1
|
Stadler E, Cromer D, Ogunlade S, Ongoiba A, Doumbo S, Kayentao K, Traore B, Crompton PD, Portugal S, Davenport MP, Khoury DS. Evidence for exposure dependent carriage of malaria parasites across the dry season: modelling analysis of longitudinal data. Malar J 2023; 22:42. [PMID: 36737743 PMCID: PMC9898990 DOI: 10.1186/s12936-023-04461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In malaria endemic regions, transmission of Plasmodium falciparum parasites is often seasonal with very low transmission during the dry season and high transmission in the wet season. Parasites survive the dry season within some individuals who experience prolonged carriage of parasites and are thought to 'seed' infection in the next transmission season. METHODS Dry season carriers and their role in the subsequent transmission season are characterized using a combination of mathematical simulations and data analysis of previously described data from a longitudinal study in Mali of individuals aged 3 months-12 years (n = 579). RESULTS Simulating the life-history of individuals experiencing repeated exposure to infection predicts that dry season carriage is more likely in the oldest, most exposed and most immune individuals. This hypothesis is supported by the data from Mali, which shows that carriers are significantly older, experience a higher biting rate at the beginning of the transmission season and develop clinical malaria later than non-carriers. Further, since the most exposed individuals in a community are most likely to be dry season carriers, this is predicted to enable a more than twofold faster spread of parasites into the mosquito population at the start of the subsequent wet season. CONCLUSIONS Carriage of malaria parasites over the months-long dry season in Mali is most likely in the older, more exposed and more immune children. These children may act as super-spreaders facilitating the fast spread of parasites at the beginning of the next transmission season.
Collapse
Affiliation(s)
- Eva Stadler
- grid.1005.40000 0004 4902 0432The Kirby Institute, UNSW Sydney, Sydney, NSW 2052 Australia
| | - Deborah Cromer
- grid.1005.40000 0004 4902 0432The Kirby Institute, UNSW Sydney, Sydney, NSW 2052 Australia
| | - Samson Ogunlade
- grid.1005.40000 0004 4902 0432The Kirby Institute, UNSW Sydney, Sydney, NSW 2052 Australia
| | - Aissata Ongoiba
- grid.461088.30000 0004 0567 336XMalaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094 Bamako, Mali
| | - Safiatou Doumbo
- grid.461088.30000 0004 0567 336XMalaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094 Bamako, Mali
| | - Kassoum Kayentao
- grid.461088.30000 0004 0567 336XMalaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094 Bamako, Mali
| | - Boubacar Traore
- grid.461088.30000 0004 0567 336XMalaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094 Bamako, Mali
| | - Peter D. Crompton
- grid.419681.30000 0001 2164 9667Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Silvia Portugal
- grid.419681.30000 0001 2164 9667Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Miles P. Davenport
- grid.1005.40000 0004 4902 0432The Kirby Institute, UNSW Sydney, Sydney, NSW 2052 Australia
| | - David S. Khoury
- grid.1005.40000 0004 4902 0432The Kirby Institute, UNSW Sydney, Sydney, NSW 2052 Australia
| |
Collapse
|
2
|
Fogang B, Biabi MF, Megnekou R, Maloba FM, Essangui E, Donkeu C, Cheteug G, Kapen M, Keumoe R, Kemleu S, Nsango S, Eboumbou C, Lamb TJ, Ayong L. High Prevalence of Asymptomatic Malarial Anemia and Association with Early Conversion from Asymptomatic to Symptomatic Infection in a Plasmodium falciparum Hyperendemic Setting in Cameroon. Am J Trop Med Hyg 2022; 106:293-302. [PMID: 34724628 PMCID: PMC8733519 DOI: 10.4269/ajtmh.21-0316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/30/2021] [Indexed: 01/03/2023] Open
Abstract
Asymptomatic malarial parasitemia is highly prevalent in Plasmodium falciparum endemic areas and often associated with increased prevalence of mild to moderate anemia. The aim of this study was to assess the prevalence of anemia during asymptomatic malaria parasitemia and its interplay with persistent infection in highly exposed individuals. A household-based longitudinal survey was undertaken in a malaria hyperendemic area in Cameroon using multiplex nested polymerase chain reaction to detect plasmodial infections. Residents with P. falciparum asymptomatic parasitemia were monitored over a 3-week period with the aid of structured questionnaires and weekly measurements of axillary temperatures. Of the 353 individuals included (median age: 26 years, range 2-86 years, male/female sex ratio 0.9), 328 (92.9%) were positive for malaria parasitemia of whom 266 (81.1%) were asymptomatic carriers. The prevalence of anemia in the study population was 38.6%, of which 69.2% were asymptomatic. Multivariate analyses identified high parasitemia (> 327 parasites/µL) and female gender as associated risk factors of asymptomatic malarial anemia in the population. Furthermore, risk analyses revealed female gender and anemia at the time of enrolment as key predictors of early development of febrile illness (< 3 weeks post enrolment) among the asymptomatic individuals. Together, the data reveal an extremely high prevalence of asymptomatic malaria parasitemia and anemia in the study area, unveiling for the first time the association of asymptomatic malarial anemia with early clinical conversion from asymptomatic to symptomatic infection. Furthermore, these findings underscore the negative impact of asymptomatic malaria parasitemia on individual health, necessitating the development of appropriate control and preventive measures.
