1
|
Yuan D, Zhao F, Liu S, Liu Y, Yan H, Liu L, Su B, Wang B. Dual Infection of Different Clusters of HIV in People Living with HIV Worldwide: A Meta-Analysis Based on Next-Generation Sequencing Studies. AIDS Patient Care STDS 2024; 38:348-357. [PMID: 38957963 DOI: 10.1089/apc.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
To understand the global dual HIV infection (DI) profiles comprehensively, the databases Cochrane Library, Embase, PubMed, and Web of Science were the data sources up to March 31, 2024 (PROSPERO: CRD42023388328). Stata and R-language software were used to analyze the extracted data. Publication bias was assessed using Egger's test. Sensitivity analysis was conducted to evaluate the stability of the combined effect values. Data from 17 eligible studies across four continents (Africa, Asia, Europe, and North America) with 1,475 subjects were used. The combined dual infection rate (DIR) was 10.47% (95% CI: 7.11%-14.38%) without a time trend (p = 0.105). The DIRs of target population groups differed significantly, with FSWs having the highest DIR (15.14%), followed by general population (12.08%), MSM (11.84%), and DUs (9.76%). The subtype profiles of 122 patients with dual infection were extracted, and the results showed that intrasubtype infections were predominant in coinfection (16/22, 72.73%) and superinfection (68/100, 68.00%) groups, with the subtype pattern B and B accounts for the largest proportion. The global dual infection rate may be underestimated, even though the data fluctuated around 10% and showed no time trend. The occurrence of DI indicated that individuals still do not acquire sufficient resistance to HIV even after primary infection, which could potentially compromise the patient's treatment effect and lead to the emergence of new subtypes, posing a significant challenge to HIV prevention, control, and treatment, suggesting that behavioral counseling and health education for all HIV-infected individuals are still crucial during the antiviral therapy.
Collapse
Affiliation(s)
- Defu Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Fei Zhao
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Yangyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Switzer WM, Shankar A, Jia H, Knyazev S, Ambrosio F, Kelly R, Zheng H, Campbell EM, Cintron R, Pan Y, Saduvala N, Panneer N, Richman R, Singh MB, Thoroughman DA, Blau EF, Khalil GM, Lyss S, Heneine W. High HIV diversity, recombination, and superinfection revealed in a large outbreak among persons who inject drugs in Kentucky and Ohio, USA. Virus Evol 2024; 10:veae015. [PMID: 38510920 PMCID: PMC10953796 DOI: 10.1093/ve/veae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.
Collapse
Affiliation(s)
- William M Switzer
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Anupama Shankar
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Hongwei Jia
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sergey Knyazev
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Frank Ambrosio
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Reagan Kelly
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- General Dynamics Information Technology, 3150 Fairview Park Dr, Falls Church, VA 22042, USA
| | - HaoQiang Zheng
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | | | - Roxana Cintron
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Yi Pan
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | | | - Nivedha Panneer
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Rhiannon Richman
- HIV Surveillance Program, Bureau of HIV/STI/Viral Hepatitis, Ohio Department of Health, 246 North High Street, Colombus, OH 43215, USA
| | - Manny B Singh
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
| | - Douglas A Thoroughman
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- ORR/Division of State and Local Readiness/Field Services Branch/CEFO Program, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Erin F Blau
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- Epidemic Intelligence Service, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - George M Khalil
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sheryl Lyss
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
- HIV Surveillance Program, Bureau of HIV/STI/Viral Hepatitis, Ohio Department of Health, 246 North High Street, Colombus, OH 43215, USA
- Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- Hamilton County Public Health, 250 William Howard Taft Rd, Cincinnati, OH 45219, USA
- Northern Kentucky Health Department, 8001 Veterans Memorial Drive, Florence, KY 41042, USA
| | - Walid Heneine
- Division of HIV Prevention, CDC, 1600 Clifton Rd, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Dai M, Li J, Li J, Lu H, Huang C, Lv S, Huang H, Xin R. Genetic characteristics of a novel HIV-1 recombinant lineage (CRF103_01B) and its prevalence in northern China. Virus Genes 2023:10.1007/s11262-023-01994-0. [PMID: 37079189 DOI: 10.1007/s11262-023-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
During the routine surveillance of HIV-1 pretreatment drug resistance in Beijing, five men who have sex with men (MSM) and a woman were observed to get infected by newly identified CRF103_01B strain. To elucidate the genetic characteristics, the near full-length genome (NFLG) was obtained. Phylogenetic inference indicated that CRF103_01B NFLG was composed of six mosaic segments. Segments IV and V of CRF103_01B were located among the clusters subtype B and CRF01_AE (group 5), respectively. The CRF103_01B strain was deduced to originate from Beijing MSM population around 2002.3-2006.4 and continued to spread among MSM population at a low level, then to the general population via heterosexual contact in northern China. Molecular epidemiology surveillance of CRF103_01B should be reinforced.
