1
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
2
|
Steffan BN, Calise D, Park SC, Niu M, Yang J, Hammock BD, Jones M, Steele C, Keller NP. Loss of the mammalian G-protein coupled receptor, G2A, modulates severity of invasive pulmonary aspergillosis. Front Immunol 2023; 14:1173544. [PMID: 37435068 PMCID: PMC10331294 DOI: 10.3389/fimmu.2023.1173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Background Aspergillus fumigatus is a well-known opportunistic pathogen that causes a range of diseases including the often-fatal disease, invasive pulmonary aspergillosis (IPA), in immunocompromised populations. The severity of IPA is dependent on both host- and pathogen-derived signaling molecules that mediate host immunity and fungal growth. Oxylipins are bioactive oxygenated fatty acids known to influence host immune response and Aspergillus developmental programs. Aspergillus synthesizes 8-HODE and 5,8-diHODE that have structural similarities to 9-HODE and 13-HODE, which are known ligands of the host G-protein-coupled receptor G2A (GPR132). Materials and methods Oxylipins were extracted from infected lung tissue to assess fungal oxylipin production and the Pathhunter β-arrestin assay was used to assess agonist and antagonist activity by fungal oxylipins on G2A. An immunocompetent model of A. fumigatus infection was used to assess changes in survival and immune responses for G2A-/- mice. Results Here we report that Aspergillus oxylipins are produced in lung tissue of infected mice and in vitro ligand assays suggest 8-HODE is a G2A agonist and 5,8-diHODE is a partial antagonist. To address the hypothesis that G2A could be involved in the progression of IPA, we assessed the response of G2A-/- mice to A. fumigatus infection. G2A-/- mice showed a survival advantage over wild-type mice; this was accompanied by increased recruitment of G2A-/- neutrophils and increased levels of inflammatory markers in A. fumigatus-infected lungs. Conclusions We conclude that G2A suppresses host inflammatory responses to Aspergillus fumigatus although it remains unclear if fungal oxylipins are involved in G2A activities.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dante Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sung Chul Park
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jun Yang
- Department of Entomology, University of California-Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology, University of California-Davis, Davis, CA, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Neuroimmune Responses in a New Experimental Animal Model of Cerebral Aspergillosis. mBio 2022; 13:e0225422. [PMID: 36040029 PMCID: PMC9600342 DOI: 10.1128/mbio.02254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of immunosuppressed individuals to the opportunistic fungal pathogen Aspergillus fumigatus may result in invasive pulmonary aspergillosis (IPA), which can lead to the development of cerebral aspergillosis (CA), a highly lethal infection localized in the central nervous system (CNS). There are no experimental models of CA that effectively mimic human disease, resulting in a considerable knowledge gap regarding mechanisms of neurological pathogenicity and neuroimmune responses during infection. In this report, immunosuppressed mice (via acute, high-dose corticosteroid administration) challenged with A. fumigatus resting conidia intranasally, followed a day later by a 70-fold lower inoculum of pre-swollen conidia intravenously (IN + IV + steroid), demonstrated increased weight loss, signs of severe clinical disease, increased fungal burden in the brain, and significant reduction in survival compared to immunosuppressed mice challenged intranasally only (IN + steroid) or non-immunosuppressed mice challenged both intranasally and intravenously (IN + IV). The IN + IV + steroid group demonstrated significant decreases in monocytes, eosinophils, dendritic cells (DCs), and invasive natural killer T (iNKT) cells, but not neutrophils or γδ T cells, in the brain compared to the IN + IV group. Likewise, the IN + IV + steroid group had significantly lower levels of interleukin (IL)-1β, IL-6, IL-17A, CC motif chemokine ligand 3 (CCL3), CXC chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) in the brain compared to the IN + IV group. IN + IV + steroid was superior to both IN + IV + chemotherapy (cytarabine + daunorubicin) and IN + IV + neutropenia for the development of CA. In conclusion, we have developed a well-defined, physiologically relevant model of disseminated CA in corticosteroid-induced immunosuppressed mice with a primary pulmonary infection. This model will serve to advance understanding of disease mechanisms, identify immunopathogenic processes, and help define the protective neuroinflammatory response to CA. IMPORTANCE Invasive fungal infections (IFIs) result in significant mortality in immunosuppressed individuals. Of these, invasive pulmonary aspergillosis (IPA), caused by the opportunistic mold Aspergillus fumigatus, is the most lethal. Lethality in IPA is due to two main factors: destruction of the lung leading to compromised pulmonary function, and dissemination of the organism to extrapulmonary organs. Of these, the CNS is the most common site of dissemination. However, very little is known regarding the pathogenesis of or immune response during cerebral aspergillosis, which is directly due to the lack of an animal model that incorporates immunosuppression, lung infection, and consistent dissemination to the CNS/brain. In this report, we have developed a new experimental animal model of CA which includes the above parameters and characterized the neuroimmune response. We further compared this disseminated CA model to two additional immunosuppressive strategies. Overall, this model of disseminated CA following IPA in an immunosuppressed host provides a novel platform for studying the efficacy of antifungal drugs and immunotherapies for improving disease outcomes.