Collapse
Affiliation(s)
- Balotin Fogang
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Animal Biology and Physiology of the University of Yaoundé I, Yaounde, Cameroon
| | - Marie Florence Biabi
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Biochemistry, University of Douala, Douala, Cameroon
| | - Rosette Megnekou
- Department of Animal Biology and Physiology of the University of Yaoundé I, Yaounde, Cameroon
| | - Franklin M. Maloba
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Estelle Essangui
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Christiane Donkeu
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Animal Biology and Physiology of the University of Yaoundé I, Yaounde, Cameroon
| | - Glwadys Cheteug
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Marie Kapen
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Rodrigue Keumoe
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Sylvie Kemleu
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Sandrine Nsango
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Carole Eboumbou
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Lawrence Ayong
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, Yaounde, Cameroon;,Address correspondence to Lawrence Ayong, Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274 Yaounde, Cameroon. E-mail:
| |
Collapse
|
3
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Sorci G, Léchenault-Bergerot C, Faivre B. Age reduces resistance and tolerance in malaria-infected mice. INFECTION GENETICS AND EVOLUTION 2020; 88:104698. [PMID: 33370596 DOI: 10.1016/j.meegid.2020.104698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Once infected, hosts can rely on two strategies to cope with parasites: fight them (resist the infection) or minimize the damage they induce (tolerate the infection). While there is evidence that aging reduces resistance, how tolerance varies as hosts become old has been barely studied. Here, we used a rodent malaria parasite (Plasmodium yoelii) to investigate whether 2- and 12-month old house mice differ in their capacity to resist and tolerate the infection. We found that 12-month old mice harbored higher parasitemia, showing that age reduces resistance to malaria. Infection-induced deterioration of host health was assessed using red blood cell and body mass loss. Using both traits, the rate of decline in host health, as parasitemia increased, was more pronounced in 12- than in 2-month old mice, showing that age is also associated with impaired tolerance to malaria. Overall, resistance and tolerance positively covaried; however, this was only due to the age effect, since, within age classes, the two traits were not correlated. These results show that senescing individuals might be both more susceptible to infectious diseases and less able to cope with the damage that infection induces.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
5
|
Wockner LF, Hoffmann I, Webb L, Mordmüller B, Murphy SC, Kublin JG, O'Rourke P, McCarthy JS, Marquart L. Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data From Malaria Volunteer Infection Studies. J Infect Dis 2020; 221:963-972. [PMID: 31679015 PMCID: PMC7198127 DOI: 10.1093/infdis/jiz557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Growth rate of malaria parasites in the blood of infected subjects is an important
measure of efficacy of drugs and vaccines. Methods We used log-linear and sine-wave models to estimate the parasite growth rate of the 3D7
strain of Plasmodium falciparum using data from 177 subjects from 14
induced blood stage malaria (IBSM) studies conducted at QIMR Berghofer. We estimated
parasite multiplication rate per 48 hour (PMR48), PMR per life-cycle
(PMRLC), and parasite life-cycle duration. We compared these parameters to
those from studies conducted elsewhere with infections induced by IBSM (n=66),
sporozoites via mosquito bite (n=336) or injection (n=51). Results The parasite growth rate of 3D7 in QIMR Berghofer studies was 0.75/day (95% CI:
0.73–0.77/day), PMR48 was 31.9 (95% CI: 28.7–35.4),
PMRLC was 16.4 (95% CI: 15.1–17.8) and parasite life-cycle was 38.8
hour (95% CI: 38.3–39.2 hour). These parameters were similar to estimates from
IBSM studies elsewhere (0.71/day, 95% CI: 0.67–0.75/day; PMR48 26.6,
95% CI: 22.2–31.8), but significantly higher (P < 0.001)
than in sporozoite studies (0.47/day, 95% CI: 0.43–0.50/day; PMR48
8.6, 95% CI: 7.3–10.1). Conclusions Parasite growth rates were similar across different IBSM studies and higher than
infections induced by sporozoite.
