1
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
2
|
Hormonal contraceptive use and the risk of sexually transmitted infections: a systematic review and meta-analysis. Sci Rep 2022; 12:20325. [PMID: 36434126 PMCID: PMC9700818 DOI: 10.1038/s41598-022-24601-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
Abstract
There are 150 million women worldwide using combined or progestogen-only hormonal contraceptive methods who may be at risk of sexually transmitted infections (STIs). Previous systematic reviews that have sought to establish whether there is an aetiological association between hormonal contraceptive methods/use and STIs have been limited in their methods and have mixed findings. We sought to update these reviews using appropriate control groups. We undertook a systematic review following the PRISMA guidelines and meta-analysis to examine the association between the use of all hormonal contraceptive methods and the acquisition of STIs (Neisseria gonorrhoeae, syphilis/Treponema pallidum, Chlamydia trachomatis, herpes simplex virus, and Trichomonas vaginalis) and/or bacterial vaginosis in literature published between 2005 and 2020. We analysed the effect of hormonal contraceptive methods/use separately on the prevalence, incidence and recurrence of STIs. A total of 37 studies were included in this review that reported 61 associations, in which 27 prevalence, eight incidence and two recurrence studies provided 43, 16, and two associations, respectively. We observed a positive association between hormonal contraceptive methods/use and the risk of chlamydia and herpes but a negative association for trichomoniasis and vaginosis. A negative but statistically insignificant association was observed between hormonal contraceptive methods/use and gonorrhoea. Hormonal contraceptive methods/use influences a woman's risk of STIs/ bacterial vaginosis, but the risk may differ depending on the type of STI. These findings should be contextualized carefully, particularly when formulating practice guidelines and policy, as the effects of hormonal contraceptive methods/use on the risk of STIs varied in direction when analysed separately by STI.
Collapse
|
3
|
Nugteren S, Samsom JN. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev 2021; 59:22-35. [PMID: 33602652 DOI: 10.1016/j.cytogfr.2021.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
5
|
Abstract
Bacterial vaginosis (BV) is the most commonly reported microbiological syndrome among women of childbearing age. BV is characterized by a shift in the vaginal flora from the dominant Lactobacillus to a polymicrobial flora. BV has been associated with a wide array of health issues, including preterm births, pelvic inflammatory disease, increased susceptibility to HIV infection, and other chronic health problems. A number of potential microbial pathogens, singly and in combinations, have been implicated in the disease process. The list of possible agents continues to expand and includes members of a number of genera, including Gardnerella, Atopobium, Prevotella, Peptostreptococcus, Mobiluncus, Sneathia, Leptotrichia, Mycoplasma, and BV-associated bacterium 1 (BVAB1) to BVAB3. Efforts to characterize BV using epidemiological, microscopic, microbiological culture, and sequenced-based methods have all failed to reveal an etiology that can be consistently documented in all women with BV. A careful analysis of the available data suggests that what we term BV is, in fact, a set of common clinical signs and symptoms that can be provoked by a plethora of bacterial species with proinflammatory characteristics, coupled to an immune response driven by variability in host immune function.
Collapse
|
6
|
Munson E, Napierala M, Munson KL. Update on Laboratory Diagnosis and Epidemiology of Trichomonas vaginalis: You Can Teach an “Old” Dog “New” Trichs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.clinmicnews.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Abstract
Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Collapse
|
9
|
Fichorova RN, Yamamoto HS, Fashemi T, Foley E, Ryan S, Beatty N, Dawood H, Hayes GR, St-Pierre G, Sato S, Singh BN. Trichomonas vaginalis Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity. J Biol Chem 2016; 291:998-1013. [PMID: 26589797 PMCID: PMC4705417 DOI: 10.1074/jbc.m115.651497] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.