Collapse
|
4
|
The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci 2021; 22:ijms222413510. [PMID: 34948306 PMCID: PMC8705807 DOI: 10.3390/ijms222413510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum. Thus, it is important to elucidate the toxic mechanism of gliotoxins. The toxic mechanism of gliotoxins and biosynthetic strategies to reduce the toxicity of gliotoxins and their producing strains are summarized in this review.
Collapse
|
5
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
6
|
Gundlach JP, Günther R, Fickenscher H, Both M, Röcken C, Becker T, Braun F. Lethal thrombosis of the iliac artery caused by Aspergillus fumigatus after liver transplantation: case report and review of the literature. BMC Surg 2019; 19:200. [PMID: 31881871 PMCID: PMC6935117 DOI: 10.1186/s12893-019-0668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Aspergillus fumigatus infections frequently occur after solid organ transplantation. Yet, a fungal thrombosis after liver transplantation is an exceptional finding. Case presentation We report on a 44-year-old female with an aspergillosis after liver transplantation for autoimmune hepatitis. On postoperative day (pod) 7, seizures occurred and imaging diagnostics revealed an intracranial lesion. Anidulafungin was initiated in suspicion of mycosis and switched to voriconazole on suspicion of an Aspergillus spp. infection. Progression of the cerebral lesion prompted craniotomy (pod 48) and the aspergillosis was verified. The patient was discharged with oral voriconazole therapy. Re-admission was necessary with acute-on-chronic renal failure after a tacrolimus overdose on pod 130. The patient received a pelvic angiography due to a temperature difference in the legs. It showed a complete iliac artery thrombosis which was subsecutively surgically removed. The histopathological examination revealed an Aspergillus fumigatus conglomerate. The patient died on pod 210 due to systemic aspergillosis. Conclusion The acute development of focal neurologic deficits is common in patients with an aspergillosis of the brain. Nevertheless, arterial thrombosis after Aspergillus fumigatus is less frequent and, to the best of our knowledge, its occurrence after liver transplantation has not yet been reported so far. Due to its rarity, we added a review of the literature to this manuscript.
Collapse
Affiliation(s)
- Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Rainer Günther
- Department of Internal Medicine I, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Helmut Fickenscher
- Department of Infection Medicine, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| |
Collapse
|
7
|
Tatara AM, Watson E, Albert ND, Kontoyiannis PD, Kontoyiannis DP, Mikos AG. A murine model of cutaneous aspergillosis for evaluation of biomaterials-based local delivery therapies. J Biomed Mater Res A 2019; 107:1867-1874. [PMID: 30882993 PMCID: PMC6626589 DOI: 10.1002/jbm.a.36671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
Cutaneous fungal infection is a challenging condition to treat that primarily afflicts immunocompromised patients. Local antifungal therapy may permit the delivery of high concentrations of antifungals directly to wounds while minimizing systemic toxicities. However, the field currently lacks suitable in vivo models. Therefore, a large cutaneous wound was created in immunosuppressed mice and inoculated with Aspergillus fumigatus. We fabricated biodegradable polymer microparticles (MPs) that were capable of locally delivering antifungal and characterized in vitro release kinetics. We compared wound bed size, fungal burden, and histological presence of fungi in mice treated with antifungal-loaded MPs. Mice with a cutaneous defect but no infection, mice with infected cutaneous defect but no treatment, and infected mice treated with blank MPs were used as controls. Infection of large wounds inhibited healing and resulted in tissue invasion in an inoculum-dependent manner. MPs were capable of releasing antifungals at concentrations above A. fumigatus Minimum Inhibitory Concentration (MIC) for at least 6 days. Wounds treated with MPs had significantly decreased size compared with no treatment (64.2% vs. 19.4% wound reduction, p = 0.002) and were not significantly different from uninfected controls (64.2% vs. 58.1%, p = 0.497). This murine model may serve to better understand cutaneous fungal infection and evaluate local biomaterials-based therapies. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1867-1874, 2019.