Collapse
Affiliation(s)
- Leesa F Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Isabell Hoffmann
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - James G Kublin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Intrinsic multiplication rate variation and plasticity of human blood stage malaria parasites. Commun Biol 2020; 3:624. [PMID: 33116247 PMCID: PMC7595149 DOI: 10.1038/s42003-020-01349-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Pathogen multiplication rate is theoretically an important determinant of virulence, although often poorly understood and difficult to measure accurately. We show intrinsic asexual blood stage multiplication rate variation of the major human malaria parasite Plasmodium falciparum to be associated with blood-stage infection intensity in patients. A panel of clinical isolates from a highly endemic West African population was analysed repeatedly during five months of continuous laboratory culture, showing a range of exponential multiplication rates at all timepoints tested, mean rates increasing over time. All isolates had different genome sequences, many containing within-isolate diversity that decreased over time in culture, but increases in multiplication rates were not primarily attributable to genomic selection. New mutants, including premature stop codons emerging in a few isolates, did not attain sufficiently high frequencies to substantially affect overall multiplication rates. Significantly, multiplication rate variation among the isolates at each of the assayed culture timepoints robustly correlated with parasite levels seen in patients at clinical presentation, indicating innate parasite control of multiplication rate that contributes to virulence. Lindsay Stewart et al. analyze clinical isolates of the human malaria parasite Plasmodium falciparum from a highly endemic West African population and show that intrinsic multiplication rate variation is associated with blood-stage infection intensity. Their results indicate that parasite control of multiplication contributes to virulence.
Collapse
|
7
|
Atmar RL, Keitel WA. Searching for Improved Flu Vaccines-The Time Is Now. J Infect Dis 2020; 221:1-4. [PMID: 31665360 DOI: 10.1093/infdis/jiz545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Robert L Atmar
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy A Keitel
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, Haque A, Cromer D, Davenport MP. Within-host modeling of blood-stage malaria. Immunol Rev 2019; 285:168-193. [PMID: 30129195 DOI: 10.1111/imr.12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
Collapse
Affiliation(s)
| | - Rosemary Aogo
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | |
Collapse
|
9
|
Slater HC, Ross A, Felger I, Hofmann NE, Robinson L, Cook J, Gonçalves BP, Björkman A, Ouedraogo AL, Morris U, Msellem M, Koepfli C, Mueller I, Tadesse F, Gadisa E, Das S, Domingo G, Kapulu M, Midega J, Owusu-Agyei S, Nabet C, Piarroux R, Doumbo O, Doumbo SN, Koram K, Lucchi N, Udhayakumar V, Mosha J, Tiono A, Chandramohan D, Gosling R, Mwingira F, Sauerwein R, Paul R, Riley EM, White NJ, Nosten F, Imwong M, Bousema T, Drakeley C, Okell LC. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat Commun 2019; 10:1433. [PMID: 30926893 PMCID: PMC6440965 DOI: 10.1038/s41467-019-09441-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings. The role of subpatent infections for malaria transmission and elimination is unclear. Here, Slater et al. analyse several malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Ingrid Felger
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Natalie E Hofmann
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Leanne Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea.,Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, 3004, VIC, Australia
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Andre Lin Ouedraogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso.,Institute for Disease Modeling, Intellectual Ventures, Bellevue, 98005, Washington, USA
| | - Ulrika Morris
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mwinyi Msellem
- Department of Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Melbourne, 3052, Victoria, Australia.,Department of Biological Sciences, University of Notre Dame, Indiana, 46556, USA
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, 75015, France.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Fitsum Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Smita Das
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Gonzalo Domingo
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Janet Midega
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Seth Owusu-Agyei
- Institute of Health, University of Health and Allied Sciences, Hohoe, PMB 31, Ghana
| | - Cécile Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Safiatou Niare Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Naomi Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Jacklin Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alfred Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, 94158, CA, United States