Collapse
Affiliation(s)
- Man Dai
- China Medical University, Shenyang, 110122, China
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jia Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jie Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hongyan Lu
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Chun Huang
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Shiyun Lv
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Huihuang Huang
- The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Ruolei Xin
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| |
Collapse
|
4
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Mori M, Ode H, Kubota M, Nakata Y, Kasahara T, Shigemi U, Okazaki R, Matsuda M, Matsuoka K, Sugimoto A, Hachiya A, Imahashi M, Yokomaku Y, Iwatani Y. Nanopore Sequencing for Characterization of HIV-1 Recombinant Forms. Microbiol Spectr 2022; 10:e0150722. [PMID: 35894615 PMCID: PMC9431566 DOI: 10.1128/spectrum.01507-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. IMPORTANCE HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.
Collapse
Affiliation(s)
- Mikiko Mori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Reiko Okazaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Sivay MV, Palumbo PJ, Zhang Y, Cummings V, Guo X, Hamilton EL, McKinstry L, Ogendo A, Kayange N, Panchia R, Dominguez K, Chen YQ, Sandfort TGM, Eshleman SH. Human Immunodeficiency Virus (HIV) Drug Resistance, Phylogenetic Analysis, and Superinfection Among Men Who Have Sex with Men and Transgender Women in Sub-Saharan Africa: HIV Prevention Trials Network (HPTN) 075 Study. Clin Infect Dis 2021; 73:60-67. [PMID: 32761071 DOI: 10.1093/cid/ciaa1136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The HIV Prevention Trials Network (HPTN) 075 study evaluated the feasibility of enrolling and retaining men who have sex with men (MSM) and transgender women (TGW) from Kenya, Malawi, and South Africa. During the study follow-up, 21 participants acquired human immunodeficiency virus (HIV) (seroconverters). We analyzed HIV subtype diversity, drug resistance, transmission dynamics, and HIV superinfection data among MSM and TGW enrolled in HPTN 075. METHODS HIV genotyping and drug resistance testing were performed for participants living with HIV who had viral loads >400 copies/mL at screening (prevalent cases, n = 124) and seroconverters (n = 21). HIV pol clusters were identified using Cluster Picker. Superinfection was assessed by a longitudinal analysis of env and pol sequences generated by next-generation sequencing. RESULTS HIV genotyping was successful for 123/124 prevalent cases and all 21 seroconverters. The major HIV subtypes were A1 (Kenya) and C (Malawi and South Africa). Major drug resistance mutations were detected in samples from 21 (14.6%) of 144 participants; the most frequent mutations were K103N and M184V/I. Phylogenetic analyses identified 11 clusters (2-6 individuals). Clusters included seroconverters only (n = 1), prevalent cases and seroconverters (n = 4), and prevalent cases only (n = 6). Superinfections were identified in 1 prevalent case and 2 seroconverters. The annual incidence of superinfection was higher among seroconverters than among prevalent cases, and was higher than the rate of primary HIV infection in the cohort. CONCLUSIONS This report provides important insights into HIV genetic diversity, drug resistance, and superinfection among MSM and TGW in sub-Saharan Africa. These findings may help to inform future HIV prevention interventions in these high-risk groups.