Collapse
Affiliation(s)
- Alexander M. Tatara
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Nathaniel D. Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
8
|
Candida albicans Morphology-Dependent Host FGF-2 Response as a Potential Therapeutic Target. J Fungi (Basel) 2019; 5:jof5010022. [PMID: 30841504 PMCID: PMC6462958 DOI: 10.3390/jof5010022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis mediated by proteins such as Fibroblast Growth Factor-2 (FGF-2) is a vital component of normal physiological processes and has also been implicated in contributing to the disease state associated with various microbial infections. Previous studies by our group and others have shown that Candida albicans, a common agent of candidiasis, induces FGF-2 secretion in vitro and angiogenesis in brains and kidneys during systemic infections. However, the underlying mechanism(s) via which the fungus increases FGF-2 production and the role(s) that FGF-2/angiogenesis plays in C. albicans disease remain unknown. Here we show, for the first time, that C. albicans hyphae (and not yeast cells) increase the FGF-2 response in human endothelial cells. Moreover, Candidalysin, a toxin secreted exclusively by C. albicans in the hyphal state, is required to induce this response. Our in vivo studies show that in the systemic C. albicans infection model, mice treated with FGF-2 exhibit significantly higher mortality rates when compared to untreated mice not given the angiogenic growth factor. Even treatment with fluconazole could not fully rescue infected animals that were administered FGF-2. Our data suggest that the increase of FGF-2 production/angiogenesis induced by Candidalysin contributes to the pathogenicity of C. albicans.
Collapse
|
9
|
Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat Commun 2018; 9:2636. [PMID: 29980664 PMCID: PMC6035256 DOI: 10.1038/s41467-018-04912-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/23/2018] [Indexed: 02/02/2023] Open
Abstract
Invasive aspergillosis (IA) is a severe infection that can occur in severely immunocompromised patients. Efficient immune recognition of Aspergillus is crucial to protect against infection, and previous studies suggested a role for NOD2 in this process. However, thorough investigation of the impact of NOD2 on susceptibility to aspergillosis is lacking. Common genetic variations in NOD2 has been associated with Crohn's disease and here we investigated the influence of these genetic variations on the anti-Aspergillus host response. A NOD2 polymorphism reduced the risk of IA after hematopoietic stem-cell transplantation. Mechanistically, absence of NOD2 in monocytes and macrophages increases phagocytosis leading to enhanced fungal killing, conversely, NOD2 activation reduces the antifungal potential of these cells. Crucially, Nod2 deficiency results in resistance to Aspergillus infection in an in vivo model of pulmonary aspergillosis. Collectively, our data demonstrate that genetic deficiency of NOD2 plays a protective role during Aspergillus infection.
Collapse
|
10
|
Guruceaga X, Ezpeleta G, Mayayo E, Sueiro-Olivares M, Abad-Diaz-De-Cerio A, Aguirre Urízar JM, Liu HG, Wiemann P, Bok JW, Filler SG, Keller NP, Hernando FL, Ramirez-Garcia A, Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018; 9:1548-1561. [PMID: 30251593 PMCID: PMC6177242 DOI: 10.1080/21505594.2018.1526528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Virulence mechanisms of the pathogenic fungus Aspergillus fumigatus are multifactorial and depend on the immune state of the host, but little is known about the fungal mechanism that develops during the process of lung invasion. In this study, microarray technology was combined with a histopathology evaluation of infected lungs so that the invasion strategy followed by the fungus could be described. To achieve this, an intranasal mice infection was performed to extract daily fungal samples from the infected lungs over four days post-infection. The pathological study revealed a heavy fungal progression throughout the lung, reaching the blood vessels on the third day after exposure and causing tissue necrosis. One percent of the fungal genome followed a differential expression pattern during this process. Strikingly, most of the genes of the intertwined fumagillin/pseurotin biosynthetic gene cluster were upregulated as were genes encoding lytic enzymes such as lipases, proteases (DppIV, DppV, Asp f 1 or Asp f 5) and chitinase (chiB1) as well as three genes related with pyomelanin biosynthesis process. Furthermore, we demonstrate that fumagillin is produced in an in vitro pneumocyte cell line infection model and that loss of fumagillin synthesis reduces epithelial cell damage. These results suggest that fumagillin contributes to tissue damage during invasive aspergillosis. Therefore, it is probable that A. fumigatus progresses through the lungs via the production of the mycotoxin fumagillin combined with the secretion of lytic enzymes that allow fungal growth, angioinvasion and the disruption of the lung parenchymal structure.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Guillermo Ezpeleta
- Preventive Medicine and Hospital Hygiene Service, Complejo Hospitalario de Navarra, Pamplona, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Emilio Mayayo
