbert M, Saeed A, Cavalcante L. SLAM Modification as an Immune-Modulatory Therapeutic Approach in Cancer. Cancers (Basel) 2023; 15:4808. [PMID: 37835502 PMCID: PMC10571764 DOI: 10.3390/cancers15194808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In the field of oncology, the Signaling Lymphocyte Activation Molecule (SLAM) family is emerging as pivotal in modulating immune responses within tumor environments. The SLAM family comprises nine receptors, mainly found on immune cell surfaces. These receptors play complex roles in the interaction between cancer and the host immune system. Research suggests SLAM's role in both enhancing and dampening tumor-immune responses, influencing the progression and treatment outcomes of various cancers. As immunotherapy advances, resistance remains an issue. The nuanced roles of the SLAM family might provide answers. With the rise in technologies like single-cell RNA sequencing and advanced imaging, there is potential for precise SLAM-targeted treatments. This review stresses patient safety, the importance of thorough clinical trials, and the potential of SLAM-focused therapies to transform cancer care. In summary, SLAM's role in oncology signals a new direction for more tailored and adaptable cancer treatments.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | | - Maysa Vilbert
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | |
Collapse
|
8
|
Vanheer LN, Mahamar A, Manko E, Niambele SM, Sanogo K, Youssouf A, Dembele A, Diallo M, Maguiraga SO, Phelan J, Osborne A, Spadar A, Smit MJ, Bousema T, Drakeley C, Clark TG, Stone W, Dicko A, Campino S. Genome-wide genetic variation and molecular surveillance of drug resistance in Plasmodium falciparum isolates from asymptomatic individuals in Ouélessébougou, Mali. Sci Rep 2023; 13:9522. [PMID: 37308503 DOI: 10.1038/s41598-023-36002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.
Collapse
Affiliation(s)
- Leen N Vanheer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - William Stone
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
9
|
da Silva C, Boene S, Datta D, Rovira-Vallbona E, Aranda-Díaz A, Cisteró P, Hathaway N, Tessema S, Chidimatembue A, Matambisso G, Nhama A, Macete E, Pujol A, Nhamussua L, Galatas B, Guinovart C, Enosse S, De Carvalho E, Rogier E, Plucinski MM, Colborn J, Zulliger R, Saifodine A, Alonso PL, Candrinho B, Greenhouse B, Aide P, Saute F, Mayor A. Targeted and whole-genome sequencing reveal a north-south divide in P. falciparum drug resistance markers and genetic structure in Mozambique. Commun Biol 2023; 6:619. [PMID: 37291425 PMCID: PMC10250372 DOI: 10.1038/s42003-023-04997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Mozambique is one of the four African countries which account for over half of all malaria deaths worldwide, yet little is known about the parasite genetic structure in that country. We performed P. falciparum amplicon and whole genome sequencing on 2251 malaria-infected blood samples collected in 2015 and 2018 in seven provinces of Mozambique to genotype antimalarial resistance markers and interrogate parasite population structure using genome-wide microhaplotyes. Here we show that the only resistance-associated markers observed at frequencies above 5% were pfmdr1-184F (59%), pfdhfr-51I/59 R/108 N (99%) and pfdhps-437G/540E (89%). The frequency of pfdhfr/pfdhps quintuple mutants associated with sulfadoxine-pyrimethamine resistance increased from 80% in 2015 to 89% in 2018 (p < 0.001), with a lower expected heterozygosity and higher relatedness of microhaplotypes surrounding pfdhps mutants than wild-type parasites suggestive of recent selection. pfdhfr/pfdhps quintuple mutants also increased from 72% in the north to 95% in the south (2018; p < 0.001). This resistance gradient was accompanied by a concentration of mutations at pfdhps-436 (17%) in the north, a south-to-north increase in the genetic complexity of P. falciparum infections (p = 0.001) and a microhaplotype signature of regional differentiation. The parasite population structure identified here offers insights to guide antimalarial interventions and epidemiological surveys.
Collapse
Affiliation(s)
- Clemente da Silva
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Debayan Datta
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sofonias Tessema
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Glória Matambisso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arnau Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Eva De Carvalho
- World Health Organization, WHO Country Office Maputo, Maputo, Mozambique
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mateusz M Plucinski
- United States President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Colborn
- Clinton Health Access Initiative, Maputo, Mozambique
| | - Rose Zulliger
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | | | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| |
Collapse
|
10
|
Ndong Ngomo JM, Mawili-Mboumba DP, M’Bondoukwé NP, Ditombi BM, Koumba Lengongo JV, Batchy Ognagosso FB, Bouyou-Akotet MK. Drug Resistance Molecular Markers of Plasmodium falciparum and Severity of Malaria in Febrile Children in the Sentinel Site for Malaria Surveillance of Melen in Gabon: Additional Data from the Plasmodium Diversity Network African Network. Trop Med Infect Dis 2023; 8:184. [PMID: 37104310 PMCID: PMC10147079 DOI: 10.3390/tropicalmed8040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 04/28/2023] Open
Abstract
The objective of this study was to analyze the relationship between the frequency of artemisinin-based combination (ACT) drug resistance molecular markers and clinical forms of P. falciparum malaria and parasitemia. A cross-sectional study was carried out between January and April 2014 at the Operational Clinical Research Unit of Melen in febrile children aged 12 to 240 months with a Plasmodium sp. infection. A total of 3 mL of peripheral blood collected from an EDTA tube was used for leukocyte depletion. DNA mutation detection was performed by next generation sequencing (NGS). A total of 1075 patients were screened for malaria. Among them, 384 had a Plasmodium infection. P. falciparum mono-infection was found in 98.9% of the patients. Pfcrt-326T mutation was found in all isolates, while 37.9% had Pfmdr2-484I mutant allele. The highest median parasite densities were found in patients infected by parasites carrying the CVIET haplotype of the Pfcrt gene. The different genetic profiles found here, and their variations according to clinical and biological signs of severe malaria, are additional arguments for the surveillance of P. falciparum strains.
Collapse
Affiliation(s)
- Jacques Mari Ndong Ngomo
- Faculty of Medicine, Department of Parasitology and Mycology, Université des Sciences de la Santé, Libreville BP 4009, Gabon
| | | | | | | | | | | | | |
Collapse
|
11
|
Kay K, Goodwin J, Ehrlich H, Ou J, Freeman T, Wang K, Li F, Wade M, French J, Huang L, Aweeka F, Mwebaza N, Kajubi R, Riggs M, Ruiz-Garcia A, Parikh S. Impact of Drug Exposure on Resistance Selection Following Artemether-Lumefantrine Treatment for Malaria in Children With and Without HIV in Uganda. Clin Pharmacol Ther 2023; 113:660-669. [PMID: 36260349 PMCID: PMC9981240 DOI: 10.1002/cpt.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Katherine Kay
- Metrum Research Group, Tariffville, Connecticut, USA
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Hanna Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Joyce Ou
- Yale University, New Haven, Connecticut, USA
| | | | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Liusheng Huang
- University of California, San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- University of California, San Francisco, San Francisco, California, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Matthew Riggs
- Metrum Research Group, Tariffville, Connecticut, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Sharma S, Ahmed N, Faizi N, Bharti PK, Sharma A, Srivastava B. A case report of late treatment failure in Plasmodium falciparum malaria in a traveler from the Democratic Republic of the Congo to India. IDCases 2022; 31:e01653. [PMID: 36589765 PMCID: PMC9795509 DOI: 10.1016/j.idcr.2022.e01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
A young male returned from the Democratic Republic of the Congo (DRC) to India after four months during his official work. Within a week of his arrival, he developed a high-grade fever with nausea and was hospitalized in a private hospital in New Delhi. He was diagnosed with malaria, treated with an artesunate injection as antimalarial, and discharged on day 5th from the hospital. A week later, he was diagnosed with malaria and dengue positive at ICMR-National Institute of Malaria Research, New Delhi. Artesunate with sulphadoxine and pyrimethamine (AS+SP) was administered following India's malaria treatment policy. However, high-grade fever, along with the asexual stage of the P. falciparum parasite, was observed within 28 days of treatment with AS+SP, signifying late treatment failure (LTF). Further, the molecular analysis from both the days of episodes was analyzed using genomic DNA from dried blood spots, revealing resistance to sulphadoxine-pyrimethamine with mutations at codons pfdhfr 51I, pfdhfr 59 R, pfdhfr 108 N, pfdhps 437 A, pfdhps 581 G. No functional mutation associated was found in pfKelch13, but interestingly the sensitive codons to chloroquine (CQ) (wild type pfcrtK76 and pfmdrN86) revealed the probably reversible CQ sensitivity in the sample from DRC.
Collapse
Affiliation(s)
- Supriya Sharma
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India
| | - Naseem Ahmed
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India
| | - Nafis Faizi
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India,Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Praveen K. Bharti
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India,Academy of Scientific and Innovative Research, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India,Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India,Academy of Scientific and Innovative Research, India
| | - Bina Srivastava
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi 110077, India,Corresponding author.
| |
Collapse
|
13
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
14
|
Hassen J, Alemayehu GS, Dinka H, Golassa L. High prevalence of Pfcrt 76T and Pfmdr1 N86 genotypes in malaria infected patients attending health facilities in East Shewa zone, Oromia Regional State, Ethiopia. Malar J 2022; 21:286. [PMID: 36207750 PMCID: PMC9547420 DOI: 10.1186/s12936-022-04304-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum resistance to series of anti-malarial drugs is a major challenge in efforts to control and/or eliminate malaria globally. In 1998, following the widespread of chloroquine (CQ) resistant P. falciparum, Ethiopia switched from CQ to sulfadoxine–pyrimethamine (SP) and subsequently in 2004 from SP to artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria. Data on the prevalence of CQ resistance markers after more than two decades of its removal is important to map the selection pressure behind the targets codons of interest. The present study was conducted to determine the prevalence of mutations in Pfcrt K76T and Pfmdr1 N86Y codons among malaria-infected patients from Adama, Olenchiti and Metehara sites of East Shewa zone, Oromia Regional State, Ethiopia. Methods Finger-prick whole blood samples were collected on 3MM Whatman ® filter papers from a total of 121 microscopically confirmed P. falciparum infected patients. Extraction of parasite DNA was done by Chelex-100 method from dried blood spot (DBS). Genomic DNA template was used to amplify Pfcrt K76T and Pfmdr1 N86Y codons by nested PCR. Nested PCR products were subjected to Artherobacter protophormiae-I (APoI) restriction enzyme digestion to determine mutations at codons 76 and 86 of Pfcrt and Pfmdr1 genes, respectively. Results Of 83 P. falciparum isolates successfully genotyped for Pfcrt K76T, 91.6% carried the mutant genotypes (76T). The prevalence of Pfcrt 76T was 95.7%, 92.5% and 84.5% in Adama, Metehara and Olenchiti, respectively. The prevalence of Pfcrt 76T mutations in three of the study sites showed no statistical significance difference (χ2 = 1.895; P = 0.388). On the other hand, of the 80 P. falciparum samples successfully amplified for Pfmdr1, all carried the wild-type genotypes (Pfmdr1 N86). Conclusion Although CQ officially has been ceased for the treatment of falciparum malaria for more than two decades in Ethiopia, greater proportions of P. falciparum clinical isolates circulating in the study areas carry the mutant 76T genotypes indicating the presence of indirect CQ pressure in the country. However, the return of Pfmdr1 N86 wild-type allele may be favoured by the use of AL for the treatment of uncomplicated falciparum malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04304-5.