Collapse
Affiliation(s)
- Mariya V Sivay
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip J Palumbo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yinfeng Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vanessa Cummings
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Guo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Erica L Hamilton
- Science Facilitation Department, Family Health International 360, Durham, North Carolina, USA
| | - Laura McKinstry
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arthur Ogendo
- Kenya Medical Research Institute Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Noel Kayange
- Department of Internal Medicine, Johns Hopkins Project, College of Medicine, Malawi, Blantyre, Malawi
| | - Ravindre Panchia
- Perinatal Human Immunodeficiency Virus Research Unit, University of the Witwatersrand, Soweto Human Immunodeficiency Virus Prevention Trials Network Clinical Research Site, Soweto, South Africa
| | - Karen Dominguez
- Desmond Tutu Human Immunodeficiency Virus Centre, University of Cape Town Medical School, Cape Town, South Africa
| | - Ying Q Chen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Theodorus G M Sandfort
- Human Immunodeficiency Virus Center for Clinical and Behavioral Studies, Columbia University, New York, New York, USA
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Zhou Z, Ma P, Feng Y, Ou W, Wei M, Shao Y. The inference of HIV-1 transmission direction between a man who has sex with men and his heterosexual wife based on the sequences of HIV-1 quasi-species. Emerg Microbes Infect 2021; 10:1209-1216. [PMID: 34077305 PMCID: PMC8676586 DOI: 10.1080/22221751.2021.1938693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, homosexual transmission has become one of the main routes of HIV-1 spread in China. Furthermore, about 80% Chinese men, who have sex with men (MSM), feel forced to enter eventually into heterosexual marriages due to the Chinese traditional marriage culture, which may cause HIV-1 infection in families. In this study, we identified HIV-1 transmission in a family and the direction of HIV-1 transmission from a MSM to his wife and infant, which indicated Chinese MSM may have become a potential bridge of HIV-1 transmission to their wives and children. Therefore, we need to develop more effective defence measures to prevent the spread of HIV-1 in MSM families in China.
Collapse
Affiliation(s)
- Zehua Zhou
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Ping Ma
- Nankai University Second People's Hospital, School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Weidong Ou
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, People's Republic of China.,Nankai University Second People's Hospital, School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, People's Republic of China.,National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
8
|
Casado C, Pernas M, Rava M, Ayerdi O, Vera M, Alenda R, Jiménez P, Docando F, Olivares I, Zaballos A, Vicario JL, Rodríguez C, Del Romero J, Lopez-Galindez C. High-Risk Sexual Practices Contribute to HIV-1 Double Infection Among Men Who Have Sex with Men in Madrid. AIDS Res Hum Retroviruses 2020; 36:896-904. [PMID: 32722915 DOI: 10.1089/aid.2020.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Data on the prevalence of double infection (DI) in HIV individuals are lacking in Spain. To fill this gap, we analyzed the prevalence of DI in a cohort of men who have sex with men (MSM) and examined factors contributing to DI. We selected 81 MSM attending Centro Sanitario Sandoval, a sexually transmitted diseases clinic in Madrid. We obtained by ultra-deep sequencing the proviral sequences in gag and env genes and performed a phylogenetic analysis for the identification of DI. Clinical, behavioral, host, and viral factors were studied for its association with DI. We detected six individuals with DI and one case of superinfection with a global prevalence of 8.6%. The genetic distance among the subtype B viruses in monoinfected individuals (24.4%) was lower than the distance between the two viruses in subtype B DI individuals (29.5%). Individuals with a high number of sexual contacts (>25 partners/year) had an 8.66 times higher risk of DI (p = .017). In this MSM cohort the prevalence of HIV DI was estimated at 8.6%. DI was strongly associated with the number of sexual partners. Because of the pathogenic consequences of HIV DI, this high prevalence should promote public health programs targeted at high-risk population such as MSM for the control of HIV infection and DI. HIV DI should be considered for a better clinical management of these individuals.