- Pathology Unit, Medicine and Health Science Faculty, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Monica Sueiro-Olivares
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Abad-Diaz-De-Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Manuel Aguirre Urízar
- Department of Stomatology II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hong G. Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
11
|
Chung JF, Lee SJ, Sood AK. Immunological consequences of ageing microvascular hemodynamic changes in view of cancer development and treatment. Oncotarget 2017; 8:69047-69061. [PMID: 28978180 PMCID: PMC5620320 DOI: 10.18632/oncotarget.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 11/25/2022] Open
Abstract
Risk factors of cardiovascular diseases have long been implicated as risk factors for carcinogenesis, but clear explanations for their association have not been presented. In this article, fundamental concepts from carcinogenesis, microvascular hemodynamics, and immunity are collectively reviewed and analyzed in context of the known features of vascular ageing effects, in formulating a theory that suggests reduced microvascular immunity as an important driving factor for carcinogenesis. Furthermore, scientific, preclinical, and clinical evidence that support this new theory are presented in an interdisciplinary manner, offering new explanations to previously unanswered factors that impact cancer risks and its treatment outcome such as chronic drug use, temperature, stress and exercise effects among others. Forward-looking topics discussing the implications of this new idea to cancer immunotherapeutics are also discussed.
Collapse
Affiliation(s)
| | - Sang Joon Lee
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Anil K Sood
- Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Baistrocchi SR, Lee MJ, Lehoux M, Ralph B, Snarr BD, Robitaille R, Sheppard DC. Posaconazole-Loaded Leukocytes as a Novel Treatment Strategy Targeting Invasive Pulmonary Aspergillosis. J Infect Dis 2017; 215:1734-1741. [PMID: 27799353 DOI: 10.1093/infdis/jiw513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Impaired delivery of antifungals to hyphae within necrotic lesions is thought to contribute to therapeutic failure in invasive pulmonary aspergillosis (IPA). We hypothesized that transfusion of leukocytes loaded ex vivo with the lipophilic antifungal posaconazole could improve delivery of antifungals to the sites of established infection and improve outcome in experimental IPA. Methods The HL-60 leukemia cell line was differentiated to a neutrophil-like phenotype (differentiated HL-60 [dHL-60] cells) and then exposed to a range of posaconazole concentrations. The functional capacity and antifungal activity of these cells were assessed in vitro and in a mouse model of IPA. Results Posaconazole levels in dHL-60 cells were 265-fold greater than the exposure concentration. Posaconazole-loaded cells were viable and maintained their capacity to undergo active chemotaxis. Contact-dependent transfer of posaconazole from dHL-60 cells to hyphae was observed in vitro, resulting in decreased fungal viability. In a neutropenic mouse model of IPA, treatment with posaconazole-loaded dHL-60 cells resulted in significantly reduced fungal burden in comparison to treatment with dHL-60 cells alone. Conclusions Posaconazole accumulates at high concentrations in dHL-60 cells and increases their antifungal activity in vitro and in vivo. These findings suggest that posaconazole-loading of leukocytes may hold promise for the therapy of IPA.
Collapse
Affiliation(s)
- Shane R Baistrocchi
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Mark J Lee
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Melanie Lehoux
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Benjamin Ralph
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Robert Robitaille
- Biochemistry Division, Hôpital Maisonneuve-Rosemont, CIUSSS Est-de-l'Île-de-Montréal, Montréal, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| |
Collapse
|
13
|
Samanta P, Hong Nguyen M. Pathogenesis of Invasive Pulmonary Aspergillosis in Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Obar JJ, Hohl TM, Cramer RA. New advances in invasive aspergillosis immunobiology leading the way towards personalized therapeutic approaches. Cytokine 2016; 84:63-73. [PMID: 27253487 DOI: 10.1016/j.cyto.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
Invasive aspergillosis (IA) remains a devastating disease in immune compromised patients despite significant advances in our understanding of fungal virulence and host defense mechanisms. In this review, we summarize important research advances in the fight against IA with particular focus on early events in the interactions between Aspergillus fumigatus and the host that occur in the respiratory tract. Advances in understanding mechanisms of immune effector cell recruitment, antifungal effector mechanisms, and how the dynamic host-fungal interaction alters the local microenvironment to effect outcomes are highlighted. These advances illustrate exciting new therapeutic opportunities, but also emphasize the importance of understanding each unique fungus-host interaction for improving patient outcomes.