Collapse
Affiliation(s)
- Jifar Hassen
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia.
| | - Gezahegn Solomon Alemayehu
- Research and Community Service Center, College of Health Science, Defense University, P. O. Box 1419, Bishoftu, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Villena FE, Sanchez JF, Nolasco O, Braga G, Ricopa L, Barazorda K, Salas CJ, Lucas C, Lizewski SE, Joya CA, Gamboa D, Delgado-Ratto C, Valdivia HO. Drug resistance and population structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon. Sci Rep 2022; 12:16474. [PMID: 36182962 PMCID: PMC9526214 DOI: 10.1038/s41598-022-21028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.
Collapse
Affiliation(s)
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Greys Braga
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | - Carola J Salas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Carmen Lucas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Stephen E Lizewski
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Christie A Joya
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Malaria Research Group (MaRCH), Global Health Institute, University of Antwerp, 2610, Antwerp, Belgium
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru.
| |
Collapse
|
16
|
Temporal trends in molecular markers of drug resistance in Plasmodium falciparum in human blood and profiles of corresponding resistant markers in mosquito oocysts in Asembo, western Kenya. Malar J 2022; 21:265. [PMID: 36100912 PMCID: PMC9472345 DOI: 10.1186/s12936-022-04284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.
Collapse
|
17
|
Silva M, Malmberg M, Otienoburu SD, Björkman A, Ngasala B, Mårtensson A, Gil JP, Veiga MI. Plasmodium falciparum Drug Resistance Genes pfmdr1 and pfcrt In Vivo Co-Expression During Artemether-Lumefantrine Therapy. Front Pharmacol 2022; 13:868723. [PMID: 35685627 PMCID: PMC9171324 DOI: 10.3389/fphar.2022.868723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Artemisinin-based combination therapies (ACTs) are the global mainstay treatment of uncomplicated Plasmodium falciparum infections. PfMDR1 and PfCRT are two transmembrane transporters, associated with sensitivity to several antimalarials, found in the parasite food vacuole. Herein, we explore if their relatedness extends to overlapping patterns of gene transcriptional activity before and during ACT administration. Methods: In a clinical trial performed in Tanzania, we explored the pfmdr1 and pfcrt transcription levels from 48 patients with uncomplicated P. falciparum malaria infections who underwent treatment with artemether-lumefantrine (AL). Samples analyzed were collected before treatment initiation and during the first 24 h of treatment. The frequency of PfMDR1 N86Y and PfCRT K76T was determined through PCR-RFLP or direct amplicon sequencing. Gene expression was analyzed by real-time quantitative PCR. Results: A wide range of pre-treatment expression levels was observed for both genes, approximately 10-fold for pfcrt and 50-fold for pfmdr1. In addition, a significant positive correlation demonstrates pfmdr1 and pfcrt co-expression. After AL treatment initiation, pfmdr1 and pfcrt maintained the positive co-expression correlation, with mild downregulation throughout the 24 h post-treatment. Additionally, a trend was observed for PfMDR1 N86 alleles and higher expression before treatment initiation. Conclusion:pfmdr1 and pfcrt showed significant co-expression patterns in vivo, which were generally maintained during ACT treatment. This observation points to relevant related roles in the normal parasite physiology, which seem essential to be maintained when the parasite is exposed to drug stress. In addition, keeping the simultaneous expression of both transporters might be advantageous for responding to the drug action.
Collapse
Affiliation(s)
- M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - M. Malmberg
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. D. Otienoburu
- College of STEM, Johnson C. Smith University, Charlotte, NC, United States
| | - A. Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B. Ngasala
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - A. Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - J. P. Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Biodiversity, Functional & Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
- *Correspondence: J. P. Gil,
| | - M. I. Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
18
|
Targeted Amplicon Deep Sequencing for Monitoring Antimalarial Resistance Markers in Western Kenya. Antimicrob Agents Chemother 2022; 66:e0194521. [PMID: 35266823 PMCID: PMC9017353 DOI: 10.1128/aac.01945-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Molecular surveillance of Plasmodium falciparum parasites is important to track emerging and new mutations and trends in established mutations and should serve as an early warning system for antimalarial resistance. Dried blood spots were obtained from a Plasmodium falciparum malaria survey in school children conducted across eight counties in western Kenya in 2019. Real-time PCR identified 500 P. falciparum-positive samples that were amplified at five drug resistance loci for targeted amplicon deep sequencing (TADS). The absence of important kelch 13 mutations was similar to previous findings in Kenya pre-2019, and low-frequency mutations were observed in codons 569 and 578. The chloroquine resistance transporter gene codons 76 and 145 were wild type, indicating that the parasites were chloroquine and piperaquine sensitive, respectively. The multidrug resistance gene 1 haplotypes based on codons 86, 184, and 199 were predominantly present in mixed infections with haplotypes NYT and NFT, driven by the absence of chloroquine pressure and the use of lumefantrine, respectively. The sulfadoxine-pyrimethamine resistance profile was a “superresistant” combination of triple mutations in both Pfdhfr (51I 59R 108N) and Pfdhps (436H 437G 540E), rendering sulfadoxine-pyrimethamine ineffective. TADS highlighted the low-frequency variants, allowing the early identification of new mutations, Pfmdr1 codon 199S and Pfdhfr codon 85I and emerging 164L mutations. The added value of TADS is its accuracy in identifying mixed-genotype infections and for high-throughput monitoring of antimalarial resistance markers.
Collapse
|
19
|
Omedo I, Bartilol B, Kimani D, Gonçalves S, Drury E, Rono MK, Abdi AI, Almagro-Garcia J, Amato R, Pearson RD, Ochola-Oyier LI, Kwiatkowski D, Bejon P. Spatio-temporal distribution of antimalarial drug resistant gene mutations in a Plasmodium falciparum parasite population from Kilifi, Kenya: A 25-year retrospective study. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17656.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Antimalarial drug resistance is a major obstacle to sustainable malaria control. Here we use amplicon sequencing to describe molecular markers of drug resistance in Plasmodium falciparum parasites from Kilifi county in the coastal region of Kenya over a 25-year period. Methods: We performed P. falciparum amplicon sequencing on 1162 malaria-infected blood samples collected between 1994 and 2018 to identify markers of antimalarial drug resistance in the Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, Pfexo, Pfkelch13, plasmepsin 2/3, Pfarps10, Pffd, and Pfmdr2 genes. We further interrogated parasite population structure using a genetic barcode of 101 drug resistance-unrelated single nucleotide polymorphisms (SNPs) distributed across the genomes of 1245 P. falciparum parasites. Results: Two major changes occurred in the parasite population over the 25 years studied. In 1994, approximately 75% of parasites carried the marker of chloroquine resistance, CVIET. This increased to 100% in 1999 and then declined steadily, reaching 6.7% in 2018. Conversely, the quintuple mutation form of sulfadoxine-pyrimethamine resistance increased from 16.7% in 1994 to 83.6% in 2018. Several non-synonymous mutations were identified in the Kelch13 gene, although none of them are currently associated with artemisinin resistance. We observed a temporal increase in the Pfmdr1 NFD haplotype associated with lumefantrine resistance, but observed no evidence of piperaquine resistance. SNPs in other parts of the genome showed no significant temporal changes despite the marked changes in drug resistance loci over this period. Conclusions: We identified substantial changes in molecular markers of P. falciparum drug resistance over 25 years in coastal Kenya, but no associated changes in the parasite population structure.