Collapse
Affiliation(s)
- Concepción Casado
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pernas
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rava
- Centro Nacional de Epidemiologia, Instituto Carlos III, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Raquel Alenda
- Centro de Transfusiones de la Comunidad de Madrid, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Félix Docando
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Olivares
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Rodríguez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Cecilio Lopez-Galindez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Streamlined Subpopulation, Subtype, and Recombination Analysis of HIV-1 Half-Genome Sequences Generated by High-Throughput Sequencing. mSphere 2020; 5:5/5/e00551-20. [PMID: 33055255 PMCID: PMC7565892 DOI: 10.1128/msphere.00551-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS). High-throughput sequencing (HTS) has been widely used to characterize HIV-1 genome sequences. There are no algorithms currently that can directly determine genotype and quasispecies population using short HTS reads generated from long genome sequences without additional software. To establish a robust subpopulation, subtype, and recombination analysis workflow, we amplified the HIV-1 3′-half genome from plasma samples of 65 HIV-1-infected individuals and sequenced the entire amplicon (∼4,500 bp) by HTS. With direct analysis of raw reads using HIVE-hexahedron, we showed that 48% of samples harbored 2 to 13 subpopulations. We identified various subtypes (17 A1s, 4 Bs, 27 Cs, 6 CRF02_AGs, and 11 unique recombinant forms) and defined recombinant breakpoints of 10 recombinants. These results were validated with viral genome sequences generated by single genome sequencing (SGS) or the analysis of consensus sequence of the HTS reads. The HIVE-hexahedron workflow is more sensitive and accurate than just evaluating the consensus sequence and also more cost-effective than SGS. IMPORTANCE The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS).
Collapse
|
10
|
Zhang Y, Su B, Li H, Han J, Zhang T, Li T, Wu H, Wang X, Li J, Liu Y, Li L. Triple HIV-1 Infection Is Associated With Faster CD4 + T-Cell Decline. Front Microbiol 2020; 11:21. [PMID: 32038599 PMCID: PMC6992562 DOI: 10.3389/fmicb.2020.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
HIV-1 dual infection occurs when an individual is simultaneously or sequentially infected with two or more genetically distinct HIV-1 strains. According to the number of infected strains, HIV-1 dual infection can be divided in double infection and triple infection and so on. Currently, the majority of dual infection cases have been reported to be double infections which can result in detrimental clinical outcomes. The high incidence of double infection among specific high-risk populations increases the likelihood of triple infection, which has been sporadically described. There is no doubt that we are concerned about the association between triple infection and disease progression. However, this relationship is still unclear on the population level. In this study, 70 individuals from the Beijing PRIMO cohort were longitudinally followed up with a median time of 15.75 months for the purpose of investigating the incidence of dual infection. Phylogenetic analyses using bulk and single-genome sequences showed that nine individuals acquired double infection, with the incidence of 9.21 per 100 person-years, and three individuals with triple infection were identified, with the incidence of 3.07 per 100 person-years. The further survival analysis demonstrated that the triple infection group exhibited faster CD4+ T-cell decline. In summary, these results demonstrate for the first time that the triple HIV-1 infection might reduce CD4+ T-cell counts, which would predict a more rapid disease progression.