Collapse
Affiliation(s)
- Raina N Fichorova
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Hidemi S Yamamoto
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Titilayo Fashemi
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Evan Foley
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Stanthia Ryan
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Noah Beatty
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hassan Dawood
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gary R Hayes
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Guillaume St-Pierre
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Sachiko Sato
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Bibhuti N Singh
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| |
Collapse
|
10
|
Kutsumura N, Nakajima R, Koyama Y, Miyata Y, Saitoh T, Yamamoto N, Iwata S, Fujii H, Nagase H. Investigation of 7-benzylidenenaltrexone derivatives as a novel structural antitrichomonal lead compound. Bioorg Med Chem Lett 2015; 25:4890-4892. [DOI: 10.1016/j.bmcl.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
|
11
|
Fichorova RN, Chen PL, Morrison CS, Doncel GF, Mendonca K, Kwok C, Chipato T, Salata R, Mauck C. The Contribution of Cervicovaginal Infections to the Immunomodulatory Effects of Hormonal Contraception. mBio 2015; 6:e00221-15. [PMID: 26330510 PMCID: PMC4556810 DOI: 10.1128/mbio.00221-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Particular types of hormonal contraceptives (HCs) and genital tract infections have been independently associated with risk of HIV-1 acquisition. We examined whether immunity in women using injectable depot medroxyprogesterone acetate (DMPA), combined oral contraceptives (COC), or no HCs differs by the presence of cervicovaginal infections. Immune mediators were quantified in cervical swabs from 832 HIV-uninfected reproductive-age Ugandans and Zimbabweans. Bacterial infections and HIV were diagnosed by PCR, genital herpes serostatus by enzyme-linked immunosorbent assay (ELISA), altered microflora by Nugent score, and Trichomonas vaginalis and Candida albicans infection by wet mount. Generalized linear models utilizing Box-Cox-Power transformation examined associations between levels of mediators, infection status, and HCs. In no-HC users, T. vaginalis was associated with broadest spectrum of aberrant immunity (higher interleukin 1β [IL-1β], IL-8, macrophage inflammatory protein 3α [MIP-3α], β-defensin 2 [BD2], and IL-1 receptor antigen [IL-1RA]). In women with a normal Nugent score and no genital infection, compared to the no-HC group, COC users showed higher levels of IL-1β, IL-6, IL-8, and IL-1RA, while DMPA users showed higher levels of RANTES and lower levels of BD2, both associated with HIV seroconversion. These effects of COC were blunted in the presence of gonorrhea, chlamydia, trichomoniasis, candidiasis, and an abnormal Nugent score; however, RANTES was increased among COC users with herpes, chlamydia, and abnormal Nugent scores. The effect of DMPA was exacerbated by lower levels of IL-1RA in gonorrhea, chlamydia, or herpes, SLPI in gonorrhea, and IL-1β, MIP-3α, and IL-1RA/IL1β ratio in trichomoniasis. Thus, the effects of HC on cervical immunity depend on the genital tract microenvironment, and a weakened mucosal barrier against HIV may be a combined resultant of genital tract infections and HC use. IMPORTANCE In this article, we show that in young reproductive-age women most vulnerable to HIV, hormonal contraceptives are associated with altered cervical immunity in a manner dependent on the presence of genital tract infections. Through altered immunity, hormones may predispose women to bacterial and viral pathogens; conversely, a preexisting specific infection or disturbed vaginal microbiota may suppress the immune activation by levonorgestrel or exacerbate the suppressed immunity by DMPA, thus increasing HIV risk by their cumulative action. Clinical studies assessing the effects of contraception on HIV susceptibility and mucosal immunity may generate disparate results in populations that differ by microbiota background or prevalence of undiagnosed genital tract infections. A high prevalence of asymptomatic infections among HC users that remain undiagnosed and untreated raises even more concerns in light of their combined effects on biomarkers of HIV risk. The molecular mechanisms of the vaginal microbiome's simultaneous interactions with hormones and HIV remain to be elucidated.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Kevin Mendonca
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Robert Salata
- Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
12
|
Cross-Sectional Analysis of Selected Genital Tract Immunological Markers and Molecular Vaginal Microbiota in Sub-Saharan African Women, with Relevance to HIV Risk and Prevention. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:526-38. [PMID: 25761460 DOI: 10.1128/cvi.00762-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/08/2015] [Indexed: 01/08/2023]
Abstract
Data on immune mediators in the genital tract and the factors that modulate them in sub-Saharan women are limited. Cervicovaginal lavage (CVL) samples from 430 sexually active women from Kenya, South Africa, and Rwanda were analyzed for 12 soluble immune mediators using Bio-Plex and Meso Scale Discovery multiplex platforms, as well as single enzyme-linked immunosorbent assays. Ten bacterial species were quantified in vaginal swab samples. Bacterial vaginosis (BV) was defined by Nugent scoring. CVL samples from HIV-infected women showed a clear-cut proinflammatory profile. Pregnant women, adolescents, and women engaging in traditional vaginal practices differed in specific soluble markers compared to reference groups of adult HIV-negative women. Cervical mucus, cervical ectopy, abnormal vaginal discharge, and having multiple sex partners were each associated with an increase in inflammatory mediators. The levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12(p70), and IL-8 were elevated, whereas the IL-1RA/IL-1(α+β) ratio decreased in women with BV. The level of gamma interferon-induced protein 10 was lower in BV-positive than in BV-negative women, suggesting its suppression as a potential immune evasion mechanism by BV-associated bacteria. Lactobacillus crispatus and Lactobacillus vaginalis were associated with decreased proinflammatory cytokines and each BV-associated species with increased proinflammatory cytokines. Remarkably, the in vitro anti-HIV activity of CVL samples from BV-positive women was stronger than that of BV-negative women. In conclusion, we found significant associations of factors, including vaginal microbiota, which can influence immune mediators in the vaginal environment in sexually active women. These factors need to be considered when establishing normative levels or pathogenic cutoffs of biomarkers of inflammation and associated risks in African women.