Collapse
|
20
|
Dentinger CM, Rakotomanga TA, Rakotondrandriana A, Rakotoarisoa A, Rason MA, Moriarty LF, Steinhardt LC, Kapesa L, Razafindrakoto J, Svigel SS, Lucchi NW, Udhayakumar V, Halsey ES, Ratsimbasoa CA. Efficacy of artesunate-amodiaquine and artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria in Madagascar, 2018. Malar J 2021; 20:432. [PMID: 34732201 PMCID: PMC8565026 DOI: 10.1186/s12936-021-03935-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Since 2005, artemisinin-based combination therapy (ACT) has been recommended to treat uncomplicated falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the first- and second-line treatments, respectively. A therapeutic efficacy study was conducted to assess ACT efficacy and molecular markers of anti-malarial resistance. Methods Children aged six months to 14 years with uncomplicated falciparum malaria and a parasitaemia of 1000–100,000 parasites/µl determined by microscopy were enrolled from May–September 2018 in a 28-day in vivo trial using the 2009 World Health Organization protocol for monitoring anti-malarial efficacy. Participants from two communes, Ankazomborona (tropical, northwest) and Matanga (equatorial, southeast), were randomly assigned to ASAQ or AL arms at their respective sites. PCR correction was achieved by genotyping seven neutral microsatellites in paired pre- and post-treatment samples. Genotyping assays for molecular markers of resistance in the pfk13, pfcrt and pfmdr1 genes were conducted. Results Of 344 patients enrolled, 167/172 (97%) receiving ASAQ and 168/172 (98%) receiving AL completed the study. For ASAQ, the day-28 cumulative PCR-uncorrected efficacy was 100% (95% CI 100–100) and 95% (95% CI 91–100) for Ankazomborona and Matanga, respectively; for AL, it was 99% (95% CI 97–100) in Ankazomborona and 83% (95% CI 76–92) in Matanga. The day-28 cumulative PCR-corrected efficacy for ASAQ was 100% (95% CI 100–100) and 98% (95% CI 95–100) for Ankazomborona and Matanga, respectively; for AL, it was 100% (95% CI 99–100) in Ankazomborona and 95% (95% CI 91–100) in Matanga. Of 83 successfully sequenced samples for pfk13, no mutation associated with artemisinin resistance was observed. A majority of successfully sequenced samples for pfmdr1 carried either the NFD or NYD haplotypes corresponding to codons 86, 184 and 1246. Of 82 successfully sequenced samples for pfcrt, all were wild type at codons 72–76. Conclusion PCR-corrected analysis indicated that ASAQ and AL have therapeutic efficacies above the 90% WHO acceptable cut-off. No genetic evidence of resistance to artemisinin was observed, which is consistent with the clinical outcome data. However, the most common pfmdr1 haplotypes were NYD and NFD, previously associated with tolerance to lumefantrine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03935-4.
Collapse
Affiliation(s)
- Catherine M Dentinger
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia. .,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Antananarivo, Madagascar.
| | - Tovonahary Angelo Rakotomanga
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Antananarivo, Antananarivo, Madagascar
| | | | | | - Marie Ange Rason
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar
| | - Leah F Moriarty
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia.,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laurent Kapesa
- US President's Malaria Initiative, USAID, Antananarivo, Madagascar
| | | | - Samaly S Svigel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric S Halsey
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia.,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - C Arsène Ratsimbasoa
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar.,Centre National d' Application de Recherche Pharmaceutique, Antananarivo, Madagascar
| |
Collapse
|
21
|
Serrano D, Santos-Reis A, Silva C, Dias A, Dias B, Toscano C, Conceição C, Baptista-Fernandes T, Nogueira F. Imported Malaria in Portugal: Prevalence of Polymorphisms in the Anti-Malarial Drug Resistance Genes pfmdr1 and pfk13. Microorganisms 2021; 9:microorganisms9102045. [PMID: 34683365 PMCID: PMC8538333 DOI: 10.3390/microorganisms9102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
Malaria is one of the ‘big three’ killer infectious diseases, alongside tuberculosis and HIV. In non-endemic areas, malaria may occur in travelers who have recently been to or visited endemic regions. The number of imported malaria cases in Portugal has increased in recent years, mostly due to the close relationship with the community of Portuguese language countries. Samples were collected from malaria-infected patients attending Centro Hospitalar Lisboa Ocidental (CHLO) or the outpatient clinic of Instituto de Higiene e Medicina Tropical (IHMT-NOVA) between March 2014 and May 2021. Molecular characterization of Plasmodium falciparum pfk13 and pfmdr1 genes was performed. We analyzed 232 imported malaria cases. The majority (68.53%) of the patients came from Angola and only three patients travelled to a non-African country; one to Brazil and two to Indonesia. P. falciparum was diagnosed in 81.47% of the cases, P. malariae in 7.33%, P. ovale 6.47% and 1.72% carried P. vivax. No mutations were detected in pfk13. Regarding pfmdr1, the wild-type haplotype (N86/Y184/D1246) was also the most prevalent (64.71%) and N86/184F/D1246 was detected in 26.47% of the cases. The typical imported malaria case was middle-aged male, traveling from Angola, infected with P. falciparum carrying wild type pfmdr1 and pfk13. Our study highlights the need for constant surveillance of malaria parasites imported into Portugal as an important pillar of public health.
Collapse
Affiliation(s)
- Debora Serrano
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Santos-Reis
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Clemente Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Dias
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Brigite Dias
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Cristina Toscano
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Cláudia Conceição
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Teresa Baptista-Fernandes
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Fatima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
- Correspondence: ; Tel.: +351-213652600
| |
Collapse
|
22
|
Tuedom AGB, Sarah-Matio EM, Moukoko CEE, Feufack-Donfack BL, Maffo CN, Bayibeki AN, Awono-Ambene HP, Ayong L, Berry A, Abate L, Morlais I, Nsango SE. Antimalarial drug resistance in the Central and Adamawa regions of Cameroon: Prevalence of mutations in P. falciparum crt, Pfmdr1, Pfdhfr and Pfdhps genes. PLoS One 2021; 16:e0256343. [PMID: 34411157 PMCID: PMC8376100 DOI: 10.1371/journal.pone.0256343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
The spread of Plasmodium falciparum resistant parasites remains one of the major challenges for malaria control and elimination in Sub Saharan Africa. Monitoring of molecular markers conferring resistance to different antimalarials is important to track the spread of resistant parasites and to optimize the therapeutic lifespan of current drugs. This study aimed to evaluate the prevalence of known mutations in the drug resistance genes Pfcrt, Pfmdr1, Pfdhfr and Pfdhps in two different epidemiological settings in Cameroon. Dried blood spots collected in 2018 and 2019 from asymptomatic individuals were used for DNA extraction and then the Plasmodium infection status was determined byPCR. Detection of SNPs was performed by nested PCR followed by allele-specific restriction analysis (ASRA). The prevalence of each genotype was compared between sites using the Chi square and Fisher's exact tests. A high prevalence of the Pfcrt K76 wild type allele was found in both sites (88.5 and 62.29% respectively; P< 0,0001). The prevalence of Pfmdr1 mutations 86Y and 1246Y was respectively 55.83 and 1.45% in Mfou and 45.87 and 5.97% in Tibati, with significant difference between the studied areas (P<0.0001). Overall, the Pfdhfr triple-mutant genotype (51I/59R/108N) was highly prevalent (> 96%), however no SNP was detected at codon 164. In Pfdhps, the prevalence of the 437G mutation reached (90%) and was at higher frequency in Mfou (P< 0.0001). Overall, the Pfdhps mutations 540E and 581G were less common (0.33 and 3.26%, respectively). The quadruple resistant genotype (Pfdhfr 51I/59R/108N+Pfdhp437G) was found almost 90% of the samples. The wild-type genotype (Pfdhfr N51/C59/S108/164I+Pfdhps A437/K540/A581) was never identified and the sextuple mutant (Pfdhfr 51I/59R/108N+Pfdhp437G/540E/581G), kwon as super resistant appeared in two samples from Tibati. These findings demonstrate declining trends in the prevalence of mutations conferring resistance to 4-aminoquinolines, especially to chloroquine. However, a high level of mutations in P. falciparum genes related to SP resistance was detected and this raises concerns about the future efficacy of IPTp-SP and SMC in Cameroon.
Collapse
Affiliation(s)
- Aline Gaelle Bouopda Tuedom
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Elangwe Milo Sarah-Matio
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Brice Lionel Feufack-Donfack
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- CNRS UPR9022, INSERM U963, Strasbourg, France
| | - Christelle Ngou Maffo
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Albert Ngano Bayibeki
- Université Catholique d’Afrique Centrale, Yaoundé-Campus Messa Cameroun, Yaoundé, Cameroun
| | - Hermann Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroun
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse et UMR152 UPS-IRD, Université de Toulouse, Toulouse, France
| | - Luc Abate
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Isabelle Morlais
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Sandrine Eveline Nsango
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| |
Collapse
|
23
|
Changing Pattern of Plasmodium falciparum pfmdr1 Gene Polymorphisms in Southern Rwanda. Antimicrob Agents Chemother 2021; 65:e0090121. [PMID: 34228534 DOI: 10.1128/aac.00901-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum multidrug resistance-1 gene (pfmdr1) polymorphisms associate with altered antimalarial susceptibility. Between 2010 and 2018/2019, we observed that the prevalence of the wild-type allele N86 and the wild-type combination NYD increased 10-fold (4% versus 40%) and more than 2-fold (18% versus 44%), respectively. Haplotypes other than NYD or NFD declined by up to >90%. Our molecular data suggest the pfmdr1 pattern shifted toward one associated with artemether-lumefantrine resistance.
Collapse
|
24
|
Ontoua SS, Kouna LC, Oyegue-Liabagui SL, Voumbo-Matoumona DF, Moukodoum DN, Imboumy-Limoukou RK, Lekana-Douki JB. Differential Prevalences of Pfmdr1 Polymorphisms in Symptomatic and Asymptomatic Plasmodium falciparum Infections in Lastoursville: A Rural Area in East-Central Gabon. Infect Drug Resist 2021; 14:2873-2882. [PMID: 34335033 PMCID: PMC8318719 DOI: 10.2147/idr.s304361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Plasmodium falciparum malaria remains a major public health challenge in sub-Saharan Africa. Plasmodium falciparum drug resistance mediated by polymorphisms in the Pfmdr1 gene contributes to the persistence of the disease on the African continent. This study investigated P. falciparum infection features and differences in the Pfmdr1 genotypes between symptomatic and asymptomatic malaria cases in a rural area in east-central Gabon. Patients and Methods A total of 875 children aged from 5 to 185 months were screened for P falciparum infection using Optima-IT® rapid diagnostic tests and standard microscopy. Pfmdr1 polymorphisms at codons 86, 184 and 1246 were investigated using PCR-RFLP. Results Among the 448 P. falciparum-infected children, 57.08% (n=250) were symptomatic and 42.92% (n=198) were asymptomatic (p < 0.0001). In a sub-set of 79 isolates, the Pfmdr1 wild-type N86 was more prevalent in symptomatic (100%) than in asymptomatic infections (70.7%) (p=0.007). The mutant 86Y and mixed 86N/Y genotypes were observed only in asymptomatic infections. The Y184 and 184F genotype prevalences (39.1% vs 19.4% and 60.9% vs 80.6%, respectively) were not significantly different between the two groups (p=0.097). The prevalence of the wild-type D1246 differed significantly between symptomatic (10.3%) and asymptomatic (100%) (p < 0.0001). The NFD and YFD haplotypes were more prevalent in asymptomatic than in symptomatic infections [(61.9% vs 31%; p=0.005) and (16.7% vs 0.0%; p=0.01)], whereas the NYD and YYD haplotypes were not significantly different between the two groups [(21.4% vs 14.3%, p=0.39) and (0.0% vs 7.1%, p=0.24)]. Conclusion Our results confirm a high transmission of P. falciparum infection in rural Gabon, with a high prevalence of asymptomatic carriage. The higher prevalences of wild-type N86 in symptomatic infections and of D1246 in asymptomatic infections suggest a pathogenicity associated with polymorphisms in Pfmdr1. These results highlight the need to monitor the efficacy of artemisinin-based combination therapies in Gabon.