| | - Felista Mwingira
- Biological Sciences Department, Dar es Salaam University College of Education, P. O. Box 2329, Dar es Salaam, Tanzania
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Richard Paul
- Institut Pasteur de Dakar, Laboratoire d'Entomologie Médicale, Dakar, Senegal
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
10
|
A probabilistic model of pre-erythrocytic malaria vaccine combination in mice. PLoS One 2019; 14:e0209028. [PMID: 30625136 PMCID: PMC6326473 DOI: 10.1371/journal.pone.0209028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Malaria remains one the world’s most deadly infectious diseases, with almost half a million deaths and over 150 million clinical cases each year. An effective vaccine would contribute enormously to malaria control and will almost certainly be required for eventual eradication of the disease. However, the leading malaria vaccine candidate, RTS,S, shows only 30–50% efficacy under field conditions, making it less cost-effective than long-lasting insecticide treated bed nets. Other subunit malaria vaccine candidates, including TRAP-based vaccines, show no better protective efficacy. This has led to increased interest in combining subunit malaria vaccines as a means of enhancing protective efficacy. Mathematical models of the effect of combining such vaccines on protective efficacy can help inform optimal vaccine strategies and decision-making at all stages of the clinical process. So far, however, no such model has been developed for pre-clinical murine studies, the stage at which all candidate antigens and combinations begin evaluation. To address this gap, this paper develops a mathematical model of vaccine combination adapted to murine malaria studies. The model is based on simple probabilistic assumptions which put the model on a firmer theoretical footing than previous clinical models, which rather than deriving a relationship between immune responses and protective efficacy posit the relationship to be either exponential or Hill curves. Data from pre-clinical murine malaria studies are used to derive values for unknowns in the model which in turn allows simulations of vaccine combination efficacy and suggests optimal strategies to pursue. Finally, the ability of the model to shed light on fundamental biological variables of murine malaria such as the blood stage growth rate and sporozoite infectivity is explored.
Collapse
|
11
|
Host-mediated impairment of parasite maturation during blood-stage Plasmodium infection. Proc Natl Acad Sci U S A 2017; 114:7701-7706. [PMID: 28673996 DOI: 10.1073/pnas.1618939114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe malaria and associated high parasite burdens occur more frequently in humans lacking robust adaptive immunity to Plasmodium falciparum Nevertheless, the host may partly control blood-stage parasite numbers while adaptive immunity is gradually established. Parasite control has typically been attributed to enhanced removal of parasites by the host, although in vivo quantification of this phenomenon remains challenging. We used a unique in vivo approach to determine the fate of a single cohort of semisynchronous, Plasmodium berghei ANKA- or Plasmodium yoelii 17XNL-parasitized red blood cells (pRBCs) after transfusion into naive or acutely infected mice. As previously shown, acutely infected mice, with ongoing splenic and systemic inflammatory responses, controlled parasite population growth more effectively than naive controls. Surprisingly, however, this was not associated with accelerated removal of pRBCs from circulation. Instead, transfused pRBCs remained in circulation longer in acutely infected mice. Flow cytometric assessment and mathematical modeling of intraerythrocytic parasite development revealed an unexpected and substantial slowing of parasite maturation in acutely infected mice, extending the life cycle from 24 h to 40 h. Importantly, impaired parasite maturation was the major contributor to control of parasite growth in acutely infected mice. Moreover, by performing the same experiments in rag1-/- mice, which lack T and B cells and mount weak inflammatory responses, we revealed that impaired parasite maturation is largely dependent upon the host response to infection. Thus, impairment of parasite maturation represents a host-mediated, immune system-dependent mechanism for limiting parasite population growth during the early stages of an acute blood-stage Plasmodium infection.
Collapse
|
12
|
Adomako-Ankomah Y, Chenoweth MS, Durfee K, Doumbia S, Konate D, Doumbouya M, Keita AS, Nikolaeva D, Tullo GS, Anderson JM, Fairhurst RM, Daniels R, Volkman SK, Diakite M, Miura K, Long CA. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali. PLoS One 2017; 12:e0170948. [PMID: 28158202 PMCID: PMC5291380 DOI: 10.1371/journal.pone.0170948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.