Collapse
Affiliation(s)
- Yu Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
11
|
Caetano DG, Côrtes FH, Bello G, de Azevedo SSD, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. A case report of HIV-1 superinfection in an HIV controller leading to loss of viremia control: a retrospective of 10 years of follow-up. BMC Infect Dis 2019; 19:588. [PMID: 31277590 PMCID: PMC6612226 DOI: 10.1186/s12879-019-4229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background HIV controllers (HICs) are a rare group of HIV-1-infected individuals able to naturally control viral replication. Several studies have identified the occurrence of HIV dual infections in seropositive individuals leading to disease progression. In HICs, however, dual infections with divergent outcomes in pathogenesis have been described. Case presentation Here, we present a case report of a HIC diagnosed in late 1999 who displayed stable CD4+ T cell levels and low plasmatic viral load across 12 years of follow-up. In early 2013, the patient started to present an increase in viral load, reaching a peak of 10,000 copies/ml in early 2014, followed by an oscillation of viremia at moderate levels in the following years. The genetic diversity of env proviral quasispecies from peripheral blood mononuclear cells (PBMCs) was studied by single genome amplification (SGA) at six timepoints across 2009–2017. Phylogenetic analyses of env sequences from 2009 and 2010 samples showed the presence of a single subtype B variant (called B1). Analyses of sequences from 2011 and after revealed an additional subtype B variant (called B2) and a subsequent dominance shift in the proviral quasispecies frequencies, with the B2 variant becoming the most frequent from 2014 onwards. Latent syphilis related to unprotected sexual intercourse was diagnosed a year before the first detection of B2, evidencing risk behavior and supporting the superinfection hypothesis. Immunologic analyses revealed an increase in CD8+ and CD4+ T cell immune activation following viremia increase and minor T cell subset alterations during follow-up. HIV-specific T cell responses remained low throughout the follow-up period. Conclusions Altogether, these results show that loss of viremia control in the HIC was associated with superinfection. These data alert to the negative consequences of reinfection on HIV pathogenesis, even in patients with a long history of viremia control and an absence of disease progression, reinforcing the need for continued use of adequate prevention strategies.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Suwellen Sardinha Dias de Azevedo
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Larissa Melo Villela
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Valdiléa Gonçalves Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|
12
|
Hani L, Chaillon A, Nere ML, Ruffin N, Alameddine J, Salmona M, Lopez Zaragoza JL, Smith DM, Schwartz O, Lelièvre JD, Delaugerre C, Lévy Y, Seddiki N. Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations. PLoS Pathog 2019; 15:e1007868. [PMID: 31220191 PMCID: PMC6605680 DOI: 10.1371/journal.ppat.1007868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence. In our previous results we reported that memory CD4+ T cells expressing low levels of SAMHD1 (SAMHD1low) are present in peripheral blood and lymph nodes from HIV-1 infected and uninfected individuals. These cells were enriched in Th17 and Tfh, two populations targeted by HIV-1. Here we used purified memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected and treated patients to perform cell-associated HIV-1 DNA quantification, p24-producing cells detection, ultra-deep-sequencing of partial env (C2/V3) HIV-1 DNA and further phenotypic characterization. Our results demonstrate that (i) Th17 and CCR6+DN-expressing transcriptional signature of early Th17, two major populations that are susceptible to HIV-1 infection, are present in SAMHD1low cells, and while the former decreased significantly in c-ART HIV-1 infected compared to uninfected individuals, the latter significantly increased; (ii) memory SAMHD1low cells from c-ART patients carry high levels of HIV-1 DNA compared to SAMHD1+ cells, and these levels positively and significantly correlated with Ki67 expression; (iii) memory SAMHD1low cells from patients harbour p24-producing cells; (iv) phylogenetic analyses revealed well-segregated HIV-1 DNA populations with significant compartmentalization between SAMHD1low and SAMHD1+ cells and limited viral exchange. Our data demonstrate that memory SAMHD1low cells contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Lylia Hani
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Antoine Chaillon