Collapse
Affiliation(s)
- Steede Seinnat Ontoua
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Lady Charlene Kouna
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Sandrine Lydie Oyegue-Liabagui
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon.,Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université de Sciences et Techniques de Masuku (USTM), Franceville, BP 876, Gabon
| | - Dominique Fatima Voumbo-Matoumona
- Départements des Masters/Licences, Parcours-Types des Sciences Biologiques, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, Congo
| | - Diamella Nancy Moukodoum
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Romeo Karl Imboumy-Limoukou
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution, Epidémiologie et Résistance Parasitaire (UNEEREP), Centre Interdisciplinaire des Recherches Médicales de Franceville (CIRMF), Franceville, BP 769, Gabon.,Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé (USS), Libreville, BP 4009, Gabon
| |
Collapse
|
25
|
Maiga H, Grivoyannis A, Sagara I, Traore K, Traore OB, Tolo Y, Traore A, Bamadio A, Traore ZI, Sanogo K, Doumbo OK, Plowe CV, Djimde AA. Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. Int J Mol Sci 2021; 22:ijms22116057. [PMID: 34205228 PMCID: PMC8200001 DOI: 10.3390/ijms22116057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. Methods: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. Results: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. Conclusion: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.
Collapse
Affiliation(s)
- Hamma Maiga
- Institut National de Sante Publique, INSP, Bamako P.O. Box 1771, Mali;
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Issaka Sagara
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Karim Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Oumar B. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Youssouf Tolo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Aliou Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Amadou Bamadio
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Zoumana I. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Kassim Sanogo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Ogobara K. Doumbo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Abdoulaye A. Djimde
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
- Correspondence: ; Tel.: +223-2022-8109
| |
Collapse
|
26
|
L'Episcopia M, Kelley J, Djeunang Dongho BG, Patel D, Schmedes S, Ravishankar S, Perrotti E, Modiano D, Lucchi NW, Russo G, Talundzic E, Severini C. Targeted deep amplicon sequencing of antimalarial resistance markers in Plasmodium falciparum isolates from Cameroon. Int J Infect Dis 2021; 107:234-241. [PMID: 33940188 DOI: 10.1016/j.ijid.2021.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.
Collapse
Affiliation(s)
| | - Julia Kelley
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | | | - Dhruviben Patel
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | - Sarah Schmedes
- Association of Public Health Laboratories, Silver Spring, MD, USA.
| | | | - Edvige Perrotti
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Naomi W Lucchi
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Eldin Talundzic
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Carlo Severini
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| |
Collapse
|
27
|
Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol Drugs Drug Resist 2021; 15:43-56. [PMID: 33556786 PMCID: PMC7887327 DOI: 10.1016/j.ijpddr.2020.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022]
Abstract
Artemisinin-based combination therapies (ACT) are currently used as a first-line malaria therapy in endemic countries worldwide. This systematic review aims at presenting the current scenario of drug resistance molecular markers, either selected or involved in treatment failures (TF) during in vivo ACT efficacy studies from sub-Saharan Africa (sSA) and India. Eight electronic databases were comprehensively used to search relevant articles and finally a total of 28 studies were included in the review, 21 from sSA and seven from India. On analysis, Artemether + lumefantrine (AL) and artesunate + sulfadoxine-pyrimethamine (AS + SP) are the main ACT in African and Indian regions with a 28-day efficacy range of 54.3-100% for AL and 63-100% for AS + SP respectively. It was observed that mutations in the Pfcrt (76T), Pfdhfr (51I, 59R, 108N), Pfdhps (437G) and Pfmdr1 (86Y, 184F, 1246Y) genes were involved in TF, which varied with respect to ACTs. Based on studies that have genotyped the Pfk13 gene, the reported TF cases, were mainly linked with mutations in genes associated with resistance to ACT partner drugs; indicating that the protection of the partner drug efficacy is crucial for maintaining the efficacy of ACT. This review reveals that ACT are largely efficacious in India and sSA despite the fact that some clinical efficacy and epidemiological studies have reported some validated mutations (i.e., 476I, 539T and 561H) in circulation in these two regions. Also, the role of PfATPase6 in ART resistance is controversial still, while P. falciparum plasmepsin 2 (Pfpm2) in piperaquine (PPQ) resistance and dihydroartemisinin (DHA) + PPQ failures is well documented in Southeast Asian countries but studied less in sSA. Hence, there is a need for continuous molecular surveillance of Pfk13 mutations for emergence of artemisinin (ART) resistance in these countries.
Collapse
Affiliation(s)
- Aditi Arya
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
28
|
Ferreira MU, Nobrega de Sousa T, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, Gil JP. Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. Int J Parasitol Drugs Drug Resist 2021; 15:9-24. [PMID: 33360105 PMCID: PMC7770540 DOI: 10.1016/j.ijpddr.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal.
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, René Rachou Institute, Fiocruz, Belo Horizonte, Brazil
| | - Gabriel W Rangel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
29
|
Ahouidi A, Oliveira R, Lobo L, Diedhiou C, Mboup S, Nogueira F. Prevalence of pfk13 and pfmdr1 polymorphisms in Bounkiling, Southern Senegal. PLoS One 2021; 16:e0249357. [PMID: 33770151 PMCID: PMC7996989 DOI: 10.1371/journal.pone.0249357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Delayed Plasmodium falciparum parasite clearance has been associated with Single Nucleotide Polymorphisms (SNPs) in the kelch protein propeller domain (coded by pfk13 gene). SNPs in the Plasmodium falciparum multidrug resistance gene 1 (pfmdr1) are associated with multi-drug resistance including the combination artemether-lumefantrine. To our knowledge, this is the first work providing information on the prevalence of k13-propeller and pfmdr1 mutations from Sédhiou, a region in the south of Senegal. METHODS 147 dried blood spots on filter papers were collected from symptomatic patients attending a hospital located in Bounkiling City, Sédhiou Region, Southern Senegal. All samples were collected between 2015-2017 during the malaria transmission season. Specific regions of the gene pfk13 and pfmdr1 were analyzed using PCR amplification and Sanger sequencing. RESULTS The majority of parasites (92.9%) harboured the pfk13 wild type sequence and 6 samples harboured synonymous changes. Regarding pfmdr1, wild-type alleles represented the majority except at codon 184. Overall, prevalence of 86Y was 11.9%, 184F was 56.3% and 1246Y was 1.5%. The mutant allele 184F decreased from 73.7% in 2015 to 40.7% in 2017. The prevalence of haplotype NFD decreased from 71.4% in 2015 to 20.8% in 2017. CONCLUSIONS This study provides the first description of pfk13 and pfmdr1 genes variations in Bounkiling, a city in the Sédhiou Region of Senegal, contributing to closing the gap of information on anti-malaria drug resistance molecular markers in southern Senegal.
Collapse
Affiliation(s)
- Ambroise Ahouidi
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Rafael Oliveira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Lis Lobo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Cyrille Diedhiou
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| |
Collapse
|
30
|
Johora FT, Elahi R, Nima MK, Hossain MS, Rashid H, Kibria MG, Mohon AN, Khan WA, Haque R, Alam MS. Persistence of Markers of Chloroquine Resistance in Plasmodium falciparum in Bangladesh. Am J Trop Med Hyg 2021; 104:276-282. [PMID: 33146120 DOI: 10.4269/ajtmh.20-0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The control of malaria, in terms of drug resistance, remains a significant global challenge, with Bangladesh, a malaria-endemic country, being no exception. The aim of this study was to explore antimalarial resistance in Bangladesh by molecular analysis of Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance transporter 1 (pfmdr1) genetic markers of P. falciparum. Samples were obtained from uncomplicated malaria patients between 2009 and 2014 from six malaria-endemic districts. Based on parasite transmission intensity, the endemic districts were divided into high-transmission (Chittagong Hill Tracts [CHT]) and low-transmission (non-CHT) regions. Falciparum malaria-positive isolates were genotyped for K76T of the pfcrt gene, and N86Y and Y184F of the pfmdr1 gene: in total, 262 P. falciparum clinical isolates were analyzed. In CHT areas, the prevalence of polymorphisms was 70.6% for 76T, 14.4% for 86Y, and 7.8% for 184F. In non-CHT areas, 76T and 86Y mutations were found in 78.0% and 19.5% of the samples, respectively, whereas no 184F mutations were observed. We compared our data with previous similar molecular observations, which shows a significant decrease in pfcrt 76T mutation prevalence. No pfmdr1 amplification was observed in any of the samples suggesting an unaltered susceptibility to amino alcohol drugs such as mefloquine and lumefantrine. This study provides an updated assessment of the current status of pfcrt and pfmdr1 gene mutations in Bangladesh, and suggests there is persistent high prevalence of markers of resistance to aminoquinoline drugs.