Collapse
Affiliation(s)
- Yaw Adomako-Ankomah
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Chenoweth
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katelyn Durfee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoul S. Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Daria Nikolaeva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory S. Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
13
|
Galatas B, Bassat Q, Mayor A. Malaria Parasites in the Asymptomatic: Looking for the Hay in the Haystack. Trends Parasitol 2015; 32:296-308. [PMID: 26708404 DOI: 10.1016/j.pt.2015.11.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
With malaria elimination back on the international agenda, programs face the challenge of targeting all Plasmodium infections, not only symptomatic cases. As asymptomatic individuals are unlikely to seek treatment, they are missed by passive surveillance while remaining infectious to mosquitoes, thus acting as silent reservoirs of transmission. To estimate the risk of asymptomatic infections in various phases of malaria elimination, we need a deeper understanding of the underlying mechanisms favoring carriage over disease, which may involve both pathogen and host factors. Here we review our current knowledge on the determinants leading to Plasmodium falciparum symptomless infections. Understanding the host-pathogen interactions that are most likely to affect transitions between malaria disease states could guide the development of tools to tackle asymptomatic carriers in elimination settings.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
14
|
Dent AE, Nakajima R, Liang L, Baum E, Moormann AM, Sumba PO, Vulule J, Babineau D, Randall A, Davies DH, Felgner PL, Kazura JW. Plasmodium falciparum Protein Microarray Antibody Profiles Correlate With Protection From Symptomatic Malaria in Kenya. J Infect Dis 2015; 212:1429-38. [PMID: 25883384 DOI: 10.1093/infdis/jiv224] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Immunoglobulin G antibodies (Abs) to Plasmodium falciparum antigens have been associated with naturally acquired immunity to symptomatic malaria. METHODS We probed protein microarrays covering 824 unique P. falciparum protein features with plasma from residents of a community in Kenya monitored for 12 weeks for (re)infection and symptomatic malaria after administration of antimalarial drugs. P. falciparum proteins recognized by Abs from 88 children (aged 1-14 years) and 86 adults (aged ≥ 18 years), measured at the beginning of the observation period, were ranked by Ab signal intensity. RESULTS Abs from immune adults reacted with a total 163 of 824 P. falciparum proteins. Children gradually acquired Abs to the full repertoire of antigens recognized by adults. Abs to some antigens showed high seroconversion rates, reaching maximal levels early in childhood, whereas others did not reach adult levels until adolescence. No correlation between Ab signal intensity and time to (re)infection was observed. In contrast, Ab levels to 106 antigens were significantly higher in children who were protected from symptomatic malaria compared with those who were not. Abs to antigens predictive of protection included P. falciparum erythrocyte membrane protein 1, merozoite surface protein (MSP) 10, MSP2, liver-stage antigen 3, PF70, MSP7, and Plasmodium helical interspersed subtelomeric domain protein. CONCLUSIONS Protein microarrays may be useful in the search for malaria antigens associated with protective immunity.
Collapse
Affiliation(s)
- Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | | | - Li Liang
- University of California, Irvine
| | | | - Ann M Moormann
- Center for Global Health Research, University of Massachusetts Medical School, Worcester
| | | | | | | | | | | | | | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University
| |
Collapse
|
15
|
Pinkevych M, Chelimo K, Vulule J, Kazura JW, Moormann AM, Davenport MP. Time-to-infection by Plasmodium falciparum is largely determined by random factors. BMC Med 2015; 13:19. [PMID: 25633459 PMCID: PMC4311447 DOI: 10.1186/s12916-014-0252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The identification of protective immune responses to P. falciparum infection is an important goal for the development of a vaccine for malaria. This requires the identification of susceptible and resistant individuals, so that their immune responses may be studied. Time-to-infection studies are one method for identifying putative susceptible individuals (infected early) versus resistant individuals (infected late). However, the timing of infection is dependent on random factors, such as whether the subject was bitten by an infected mosquito, as well as individual factors, such as their level of immunity. It is important to understand how much of the observed variation in infection is simply due to chance. METHODS We analyse previously published data from a treatment-time-to-infection study of 201 individuals aged 0.5 to 78 years living in Western Kenya. We use a mathematical modelling approach to investigate the role of immunity versus random factors in determining time-to-infection in this cohort. We extend this analysis using a modelling approach to understand what factors might increase or decrease the utility of these studies for identifying susceptible and resistant individuals. RESULTS We find that, under most circumstances, the observed distribution of time-to-infection is consistent with this simply being a random process. We find that age, method for detection of infection (PCR versus microscopy), and underlying force of infection are all factors in determining whether time-to-infection is a useful correlate of immunity. CONCLUSIONS Many epidemiological studies of P. falciparum infection assume that the observed variation in infection outcomes, such as time-to-infection or presence or absence of infection, is determined by host resistance or susceptibility. However, under most circumstances, this distribution appears largely due to the random timing of infection, particularly in children. More direct measurements, such as parasite growth rate, may be more useful than time-to-infection in segregating patients based on their level of immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales Australia, Kensington NSW 2052, Sydney, Australia.