- Vaccine Research Institute (VRI), Créteil, France
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Marie-Laure Nere
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Nicolas Ruffin
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Joudy Alameddine
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Maud Salmona
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - José-Luiz Lopez Zaragoza
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Olivier Schwartz
- Vaccine Research Institute (VRI), Créteil, France
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur, Paris, France
| | - Jean-Daniel Lelièvre
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Constance Delaugerre
- Vaccine Research Institute (VRI), Créteil, France
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Yves Lévy
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Nabila Seddiki
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- * E-mail:
| |
Collapse
|
13
|
Fedonin GG, Fantin YS, Favorov AV, Shipulin GA, Neverov AD. VirGenA: a reference-based assembler for variable viral genomes. Brief Bioinform 2019; 20:15-25. [PMID: 28968771 PMCID: PMC6488938 DOI: 10.1093/bib/bbx079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Characterization of the within-host genetic diversity of viral pathogens is required for selection of effective treatment of some important viral infections, e.g. HIV, HBV and HCV. Despite the technical ability of detection, there are conflicting data regarding the clinical significance of low-frequency variants, partially because of the difficulty of their distinguishing from experimental artifacts. The issue of cross-contamination is relevant for all highly sensitive techniques, including deep sequencing: even trace contamination leads to a significant increase of false positives in identified SNVs. Determination of infections by multiple genotypes of some viruses, the incidence of which can be considerable, especially in risk groups, is also clinically significant in some cases. We developed a new viral reference-guided assembler, VirGenA, that can separate mixtures of strains of different intraspecies genetic groups (genotypes, subtypes, clades, etc.) and assemble a separate consensus sequence for each group in a mixture. It produced long assemblies for mixture components of extremely low frequencies (<1%) allowing detection of cross-contamination of samples by divergent genotypes. We tested VirGenA on both clinical and simulated data. On both types of data, VirGenA shows better or similar results than the existing de novo assemblers. Cross-platform implementation (including source code) is freely available at https://github.com/gFedonin/VirGenA/releases.
Collapse
Affiliation(s)
- Gennady G Fedonin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Yury S Fantin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexnader V Favorov
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
| | - German A Shipulin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexey D Neverov
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| |
Collapse
|
14
|
Wertheim JO, Oster AM, Murrell B, Saduvala N, Heneine W, Switzer WM, Johnson JA. Maintenance and reappearance of extremely divergent intra-host HIV-1 variants. Virus Evol 2018; 4:vey030. [PMID: 30538823 PMCID: PMC6279948 DOI: 10.1093/ve/vey030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Understanding genetic variation in human immunodeficiency virus (HIV) is clinically and immunologically important for patient treatment and vaccine development. We investigated the longitudinal intra-host genetic variation of HIV in over 3,000 individuals in the US National HIV Surveillance System with at least four reported HIV-1 polymerase (pol) sequences. In this population, we identified 149 putative instances of superinfection (i.e. an individual sequentially infected with genetically divergent, polyphyletic viruses). Unexpectedly, we discovered a group of 240 individuals with consecutively sampled viral strains that were >0.015 substitutions/site divergent, despite remaining monophyletic in the phylogeny. Viruses in some of these individuals had a maximum genetic divergence approaching that found between two random, unrelated HIV-1 subtype-B pol sequences within the US population. Individuals with these highly divergent viruses tended to be diagnosed nearly a decade earlier in the epidemic than people with superinfection or virus with less intra-host genetic variation, and they had distinct transmission risk factor profiles. To better understand this genetic variation in cases with extremely divergent, monophyletic viruses, we performed molecular clock phylogenetic analysis. Our findings suggest that, like Hepatitis C virus, extremely divergent HIV lineages can be maintained within an individual and reemerge over a period of years.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California, San Diego, USA