Collapse
Affiliation(s)
- Fatema Tuj Johora
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rubayet Elahi
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,2Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Maisha Khair Nima
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,3Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Mohammad Sharif Hossain
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Humaira Rashid
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Golam Kibria
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu Naser Mohon
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,4Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Alberta, Canada
| | - Wasif A Khan
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rashidul Haque
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- 1Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
31
|
Mbye H, Bojang F, Jawara AS, Njie B, Mohammed NI, Okebe J, D'Alessandro U, Amambua-Ngwa A. Tolerance of Gambian Plasmodium falciparum to Dihydroartemisinin and Lumefantrine Detected by Ex Vivo Parasite Survival Rate Assay. Antimicrob Agents Chemother 2020; 65:e00720-20. [PMID: 33020162 PMCID: PMC7927851 DOI: 10.1128/aac.00720-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022] Open
Abstract
Monitoring of Plasmodium falciparum sensitivity to antimalarial drugs in Africa is vital for malaria elimination. However, the commonly used ex vivo/in vitro 50% inhibitory concentration (IC50) test gives inconsistent results for several antimalarials, while the alternative ring-stage survival assay (RSA) for artemisinin derivatives has not been widely adopted. Here, we applied an alternative two-color flow cytometry-based parasite survival rate assay (PSRA) to detect ex vivo antimalarial tolerance in P. falciparum isolates from The Gambia. The PSRA infers parasite viability by quantifying reinvasion of uninfected cells following 3 consecutive days of drug exposure (10-fold the IC50 of drug for field isolates). The drug survival rate is obtained for each isolate from the slope of the growth/death curve. We obtained parasite survival rates of 41 isolates for dihydroartemisinin (DHA) and lumefantrine (LUM) out of 51 infections tested by ring-stage survival assay (RSA) against DHA. We also determined the genotypes for known drug resistance genetic loci in the P. falciparum genes Pfdhfr, Pfdhps, Pfmdr, Pfcrt, and Pfk13 The PSRA results determined for 41 Gambian isolates showed faster killing and lower variance after treatment with DHA than after treatment with LUM, despite a strong correlation between the two drugs. Four and three isolates were tolerant to DHA and LUM, respectively, with continuous growth during drug exposure. Isolates with the PfMDR1-Y184F mutant variant showed increased LUM survival, though the results were not statistically significant. Sulfadoxine/pyrimethamine (SP) resistance markers were fixed, while all other antimalarial variants were prevalent in more than 50% of the population. The PSRA detected ex vivo antimalarial tolerance in Gambian P. falciparum This calls for its wider application and for increased vigilance against resistance to artemisinin combination therapies (ACTs) in this population.
Collapse
Affiliation(s)
- Haddijatou Mbye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Fatoumata Bojang
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Aminata Seedy Jawara
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Bekai Njie
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, United Kingdom
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
32
|
Myers-Hansen JL, Abuaku B, Oyebola MK, Mensah BA, Ahorlu C, Wilson MD, Awandare G, Koram KA, Ngwa AA, Ghansah A. Assessment of antimalarial drug resistant markers in asymptomatic Plasmodium falciparum infections after 4 years of indoor residual spraying in Northern Ghana. PLoS One 2020; 15:e0233478. [PMID: 33284800 PMCID: PMC7721464 DOI: 10.1371/journal.pone.0233478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Drug resistance remains a concern for malaria control and elimination. The effect of interventions on its prevalence needs to be monitored to pre-empt further selection. We assessed the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs: sulfadoxine-pyrimethamine (SP), chloroquine (CQ) and artemisinin combination therapy (ACTs) after the scale-up of a vector control activity that reduced transmission. METHODS A total of 400 P. falciparum isolates from children under five years were genotyped for seventeen single nucleotide polymorphisms (SNPs) in pfcrt, pfmdr1, pfdhfr, pfdhps and pfk13 genes using polymerase chain reaction (PCR) and high resolution melting (HRM) analysis. These included 80 isolates, each randomly selected from cross-sectional surveys of asymptomatic infections across 2010 (baseline), 2011, 2012, 2013 (midline: post-IRS) and 2014 (endline: post-IRS) during the peak transmission season, when IRS intervention was rolled out in Bunkpurugu Yunyoo (BY) District, Ghana. The proportions of isolates with drug resistant alleles were assessed over this period. RESULTS There were significant decreases in the prevalence of pfdhfr- I51R59N108 haplotype from 2010 to 2014, while the decline in pfdhfr/pfdhps- I51R59N108G437 during the same period was not significant. The prevalence of lumefantrine (LM), mefloquine (MQ) and amodiaquine (AQ) resistance-associated haplotypes pfmdr1-N86F184D1246 and pfmdr1-Y86Y184Y1246 showed decreasing trends (z = -2.86, P = 0.004 and z = -2.71, P = 0.007, respectively). Each of pfcrt-T76 and pfmdr1-Y86 mutant alleles also showed a declining trend in the asymptomatic reservoir, after the IRS rollout in 2014 (z = -2.87, P = 0.004 and z = -2.65, P = 0.008, respectively). Similarly, Pyrimethamine resistance mediating polymorphisms pfdhfr-N108, pfdhfr-I51 and pfdhfr-R59 also declined (z = -2.03, P = 0.042, z = -3.54, P<0.001 and z = -4.63, P<0.001, respectively), but not the sulphadoxine resistance mediating pfdhps-G437 and pfdhps-F436 (z = -0.36, P = 0.715 and z = 0.41, P = 0.684, respectively). No mutant pfk13-Y580 were detected during the study period. CONCLUSION The study demonstrated declining trends in the prevalence of drug resistant mutations in asymptomatic P. falciparum infections following transmission reduction after an enhanced IRS intervention in Northern Ghana.
Collapse
Affiliation(s)
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Muyiwa K. Oyebola
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Benedicta A. Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael D. Wilson
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gordon Awandare
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
33
|
Windle ST, Lane KD, Gadalla NB, Liu A, Mu J, Caleon RL, Rahman RS, Sá JM, Wellems TE. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross. Int J Parasitol Drugs Drug Resist 2020; 14:208-217. [PMID: 33197753 PMCID: PMC7677662 DOI: 10.1016/j.ijpddr.2020.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lumefantrine and mefloquine are used worldwide in artemisinin-based combination therapy (ACT) of malaria. Better understanding of drug susceptibility and resistance is needed and can be obtained from studies of genetic crosses. METHODS Drug response phenotypes of a cross between Plasmodium falciparum lines 803 (Cambodia) and GB4 (Ghana) were obtained as half-maximal effective concentrations (EC50s) and days to recovery (DTR) after 24 h exposure to 500 nM lumefantrine. EC50s of mefloquine, halofantrine, chloroquine, and dihydroartemisinin were also determined. Quantitative trait loci (QTL) analysis and statistical tests with candidate genes were used to identify polymorphisms associated with response phenotypes. RESULTS Lumefantrine EC50s averaged 5.8-fold higher for the 803 than GB4 parent, and DTR results were 3-5 and 16-18 days, respectively. In 803 × GB4 progeny, outcomes of these two lumefantrine assays showed strong inverse correlation; these phenotypes also correlated strongly with mefloquine and halofantrine EC50s. By QTL analysis, lumefantrine and mefloquine phenotypes mapped to a chromosome 5 region containing codon polymorphisms N86Y and Y184F in the P. falciparum multidrug resistance 1 protein (PfMDR1). Statistical tests of candidate genes identified correlations between inheritance of PfK13 Kelch protein polymorphism C580Y (and possibly K189T) and lumefantrine and mefloquine susceptibilities. Correlations were detected between lumefantrine and chloroquine EC50s and polymorphisms N326S and I356T in the CVIET-type P. falciparum chloroquine resistance transporter (PfCRT) common to 803 and GB4. CONCLUSIONS Correlations in this study suggest common mechanisms of action in lumefantrine, mefloquine, and halofantrine responses. PfK13 as well as PfMDR1 and PfCRT polymorphisms may affect access and/or action of these arylaminoalcohol drugs at locations of hemoglobin digestion and heme metabolism. In endemic regions, pressure from use of lumefantrine or mefloquine in ACTs may drive selection of PfK13 polymorphisms along with versions of PfMDR1 and PfCRT associated with lower susceptibility to these drugs.
Collapse
Affiliation(s)
- Sean T Windle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Kristin D Lane
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Nahla B Gadalla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Anna Liu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Ramoncito L Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Rifat S Rahman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA.
| |
Collapse
|
34
|
Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. mBio 2020; 11:mBio.02093-20. [PMID: 33262257 PMCID: PMC7733942 DOI: 10.1128/mbio.02093-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms. Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.
Collapse
|
35
|
Ippolito MM, Pringle JC, Siame M, Katowa B, Aydemir O, Oluoch PO, Huang L, Aweeka FT, Bailey JA, Juliano JJ, Meshnick SR, Shapiro TA, Moss WJ, Thuma PE. Therapeutic Efficacy of Artemether-Lumefantrine for Uncomplicated Falciparum Malaria in Northern Zambia. Am J Trop Med Hyg 2020; 103:2224-2232. [PMID: 33078701 DOI: 10.4269/ajtmh.20-0852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine (AL) is a first-line agent for uncomplicated malaria caused by Plasmodium falciparum. The WHO recommends periodic therapeutic efficacy studies of antimalarial drugs for the detection of malaria parasite drug resistance and to inform national malaria treatment policies. We conducted a therapeutic efficacy study of AL in a high malaria transmission region of northern Zambia from December 2014 to July 2015. One hundred children of ages 6 to 59 months presenting to a rural health clinic with uncomplicated falciparum malaria were admitted for treatment with AL (standard 6-dose regimen) and followed weekly for 5 weeks. Parasite counts were taken every 6 hours during treatment to assess parasite clearance. Recurrent episodes during follow-up (n = 14) were genotyped to distinguish recrudescence from reinfection and to identify drug resistance single nucleotide polymorphisms (SNPs) and multidrug resistance protein 1 (mdr1) copy number variation. Day 7 lumefantrine concentrations were measured for correspondence with posttreatment reinfection. All children who completed the parasite clearance portion of the study (n = 94) were microscopy-negative by 72 hours. The median parasite elimination half-life was 2.7 hours (interquartile range: 2.1-3.3). Genotype-corrected therapeutic efficacy was 98.8% (95% CI: 97.6-100). Purported artemisinin and lumefantrine drug resistance SNPs in atp6, 3D7_1451200, and mdr1 were detected but did not correlate with parasite recurrence, nor did day 7 lumefantrine concentrations. In summary, AL was highly effective for the treatment of uncomplicated falciparum malaria in northern Zambia during the study period. The high incidence of recurrent parasitemia was consistent with reinfection due to high, perennial malaria transmission.