Collapse
Affiliation(s)
- Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, United States; Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| |
Collapse
|
15
|
Osherov N, Ben-Ami R. Modulation of Host Angiogenesis as a Microbial Survival Strategy and Therapeutic Target. PLoS Pathog 2016; 12:e1005479. [PMID: 27078259 PMCID: PMC4831739 DOI: 10.1371/journal.ppat.1005479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ronen Ben-Ami
- Infectious Disease Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
16
|
Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 2015; 97:844-65. [PMID: 26010100 DOI: 10.1111/mmi.13071] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Judith M Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Johanna Louw
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mari L Shinohara
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lars P Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Human Genome Variation, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
17
|
Smith N, Hankinson J, Simpson A, Denning D, Bowyer P. Reduced expression of TLR3, TLR10 and TREM1 by human macrophages in Chronic cavitary pulmonary aspergillosis, and novel associations of VEGFA, DENND1B and PLAT. Clin Microbiol Infect 2014; 20:O960-8. [DOI: 10.1111/1469-0691.12643] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
|
18
|
Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis. Future Microbiol 2014; 8:1453-62. [PMID: 24199803 DOI: 10.2217/fmb.13.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) in neutropenic patients is characterized by angioinvasion, intravascular thrombosis and tissue infarction, features that lead to sequestration of infected tissue and impaired fungal clearance. Recent research has shown that host angiogenesis, the homeostatic compensatory response to tissue hypoxia, is downregulated by Aspergillus fumigatus secondary metabolites. A. fumigatus metabolites inhibit multiple key angiogenic mediators, notably basic FGF, VEGF and their respective receptors. Moreover, repletion of basic FGF and VEGF enhances angiogenesis at the site of infection, induces trafficking of polymorphonuclear leukocytes into fungal-infected tissue and enhances antifungal drug activity. This review summarizes the emerging roles of vasculopathy and angiogenesis in the pathogenesis of IA, emphasizing the importance of the underlying mode of immunosuppression. Modulation of angiogenesis is a potential target for novel therapeutic strategies against IA.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Medical Center & the Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
19
|
Chen N, Wang J, Hu Y, Cui B, Li W, Xu G, Liu L, Liu S. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One 2014; 9:e95665. [PMID: 24777200 PMCID: PMC4002426 DOI: 10.1371/journal.pone.0095665] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Retinal neovascularization (RNV) is an eye disease that can cause retinal detachment and even lead to blindness. RNV mainly occurs in the elderly population. The pathogenesis of RNV has been previously reported to be highly related to the expression of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF) and other angiogenic factors. It has also been reported that VEGFA and other factors associated with RNV could be regulated by certain microRNAs (miRNA), a group of small non-coding RNAs which are able to regulate the expression of many genes in vivo. Here, we demonstrate that the miRNA miR-410 is highly expressed in mice within two weeks after birth. miR-410 could suppress VEGFA expression through interaction with the 3′UTR of the VEGFA messenger RNA. Overexpressing a miR-410 mimic effectively suppresses VEGFA expression in various cell lines. Further experiments on oxygen-induced retinopathy (OIR) in mice revealed that eye drops containing large amounts of miR-410 efficiently downregulate VEGFA expression, prevent retinal angiogenesis and effectively treat RNV. These results not only show the underlying mechanism of how miR-410 targets VEGFA but also provide a potential treatment strategy for RNV that might be used in the near future.
Collapse
Affiliation(s)
- Na Chen
- Department of Ophthalmology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiaqi Wang
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yijun Hu
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bei Cui
- Department of Sea-Air Examination Center, Navy General Hospital, Beijing, China
| | - Wenjie Li
- Department of Laboratory Diagnosis, First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Guixia Xu
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (LL); (SL)
| | - Shanrong Liu
- Clinical Research Center, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (LL); (SL)
| |
Collapse
|
20
|
Are we there yet? Recent progress in the molecular diagnosis and novel antifungal targeting of Aspergillus fumigatus and invasive aspergillosis. PLoS Pathog 2013; 9:e1003642. [PMID: 24204250 PMCID: PMC3812002 DOI: 10.1371/journal.ppat.1003642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Safdar A. Immunotherapy for Invasive Mold Disease in Severely Immunosuppressed Patients. Clin Infect Dis 2013; 57:94-100. [DOI: 10.1093/cid/cit187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|