| | - Alexandra M Oster
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - William M Switzer
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
15
|
de Almeida SM, Oliveira MF, Chaillon A, Rotta I, Ribeiro CE, de Pereira AP, Smith D, Letendre S, Ellis RJ. Transient and asymptomatic meningitis in human immunodeficiency virus-1 subtype C: a case study of genetic compartmentalization and biomarker dynamics. J Neurovirol 2018; 24:786-796. [PMID: 30194587 PMCID: PMC6279585 DOI: 10.1007/s13365-018-0672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) genetic compartmentalization is defined as genetic differences in HIV in different tissue compartments or subcompartments that characterize viral quasispecies. This descriptive, longitudinal study assessed the dynamics of inflammation, humoral immune response, blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier, as well as neuronal injury biomarkers in serially obtained CSF and serum samples from an antiretroviral (ARV) therapy-naïve patient with HIV-1 subtype C with CSF HIV genetic compartmentalization that resolved spontaneously without ARV treatment. The first CSF sample showed an increase in white blood cell (WBC) count (382 cells/mm3) and a marked increase in the levels of inflammatory cytokines and chemokines, including tumor necrosis factor (TNF)α, interleukin (IL)-10, IP-10, and regulated on activation, normal T cell expressed and secreted (RANTES), which raise the suspicion of dual infection. Serum sample analysis showed all cytokine levels to be normal, with only IP-10 slightly increased. These results corroborate the hypothesis that the CNS immunologic response in a patient with HIV infection was independent of the systemic immunologic response. The patient also had persistently elevated levels of sCD14, neopterin, and β2M, which were strongly suggestive of persistent CNS immunologic stimulation. This report describes a patient with HIV subtype C who developed a transient episode of asymptomatic HIV meningitis with compartmentalization of HIV in the CSF that resolved independently of ARV therapy. Extensive CSF studies were performed as part of an ongoing longitudinal study, which revealed CNS immune abnormalities. This case presents evidence of HIV-1 subtype C neurotropism and compartmentalization.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
- Hospital de Clínicas, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, UFPR, 280, Curitiba, PR, 80060-240, Brazil.
| | | | | | - Indianara Rotta
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Clea E Ribeiro
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Davey Smith
- University of California, San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
16
|
Redd AD, Helleberg M, Sievers M, Schmidt SD, Doria-Rose NA, Bruno D, Traeger S, Martens C, Fonager J, Kronborg G, Packman Z, Mascola JR, Porcella SF, Gerstoft J, Quinn TC. Limited anti-HIV neutralizing antibody breadth and potency before and after HIV superinfection in Danish men who have sex with men. Infect Dis (Lond) 2018; 51:56-61. [PMID: 30317905 DOI: 10.1080/23744235.2018.1500708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND The role of the anti-HIV neutralizing antibody response in protecting against HIV superinfection, and changes in neutralizing antibody potency and breadth after HIV superinfection have not been fully elucidated. This study examined the rate of HIV superinfection in men who have sex with men (MSM) also diagnosed with syphilis in Denmark, and the anti-HIV neutralizing antibody response in men who became superinfected. MATERIALS AND METHODS MSM enrolled in the Danish HIV cohort who acquired syphilis were examined longitudinally for HIV superinfection using a validated next-generation sequencing assay. HIV superinfection cases were matched 3:1 to controls, and neutralizing antibody responses before (cases/controls) and after (cases) HIV superinfection were determined using a 20-pseudovirus panel. RESULTS Four cases of HIV superinfection were identified from 95 MSM screened for a rate of HIV superinfection of 1.56/100 pys (95% CI = 0.43-4.01). Prior to HIV superinfection neutralizing antibody responses were low in breadth and potency, and did not differ between cases and controls (p = 1.0). In cases, neutralizing antibody responses increased modestly after HIV superinfection. CONCLUSIONS These data support the theory that the natural neutralizing antibody response to HIV infection may not be the controlling factor in protecting against a subsequent HIV challenge.