Collapse
Affiliation(s)
- Matthew M Ippolito
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mwiche Siame
- Ministry of Health, Government of the Republic of Zambia, Lusaka, Zambia
| | | | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Peter O Oluoch
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Liusheng Huang
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Francesca T Aweeka
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jonathan J Juliano
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Theresa A Shapiro
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William J Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Philip E Thuma
- Macha Research Trust, Macha, Zambia.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
36
|
Narh CA, Ghansah A, Duffy MF, Ruybal-Pesántez S, Onwona CO, Oduro AR, Koram KA, Day KP, Tiedje KE. Evolution of Antimalarial Drug Resistance Markers in the Reservoir of Plasmodium falciparum Infections in the Upper East Region of Ghana. J Infect Dis 2020; 222:1692-1701. [PMID: 32459360 PMCID: PMC7982568 DOI: 10.1093/infdis/jiaa286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum infections, constituting the reservoir in all ages, are asymptomatic in high-transmission settings in Africa. The role of this reservoir in the evolution and spread of drug resistance was explored. METHODS Population genetic analyses of the key drug resistance-mediating polymorphisms were analyzed in a cross-sectional survey of asymptomatic P. falciparum infections across all ages in Bongo District, Ghana. RESULTS Seven years after the policy change to artemisinin-based combination therapies in 2005, the pfcrt K76 and pfmdr1 N86 wild-type alleles have nearly reached fixation and have expanded via soft selective sweeps on multiple genetic backgrounds. By constructing the pfcrt-pfmdr1-pfdhfr-pfdhps multilocus haplotypes, we found that the alleles at these loci were in linkage equilibrium and that multidrug-resistant parasites have not expanded in this reservoir. For pfk13, 32 nonsynonymous mutations were identified; however, none were associated with artemisinin-based combination therapy resistance. CONCLUSIONS The prevalence and selection of alleles/haplotypes by antimalarials were similar to that observed among clinical cases in Ghana, indicating that they do not represent 2 subpopulations with respect to these markers. Thus, the P. falciparum reservoir in all ages can contribute to the maintenance and spread of antimalarial resistance.
Collapse
Affiliation(s)
- Charles A Narh
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael F Duffy
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute and Peter Doherty Institute, Melbourne, Australia
| | - Shazia Ruybal-Pesántez
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Christiana O Onwona
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Abraham R Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Karen P Day
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute and Peter Doherty Institute, Melbourne, Australia
| | - Kathryn E Tiedje
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute and Peter Doherty Institute, Melbourne, Australia
| |
Collapse
|
37
|
Hussien M, Abdel Hamid MM, Elamin EA, Hassan AO, Elaagip AH, Salama AHA, Abdelraheem MH, Mohamed AO. Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015-2017. PLoS One 2020; 15:e0235401. [PMID: 32817665 PMCID: PMC7446868 DOI: 10.1371/journal.pone.0235401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Current malaria control and elimination strategies rely mainly on efficacious antimalarial drugs. However, drug resistance is a major threat facing malaria control programs. Determination of drug resistance molecular markers is useful in the monitoring and surveillance of malaria drug efficacy. This study aimed to determine the mutations and haplotypes frequencies of different genes linked with antimalarial drug resistance in certain areas in Sudan. METHODS A total of 226 dried blood spots (DBS) of microscopically diagnosed P. falciparum isolates were collected from Khartoum and three other areas in Sudan during 2015-2017. Plasmodium falciparum confirmation and multiplicity of infection was assessed using the Sanger's 101 SNPs-barcode and speciation was confirmed using regions of the parasite mitochondria. Molecular genotyping of drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, exonuclease, Pfk13, parasite genetic background (PGB) (Pfarps10, ferredoxin, Pfcrt, Pfmdr2)) was also performed. All genotypes were generated by selective regions amplicon sequencing of the parasite genome using the Illumina MiSeq platform at the Wellcome Sanger Institute, UK then genotypes were translated into drug resistance haplotypes and species determination. FINDINGS In total 225 samples were confirmed to be P. falciparum. A higher proportion of multiplicity of infection was observed in Gezira (P<0.001) based on the Sanger 101 SNPs -barcode. The overall frequency of mutant haplotype Pfcrt 72-76 CVIET was 71.8%. For Pfmdr1, N86Y was detected in 53.6%, Y184F was observed in 88.1% and D1246Y was detected in 1.5% of the samples. The most frequently observed haplotype was YFD 47.4%. For Pfdhfr (codons 51, 59,108,164), the ICNI haplotype was the most frequent (80.7%) while for Pfdhps (codons 436, 437, 540, 581, 613) the (SGEAA) was most frequent haplotype (41%). The Quadruple mutation (dhfr N51I, S108N + dhps A437G, K540E) was the highest frequent combined mutation (33.9%). In Pfkelch13 gene, 18 non-synonymous mutations were detected, 7 of them were detected in other African countries. The most frequent Pfk13 mutation was E433D detected in four samples. All of the Pfk13 mutant alleles have not been reported to belong to mutations associated with delayed parasite clearance in Southeast Asia. PGB mutations were detected only in Pfcrt N326S\I (46.3%) and Pfcrt I356T (8.2%). The exonuclease mutation was not detected. There was no significant variation in mutant haplotypes between study areas. CONCLUSIONS There was high frequency of mutations in Pfcrt, Pfdhfr and Pfdhps in this study. These mutations are associated with chloroquine and sulfadoxine-pyrimethamine (SP) resistance. Many SNPs in Pfk13 not linked with delayed parasite clearance were observed. The exonuclease E415G mutation which is linked with piperaquine resistance was not reported.
Collapse
Affiliation(s)
- Maazza Hussien
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Elamin Abdelkarim Elamin
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Abdalla O. Hassan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa H. Elaagip
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Mohammed H. Abdelraheem
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelrahim O. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
38
|
Pathak A, Mårtensson A, Gawariker S, Sharma A, Diwan V, Purohit M, Ursing J. Stable high frequencies of sulfadoxine-pyrimethamine resistance associated mutations and absence of K13 mutations in Plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine-pyrimethamine in Ujjain, Madhya Pradesh, India. Malar J 2020; 19:290. [PMID: 32795288 PMCID: PMC7427725 DOI: 10.1186/s12936-020-03274-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Artesunate plus sulfadoxine–pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015–2016 after 3–4 years of ASP use, are reported. Methods Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16–185, pfdhps 436–632 and K13 407–689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. Results Sulfadoxine–pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. Conclusion The frequency of P. falciparum with reduced susceptibility to sulfadoxine–pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.
Collapse
Affiliation(s)
- Ashish Pathak
- Department of Pediatrics, R D Gardi Medical College, Surasa, 456010, Ujjain, India.,Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Sudhir Gawariker
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Ashish Sharma
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Vishal Diwan
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Public Health & Environment in R D Gardi Medical College, Ujjain, India
| | - Manju Purohit
- Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.,Department of Pathology, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Johan Ursing
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden. .,Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Chebore W, Zhou Z, Westercamp N, Otieno K, Shi YP, Sergent SB, Rondini KA, Svigel SS, Guyah B, Udhayakumar V, Halsey ES, Samuels AM, Kariuki S. Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya. Malar J 2020; 19:291. [PMID: 32795367 PMCID: PMC7427724 DOI: 10.1186/s12936-020-03358-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.
Collapse
Affiliation(s)
- Winnie Chebore
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
- Maseno University, Kisumu, Kenya
| | - Zhiyong Zhou
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Nelli Westercamp
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
| | - Ya Ping Shi
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Sheila B Sergent
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kelsey Anne Rondini
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Samaly Souza Svigel
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | | | | | - Eric S Halsey
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Aaron M Samuels
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya.
| |
Collapse
|
40
|
She D, Wang Z, Liang Q, Lu L, Huang Y, Zhang K, An D, Wu J. Polymorphisms of pfcrt, pfmdr1, and K13-propeller genes in imported falciparum malaria isolates from Africa in Guizhou province, China. BMC Infect Dis 2020; 20:513. [PMID: 32677899 PMCID: PMC7364468 DOI: 10.1186/s12879-020-05228-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background Imported falciparum malaria from Africa has become a key public health challenge in Guizhou Province since 2012. Understanding the polymorphisms of molecular markers of drug resistance can guide selection of antimalarial drugs for the treatment of malaria. This study was aimed to analyze the polymorphisms of pfcrt, pfmdr1, and K13-propeller among imported falciparum malaria cases in Guizhou Province, China. Method Fifty-five imported falciparum malaria cases in Guizhou Province during 2012–2016 were included in this study. Their demographic information and filter paper blood samples were collected. Genomic DNA of Plasmodium falciparum was extracted from the blood samples, and polymorphisms of pfcrt, pfmdr1, and K13-propeller were analyzed with nested PCR amplification followed by sequencing. Data were analyzed with the SPSS17.0 software. Results The prevalence of pfcrt K76T, pfmdr1 N86Y, and pfmdr1 Y184F mutation was 56.6, 22.2, and 72.2%, respectively, in imported falciparum malaria cases in Guizhou Province. We detected two mutant haplotypes of pfcrt, IET and MNT, with IET being more commonly found (54.7%), and five mutant haplotypes of pfmdr1, of which NFD was the most frequent (53.7%). There were totally 10 combined haplotypes of pfcrt and pfmdr1, of which the haplotype IETNFD possessed a predominance of 28.8%. In addition, three nonsynonymous mutations (S459T, C469F, and V692L) and two synonymous mutations (R471R and V589V) were detected in K13-propeller, all having prevalence less than 6.0%. In particular, a candidate K13 resistance mutation, C469F, was identified for the first time from Democratic Republic of the Congo with the prevalence of 2.0%. Conclusions The high prevalence of IET haplotype of pfcrt and NFD haplotype of pfmdr1 suggests the presence of chloroquine, artemether/lumefantrine, and dihydroartemisinin/piperaquine resistance in these cases. Therefore cautions should be made to artemisinin therapy for P. falciparum in Africa. Continuous monitoring of anti-malarial drug efficacy in imported malaria cases is helpful for optimizing antimalarial drug therapy in Guizhou Province, China.