Collapse
|
13
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
14
|
Abstract
There is some evidence that the risk of HIV infection per heterosexual act is higher in low-income countries than in high-income countries. We hypothesize that variations in per sex-act transmission probability of HIV may in part be attributed to differences in the composition and function of the vaginal microbiota between different populations. This paper presents data that are in support of this hypothesis. Experimental and clinical studies have provided evidence that the normal vaginal microbiota plays a protective role against acquisition of HIV and other sexually transmitted infections. Epidemiological studies have convincingly shown that disturbances of the vaginal microbiome, namely intermediate flora and bacterial vaginosis, increase the risk of acquisition of HIV infection. A review of the literature found large differences in prevalence of bacterial vaginosis between different populations, with the highest prevalence rates found in black populations. Possible explanations for these differences are presented including data suggesting that there are ethnic differences in the composition of the normal vaginal microbiota. Lastly, interventions are discussed to restore and maintain a healthy vaginal environment.
Collapse
|
15
|
Cervical inflammation and immunity associated with hormonal contraception, pregnancy, and HIV-1 seroconversion. J Acquir Immune Defic Syndr 2014; 66:109-17. [PMID: 24413042 DOI: 10.1097/qai.0000000000000103] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hormonal contraception (HC), younger age, and pregnancy have been associated with increased HIV risk in some studies. We sought to elucidate the biological mechanisms for these associations. DESIGN Case-control selection of specimens from a large, prospective, clinical study. METHODS We enrolled and followed 4531 HIV-negative women from Uganda and Zimbabwe using either the injectable depo-medroxyprogesterone acetate (DMPA), combined oral contraception, or no HC (NH). Innate immunity mediators were measured in cervical samples collected from women at their visit before HIV seroconversion (n = 199) and matched visits from women remaining HIV uninfected (n = 633). Generalized linear models were applied after Box-Cox power transformation. RESULTS Higher RANTES and lower secretory leukocyte protease inhibitor (SLPI) levels were associated with HIV seroconversion. DMPA users had higher RANTES and lower BD-2 levels. Most inflammation-promoting and/or inflammation-inducible mediators were higher [interleukin (IL)-1β, IL-6, IL-8, MIP-3α, vascular endothelial growth factor, and SLPI], and the protective BD-2 and IL-1RA:IL-1β ratio were lower among combined oral contraception users. Pregnant women showed a similar cervical immunity status (higher IL-1β, IL-6, IL-8, vascular endothelial growth factor, SLPI, and IL-1RA; lower IL-1RA:IL-1β). Age <25 years was associated with lower SLPI, IL-8, MIP-3α but higher IL-1RA:IL-1β. Zimbabwean women (with higher HIV seroconversion rates) had overall higher pro-inflammatory and lower anti-inflammatory protein levels than Ugandan women. CONCLUSIONS HC use, pregnancy, and young age alter cervical immunity in different ways known to increase risk of HIV, for example, through increased levels of pro-inflammatory cytokines or decreased levels of SLPI. Higher levels of RANTES may be one factor underlying a possible association between DMPA use and risk of HIV acquisition.
Collapse
|
16
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
17
|
Fichorova RN, Buck OR, Yamamoto HS, Fashemi T, Dawood HY, Fashemi B, Hayes GR, Beach DH, Takagi Y, Delaney ML, Nibert ML, Singh BN, Onderdonk AB. The villain team-up or how Trichomonas vaginalis and bacterial vaginosis alter innate immunity in concert. Sex Transm Infect 2013; 89:460-6. [PMID: 23903808 PMCID: PMC3746192 DOI: 10.1136/sextrans-2013-051052] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objectives Complex interactions of vaginal microorganisms with the genital tract epithelium shape mucosal innate immunity, which holds the key to sexual and reproductive health. Bacterial vaginosis (BV), a microbiome-disturbance syndrome prevalent in reproductive-age women, occurs commonly in concert with trichomoniasis, and both are associated with increased risk of adverse reproductive outcomes and viral infections, largely attributable to inflammation. To investigate the causative relationships among inflammation, BV and trichomoniasis, we established a model of human cervicovaginal epithelial cells colonised by vaginal Lactobacillus isolates, dominant in healthy women, and common BV species (Atopobium vaginae, Gardnerella vaginalis and Prevotella bivia). Methods Colonised epithelia were infected with Trichomonas vaginalis (TV) or exposed to purified TV virulence factors (membrane lipophosphoglycan (LPG), its ceramide-phosphoinositol-glycan core (CPI-GC) or the endosymbiont Trichomonas vaginalis virus (TVV)), followed by assessment of bacterial colony-forming units, the mucosal anti-inflammatory microbicide secretory leucocyte protease inhibitor (SLPI), and chemokines that drive pro-inflammatory, antigen-presenting and T cells. Results TV reduced colonisation by Lactobacillus but not by BV species, which were found inside epithelial cells. TV increased interleukin (IL)-8 and suppressed SLPI, likely via LPG/CPI-GC, and upregulated IL-8 and RANTES, likely via TVV as suggested by use of purified pathogenic determinants. BV species A vaginae and G vaginalis induced IL-8 and RANTES, and also amplified the pro-inflammatory responses to both LPG/CPI-GC and TVV, whereas P bivia suppressed the TV/TVV-induced chemokines. Conclusions These molecular host–parasite–endosymbiont–bacteria interactions explain epidemiological associations and suggest a revised paradigm for restoring vaginal immunity and preventing BV/TV-attributable inflammatory sequelae in women.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leonor Sánchez M, María Belén Martínez M, César Maffia P. Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.24023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|