| |
Collapse
|
16
|
Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infect Immun 2015; 83:1172-80. [PMID: 25583524 DOI: 10.1128/iai.02796-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Following transmission through a mosquito bite to the mammalian host, Plasmodium parasites first invade and replicate inside hepatocytes before infecting erythrocytes and causing malaria. The mechanisms limiting Plasmodium reinfections in humans living in regions of malaria endemicity have mainly been explored by studying the resistance induced by the blood stage of infection. However, epidemiologic studies have suggested that in high-transmission areas, preerythrocytic stages also activate host resistance to reinfection. This, along with the recent discovery that liver infections trigger a specific and effective type I interferon (IFN) response, prompted us to hypothesize that this pre-erythrocyte-stage-induced resistance is linked to liver innate immunity. Here, we combined experimental approaches and mathematical modeling to recapitulate field studies and understand the molecular basis behind such resistance. We present a newly established mouse reinfection model and demonstrate that rodent malaria liver-stage infection inhibits reinfection. This protection relies on the activation of innate immunity and involves the type I IFN response and the antimicrobial cytokine gamma IFN (IFN-γ). Importantly, mathematical simulations indicate that the predictions based on our experimental murine reinfection model fit available epidemiological data. Overall, our study revealed that liver-stage-induced innate immunity may contribute to the preerythrocytic resistance observed in humans in regions of malaria hyperendemicity.
Collapse
|
17
|
Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 2014; 12:833-40. [PMID: 25329408 DOI: 10.1038/nrmicro3364] [Citation(s) in RCA: 447] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most Plasmodium falciparum infections that are detected in community surveys are characterized by low-density parasitaemia and the absence of clinical symptoms. Molecular diagnostics have shown that this asymptomatic parasitic reservoir is more widespread than previously thought, even in low-endemic areas. In this Opinion article, we describe the detectability of asymptomatic malaria infections and the relevance of submicroscopic infections for parasite transmission to mosquitoes and for community interventions that aim at reducing transmission. We argue that wider deployment of molecular diagnostic tools is needed to provide adequate insight into the epidemiology of malaria and infection dynamics to aid elimination efforts.
Collapse
Affiliation(s)
- Teun Bousema
- 1] London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. [2] Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Lucy Okell
- Imperial College, London, London SW7 2AZ, UK
| | | | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
18
|
Pinkevych M, Petravic J, Bereczky S, Rooth I, Färnert A, Davenport MP. Understanding the relationship between Plasmodium falciparum growth rate and multiplicity of infection. J Infect Dis 2014; 211:1121-7. [PMID: 25301957 DOI: 10.1093/infdis/jiu561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Natural infections with Plasmodium falciparum are often composed of multiple concurrent genetically distinct parasite clones. Such multiclonal infections are more common in areas of high transmission, and the frequency of multiclonal infection also varies with age. A number of studies have suggested that multiclonal infection predicts the risk of subsequent clinical malaria. The multiplicity of infection is determined by the rate of new infections, the number of clones inoculated at each mosquito bite, and the duration of infections. Here, we used a mathematical modeling approach to understand how variation in the growth rate of blood-stage parasites affects the observed multiplicity of infection (MOI), as well as the relationship between the MOI and the risk of subsequent malaria. We then analyzed data from a study of multiclonal infection and malaria in an malaria-endemic area in Tanzania and show that the proportion of multiclonal infections varies with age and that the observed relationship between multiclonal infection and subsequent clinical events can be explained by a reduction in blood-stage parasite growth with age in this population.
Collapse
Affiliation(s)
- Mykola Pinkevych
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Sandor Bereczky
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ingegerd Rooth
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| |
Collapse
|