Collapse
Affiliation(s)
- Danya She
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University; Department of Parasitology; Provincial Key Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, China.,Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, China
| | - Zhengyan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University; Department of Parasitology; Provincial Key Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Qiuguo Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University; Department of Parasitology; Provincial Key Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Lidan Lu
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, China
| | - Yuting Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, China
| | - Ke Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University; Department of Parasitology; Provincial Key Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Dong An
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, China
| | - Jiahong Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University; Department of Parasitology; Provincial Key Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
41
|
Mhamilawa LE, Ngasala B, Morris U, Kitabi EN, Barnes R, Soe AP, Mmbando BP, Björkman A, Mårtensson A. Parasite clearance, cure rate, post-treatment prophylaxis and safety of standard 3-day versus an extended 6-day treatment of artemether-lumefantrine and a single low-dose primaquine for uncomplicated Plasmodium falciparum malaria in Bagamoyo district, Tanzania: a randomized controlled trial. Malar J 2020; 19:216. [PMID: 32576258 PMCID: PMC7310382 DOI: 10.1186/s12936-020-03287-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) resistant Plasmodium falciparum represents an increasing threat to Africa. Extended ACT regimens from standard 3 to 6 days may represent a means to prevent its development and potential spread in Africa. Methods Standard 3-day treatment with artemether–lumefantrine (control) was compared to extended 6-day treatment and single low-dose primaquine (intervention); in a randomized controlled, parallel group, superiority clinical trial of patients aged 1–65 years with microscopy confirmed uncomplicated P. falciparum malaria, enrolled in Bagamoyo district, Tanzania. The study evaluated parasite clearance, including proportion of PCR detectable P. falciparum on days 5 and 7 (primary endpoint), cure rate, post-treatment prophylaxis, safety and tolerability. Clinical, and laboratory assessments, including ECG were conducted during 42 days of follow-up. Blood samples were collected for parasite detection (by microscopy and PCR), molecular genotyping and pharmacokinetic analyses. Kaplan–Meier survival analyses were done for both parasite clearance and recurrence. Results A total of 280 patients were enrolled, 141 and 139 in the control and intervention arm, respectively, of whom 121 completed 42 days follow-up in each arm. There was no difference in proportion of PCR positivity across the arms at day 5 (80/130 (61.5%) vs 89/134 (66.4%), p = 0.44), or day 7 (71/129 (55.0%) vs 70/134 (52.2%), p = 0.71). Day 42 microscopy determined cure rates (PCR adjusted) were 97.4% (100/103) and 98.3% (110/112), p = 0.65, in the control and intervention arm, respectively. Microscopy determined crude recurrent parasitaemia during follow-up was 21/121 (17.4%) in the control and 14/121 (11.6%) in the intervention arm, p = 0.20, and it took 34 days and 42 days in the respective arms for 90% of the patients to remain without recurrent parasitaemia. Lumefantrine exposure was significantly higher in intervention arm from D3 to D42, but cardiac, biochemical and haematological safety was high and similar in both arms. Conclusion Extended 6-day artemether–lumefantrine treatment and a single low-dose of primaquine was not superior to standard 3-day treatment for ACT sensitive P. falciparum infections but, importantly, equally efficacious and safe. Thus, extended artemether–lumefantrine treatment may be considered as a future treatment regimen for ACT resistant P. falciparum, to prolong the therapeutic lifespan of ACT in Africa. Trial registration ClinicalTrials.gov, NCT03241901. Registered July 27, 2017 https://clinicaltrials.gov/show/NCT03241901
Collapse
Affiliation(s)
- Lwidiko E Mhamilawa
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden. .,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eliford Ngaimisi Kitabi
- Office of Clinical Pharmacology, Division of Pharmacometrics, Food and Drugs Administration, Silver Spring, MD, USA
| | - Rory Barnes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aung Paing Soe
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Khan AQ, Pernaute-Lau L, Khattak AA, Luijcx S, Aydin-Schmidt B, Hussain M, Khan TA, Mufti FU, Morris U. Surveillance of genetic markers associated with Plasmodium falciparum resistance to artemisinin-based combination therapy in Pakistan, 2018-2019. Malar J 2020; 19:206. [PMID: 32513171 PMCID: PMC7282094 DOI: 10.1186/s12936-020-03276-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The spread of artemisinin resistance in the Greater Mekong Subregion of Southeast Asia poses a significant threat for current anti-malarial treatment guidelines globally. The aim of this study was to assess the current prevalence of molecular markers of drug resistance in Plasmodium falciparum in the four provinces with the highest malaria burden in Pakistan, after introducing artemether-lumefantrine as first-line treatment in 2017. METHODS Samples were collected during routine malaria surveillance in Punjab, Sindh, Baluchistan, and Khyber Pakhtunkhwa provinces of Pakistan between January 2018 and February 2019. Plasmodium falciparum infections were confirmed by rapid diagnostic test or microscopy. Plasmodium falciparum positive isolates (n = 179) were screened by Sanger sequencing for single nucleotide polymorphisms (SNPs) in the P. falciparum kelch 13 (pfk13) propeller domain and in P. falciparum coronin (pfcoronin). SNPs in P. falciparum multidrug resistance 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine resistance transporter (pfcrt) K76T were genotyped by PCR-restriction fragment length polymorphism. RESULTS No artemisinin resistance associated SNPs were identified in the pfk13 propeller domain or in pfcoronin. The pfmdr1 N86, 184F, D1246 and pfcrt K76 alleles associated with reduced lumefantrine sensitivity were present in 83.8% (150/179), 16.9% (29/172), 100.0% (173/173), and 8.4% (15/179) of all infections, respectively. The chloroquine resistance associated pfcrt 76T allele was present in 98.3% (176/179) of infections. CONCLUSION This study provides an update on the current prevalence of molecular markers associated with reduced P. falciparum sensitivity to artemether and/or lumefantrine in Pakistan, including a first baseline assessment of polymorphisms in pfcoronin. No mutations associated with artemisinin resistance were observed in pfk13 or pfcoronin. However, the prevalence of the pfmdr1 N86 and D1246 alleles, that have been associated with decreased susceptibility to lumefantrine, remain high. Although clinical and molecular data suggest that the current malaria treatment guidelines for P. falciparum are presently effective in Pakistan, close monitoring for artemisinin and lumefantrine resistance will be critical to ensure early detection and enhanced containment of emerging ACT resistance spreading across from Southeast Asia.
Collapse
Affiliation(s)
- Abdul Qader Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Biosystems and Integrative Science Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sanna Luijcx
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Farees Uddin Mufti
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Dossou-Yovo LR, Ntoumi F, Koukouikila-Koussounda F, Vouvoungui JC, Adedoja A, Nderu D, Velavan TP, Lenga A. Molecular surveillance of the Pfmdr1 N86Y allele among Congolese pregnant women with asymptomatic malaria. Malar J 2020; 19:178. [PMID: 32384930 PMCID: PMC7206803 DOI: 10.1186/s12936-020-03246-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Malaria in pregnancy is associated with considerable morbidity and mortality. Regular surveillance of artemisinin-based combination therapy tolerance, or molecular makers of resistance, is vital for effective malaria treatment, control and eradication programmes. Plasmodium falciparum multiple drug resistance-1 gene (Pfmdr1) N86Y mutation is associated with reduced susceptibility to lumefantrine. This study assessed the prevalence of Pfmdr1 N86Y in Brazzaville, Republic of Congo. Methods A total 1001 of P. falciparum-infected blood samples obtained from asymptomatic malaria pregnant women having a normal child delivery at the Madibou Integrated Health Centre were analysed. Pfmdr1 N86Y genotyping was conducted using PCR-restriction fragment length polymorphism. Results The wild type Pfmdr1 N86 allele was predominant (> 68%) in this study, whereas a few isolates carrying the either the mutant allele (Pfmdr1 86Y) alone or both alleles (mixed genotype). The dominance of the wildtype allele (pfmdr1 N86) indicates the plausible decline P. falciparum susceptibility to lumefantrine. Conclusion This study gives an update on the prevalence of Pfmdr1 N86Y alleles in Brazzaville, Republic of Congo. It also raises concern on the imminent emergence of resistance against artemether–lumefantrine in this setting. This study underscores the importance to regular artemether–lumefantrine efficacy monitoring to inform the malaria control programme of the Republic of Congo.
Collapse
Affiliation(s)
- Louis Regis Dossou-Yovo
- Ecole Normale Supérieure, Marien Ngouabi University, Brazzaville, Republic of Congo.,Congolese Foundation for Medical Research, Brazzaville, Republic of Congo
| | - Francine Ntoumi
- Congolese Foundation for Medical Research, Brazzaville, Republic of Congo. .,Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of Congo. .,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Felix Koukouikila-Koussounda
- Congolese Foundation for Medical Research, Brazzaville, Republic of Congo.,Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of Congo
| | | | - Ayodele Adedoja
- Congolese Foundation for Medical Research, Brazzaville, Republic of Congo
| | - David Nderu
- School of Health Sciences, Kirinyaga University, Kerugoya, Kenya.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Arsène Lenga
- Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of Congo
| |
Collapse
|
44
|
Mwaiswelo R, Ngasala B. Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J 2020; 19:162. [PMID: 32316974 PMCID: PMC7175519 DOI: 10.1186/s12936-020-03235-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum resistance against artemisinin has not emerged in Africa; however, there are reports of the presence of polymerase chain reaction-determined residual submicroscopic parasitaemia detected on day 3 after artemisinin-based combination therapy (ACT). These residual submicroscopic parasites are thought to represent tolerant/resistant parasites against artemisinin, the fast-acting component of the combination. This review focused on residual submicroscopic parasitaemia, what it represents, and its significance on the emergence and spread of artemisinin resistance in Africa. Presence of residual submicroscopic parasitemia on day 3 after treatment initiation leaves question on whether successful treatment is attained with ACT. Thus there is a need to determine the potential public health implication of the PCR-determined residual submicroscopic parasitaemia observed on day 3 after ACT. Robust techniques, such as in vitro cultivation, should be used to evaluate if the residual submicroscopic parasites detected on day 3 after ACT are viable asexual parasites, or gametocytes, or the DNA of the dead parasites waiting to be cleared from the circulation. Such techniques would also evaluate the transmissibility of these residual parasites.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Bill Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
45
|
An Individual Participant Data Population Pharmacokinetic Meta-analysis of Drug-Drug Interactions between Lumefantrine and Commonly Used Antiretroviral Treatment. Antimicrob Agents Chemother 2020; 64:AAC.02394-19. [PMID: 32071050 PMCID: PMC7179577 DOI: 10.1128/aac.02394-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-based ART and by 59% in the patients with rifampin-based antituberculosis treatment. Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated with significant effects. Monte Carlo simulations showed that those on concomitant efavirenz or rifampin have 49% and 80% probability of day 7 concentrations <200 ng/ml, respectively, a threshold associated with an increased risk of treatment failure. The risk of achieving subtherapeutic concentrations increases with larger body weight. An extended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome these drug-drug interactions with efavirenz and rifampin, respectively.
Collapse
|
46
|
Maraka M, Akala HM, Amolo AS, Juma D, Omariba D, Cheruiyot A, Opot B, Okello Okudo C, Mwakio E, Chemwor G, Juma JA, Okoth R, Yeda R, Andagalu B. A seven-year surveillance of epidemiology of malaria reveals travel and gender are the key drivers of dispersion of drug resistant genotypes in Kenya. PeerJ 2020; 8:e8082. [PMID: 32201636 PMCID: PMC7073242 DOI: 10.7717/peerj.8082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.
Collapse
Affiliation(s)
- Moureen Maraka
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Asito S. Amolo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
| | - Dennis Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Duke Omariba
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Charles Okello Okudo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Edwin Mwakio
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| |
Collapse
|
47
|
Mohamed AO, Hussien M, Mohamed A, Suliman A, Elkando NS, Abdelbagi H, Malik EM, Abdelraheem MH, Hamid MMA. Assessment of Plasmodium falciparum drug resistance molecular markers from the Blue Nile State, Southeast Sudan. Malar J 2020; 19:78. [PMID: 32070355 PMCID: PMC7029593 DOI: 10.1186/s12936-020-03165-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/03/2022] Open
Abstract
Background Plasmodium falciparum malaria is a public health problem worldwide. Malaria treatment policy has faced periodic changes due to emergence of drug resistant parasites. In Sudan chloroquine has been replaced by artesunate and sulfadoxine/pyrimethamine (AS/SP) in 2005 and to artemether–lumefantrine (AL) in 2017, due to the development of drug resistance. Different molecular markers have been used to monitor the status of drug resistant P. falciparum. This study aimed to determine the frequency of malaria drug resistance molecular markers in Southeast Sudan. Methods The samples of this study were day zero dried blood spot samples collected from efficacy studies in the Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and artemisinin resistant (ART‐R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10). Results Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple mutation ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART‐R genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected. Conclusion In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel mutations of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner drug of dihydroartemisinin/piperaquine (DHA-PPQ).
Collapse
Affiliation(s)
- Abdelrahim O Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Maazza Hussien
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan.,Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Amal Mohamed
- Department of Accreditation, General Directorate of Quality, Development and Accreditation, Khartoum, Sudan
| | | | - Nuha S Elkando
- State Ministry of Health, Blue Nile State, Damazin, Sudan
| | - Hanadi Abdelbagi
- Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Elfatih M Malik
- Department of Community Medicine Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohammed H Abdelraheem
- Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan. .,Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| |
Collapse
|
48
|
Diakité SAS, Traoré K, Sanogo I, Clark TG, Campino S, Sangaré M, Dabitao D, Dara A, Konaté DS, Doucouré F, Cissé A, Keita B, Doumbouya M, Guindo MA, Toure MB, Sogoba N, Doumbia S, Awandare GA, Diakité M. A comprehensive analysis of drug resistance molecular markers and Plasmodium falciparum genetic diversity in two malaria endemic sites in Mali. Malar J 2019; 18:361. [PMID: 31718631 PMCID: PMC6849310 DOI: 10.1186/s12936-019-2986-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Drug resistance is one of the greatest challenges of malaria control programme in Mali. Recent advances in next-generation sequencing (NGS) technologies provide new and effective ways of tracking drug-resistant malaria parasites in Africa. The diversity and the prevalence of Plasmodium falciparum drug-resistance molecular markers were assessed in Dangassa and Nioro-du-Sahel in Mali, two sites with distinct malaria transmission patterns. Dangassa has an intense seasonal malaria transmission, whereas Nioro-du-Sahel has an unstable and short seasonal malaria transmission. METHODS Up to 270 dried blood spot samples (214 in Dangassa and 56 in Nioro-du-Sahel) were collected from P. falciparum positive patients in 2016. Samples were analysed on the Agena MassARRAY® iPLEX platform. Specific codons were targeted in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, Pfarps10, Pfferredoxin, Pfexonuclease and Pfmdr2 genes. The Sanger's 101-SNPs-barcode method was used to assess the genetic diversity of P. falciparum and to determine the parasite species. RESULTS The Pfcrt_76T chloroquine-resistance genotype was found at a rate of 64.4% in Dangassa and 45.2% in Nioro-du-Sahel (p = 0.025). The Pfdhfr_51I-59R-108N pyrimethamine-resistance genotype was 14.1% and 19.6%, respectively in Dangassa and Nioro-du-Sahel. Mutations in the Pfdhps_S436-A437-K540-A581-613A sulfadoxine-resistance gene was significantly more prevalent in Dangassa as compared to Nioro-du-Sahel (p = 0.035). Up to 17.8% of the isolates from Dangassa vs 7% from Nioro-du-Sahel harboured at least two codon substitutions in this haplotype. The amodiaquine-resistance Pfmdr1_N86Y mutation was identified in only three samples (two in Dangassa and one in Nioro-du-Sahel). The lumefantrine-reduced susceptibility Pfmdr1_Y184F mutation was found in 39.9% and 48.2% of samples in Dangassa and Nioro-du-Sahel, respectively. One piperaquine-resistance Exo_E415G mutation was found in Dangassa, while no artemisinin resistance genetic-background were identified. A high P. falciparum diversity was observed, but no clear genetic aggregation was found at either study sites. Higher multiplicity of infection was observed in Dangassa with both COIL (p = 0.04) and Real McCOIL (p = 0.02) methods relative to Nioro-du-Sahel. CONCLUSIONS This study reveals high prevalence of chloroquine and pyrimethamine-resistance markers as well as high codon substitution rate in the sulfadoxine-resistance gene. High genetic diversity of P. falciparum was observed. These observations suggest that the use of artemisinins is relevant in both Dangassa and Nioro-du-Sahel.
Collapse
Affiliation(s)
- Seidina A S Diakité
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali.
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ibrahim Sanogo
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Modibo Sangaré
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antoine Dara
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa S Konaté
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fousseyni Doucouré
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Cissé
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourama Keita
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mahamoudou B Toure
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Mahamadou Diakité
- Malaria Research and Training Center, University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
49
|
Idowu AO, Oyibo WA, Bhattacharyya S, Khubbar M, Mendie UE, Bumah VV, Black C, Igietseme J, Azenabor AA. Rare mutations in Pfmdr1 gene of Plasmodium falciparum detected in clinical isolates from patients treated with anti-malarial drug in Nigeria. Malar J 2019; 18:319. [PMID: 31533729 PMCID: PMC6751857 DOI: 10.1186/s12936-019-2947-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. Methods This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. Results Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. Conclusion Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.
Collapse
Affiliation(s)
- Abel O Idowu
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Wellington A Oyibo
- ANDI Centre of Excellence in Malaria Diagnosis, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Manjeet Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, USA
| | - Udoma E Mendie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Violet V Bumah
- Department of Biology, North Life Science 317, San Diego State University, San Diego, CA, 92182, USA
| | - Carolyn Black
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph Igietseme
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anthony A Azenabor
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA. .,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
50
|
Wedam J, Tacoli C, Gai PP, Siegert K, Kulkarni SS, Rasalkar R, Boloor A, Jain A, Mahabala C, Baliga S, Shenoy D, Devi R, Gai P, Mockenhaupt FP. Molecular Evidence for Plasmodium falciparum Resistance to Sulfadoxine-Pyrimethamine but Absence of K13 Mutations in Mangaluru, Southwestern India. Am J Trop Med Hyg 2019; 99:1508-1510. [PMID: 30398146 DOI: 10.4269/ajtmh.18-0549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In most of India, sulfadoxine-pyrimethamine (SP) plus artesunate serves as first-line treatment for uncomplicated falciparum malaria. In 112 clinical Plasmodium falciparum isolates from Mangaluru, southwestern India, we sequenced molecular markers associated with resistance to SP, lumefantrine, and artemisinin (pfdhfr, pfdhps, pfmdr1, and K13). The pfdhfr double mutation 59R-108N combined with the dhps 437G mutation occurred in 39.3% and the pfdhfr double mutation plus the pfdhps double mutation 437G-540E in additional 24.1%. As for pfmdr1, the allele combination N86-184F-D1246 dominated (98.2%). K13 variants were absent. No evidence for artemisinin resistance was seen. However, the antifolate resistance alleles compromise the current first-line antimalarial sulfadoxine-pyrimethamine plus artesunate, which may facilitate the emergence of artemisinin resistance. Artemether-lumefantrine, introduced in northeastern parts of the country, in the study area faces the predominant pfmdr1 NFD genotype, known to impair lumefantrine efficacy. Further monitoring of resistance alleles and treatment trials on alternative artemisinin-based combination therapies are required.
Collapse
Affiliation(s)
- Jakob Wedam
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Costanza Tacoli
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Prabhanjan P Gai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Konrad Siegert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
| | | | | | - Archith Boloor
- Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal, India
| | - Animesh Jain
- Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal, India
| | - Chakrapani Mahabala
- Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal, India
| | - Shantaram Baliga
- Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal, India
| | - Damodara Shenoy
- Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal, India
| | | | - Pramod Gai
- Karnataka Institute for DNA Research, Dharwad-Hubli, India
| | - Frank P Mockenhaupt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
| |
Collapse
|