Collapse
Affiliation(s)
- Andrew D Redd
- a Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH , Bethesda , USA.,b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marie Helleberg
- c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Matthew Sievers
- b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | | | | | - Daniel Bruno
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Shelby Traeger
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Craig Martens
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Jannik Fonager
- f Section for Virus Surveillance and Research, Department of Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness , Statens Serum Institut , Copenhagen , Denmark
| | - Gitte Kronborg
- g Department of Infectious Diseases , Copenhagen University Hospital , Hvidovre , Denmark
| | - Zoe Packman
- h Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - John R Mascola
- d Vaccine Research Center, NIAID, NIH , Bethesda , MD , USA
| | - Stephen F Porcella
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Jan Gerstoft
- c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Thomas C Quinn
- a Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH , Bethesda , USA.,b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
17
|
Hebberecht L, Vancoillie L, Schauvliege M, Staelens D, Dauwe K, Mortier V, Verhofstede C. Frequency of occurrence of HIV-1 dual infection in a Belgian MSM population. PLoS One 2018; 13:e0195679. [PMID: 29624605 PMCID: PMC5889168 DOI: 10.1371/journal.pone.0195679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction HIV-1 dual infection is a condition that results from infection with at least two HIV-1 variants from different sources. The scarceness of information on this condition is partly due to the fact that its detection is technically challenging. Using next-generation sequencing we defined the extent of HIV-1 dual infection in a cohort of men who have sex with men (MSM). Material & methods Eighty-six MSM, diagnosed with HIV-1 subtype B infection between 2008 and 2013 were selected for next-generation sequencing of the HIV-1 envelope V3. Sequencing was performed on 2 plasma samples collected with an interval of > 6 months before the initiation of antiretroviral therapy. Maximum likelihood phylogenetic trees were inspected for dual infection, defined as the presence of two or more monophyletic clusters with ≥ 90% bootstrap support and a mean between-cluster genetic distance of ≥ 10%. To confirm dual infection, deep V3 sequencing of intermediate samples was performed as well as clonal sequencing of the HIV-1 protease-reverse transcriptase gene. Results Five of the 74 patients (6.8%) for whom deep sequencing was successful, showed clear evidence of dual infection. In 4 of them, the second strain was absent in the first sample but occurred in subsequent samples. This was highly suggestive for superinfection. In 3 patients both virus variants were of subtype B, in 2 patients at least one of the variants was a subtype B/non-B recombinant virus. Conclusions Dual infection was confirmed in 6.8% of MSM diagnosed with HIV-1 in Belgium. This prevalence is probably an underestimation, because stringent criteria were used to classify viral variants as originating from a new infection event.
Collapse
Affiliation(s)
- Laura Hebberecht
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Leen Vancoillie
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
18
|
Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc. J Virol 2018; 92:JVI.01589-17. [PMID: 29142136 DOI: 10.1128/jvi.01589-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
Residual viremia is common during antiretroviral therapy (ART) and could be caused by ongoing low-level virus replication or by release of viral particles from infected cells. ART intensification should impact ongoing viral propagation but not virion release. Eighteen acutely infected men were enrolled in a randomized controlled trial and monitored for a median of 107 weeks. Participants started ART with (n = 9) or without (n = 9) intensification with maraviroc (MVC) within 90 days of infection. Levels of HIV DNA and cell-free RNA were quantified by droplet digital PCR. Deep sequencing of C2-V3 env, gag, and pol (454 Roche) was performed on longitudinally collected plasma and peripheral blood mononuclear cell (PBMC) samples while on ART. Sequence data were analyzed for evidence of evolution by (i) molecular diversity analysis, (ii) nonparametric test for panmixia, and (iii) tip date randomization within a Bayesian framework. There was a longitudinal decay of HIV DNA after initiation of ART with no difference between MVC intensification groups (-0.08 ± 0.01 versus -0.09 ± 0.01 log10 copies/week in MVC+ versus MVC- groups; P = 0.62). All participants had low-level residual viremia (median, 2.8 RNA copies/ml). Across participants, medians of 56 (interquartile range [IQR], 36 to 74), 29 (IQR, 25 to 35), and 40 (IQR, 31 to 54) haplotypes were generated for env, gag, and pol regions, respectively. There was no clear evidence of viral evolution during ART and no difference in viral diversity or population structure from individuals with or without MVC intensification. Further efforts focusing on elucidating the mechanism(s) of viral persistence in various compartments using recent sequencing technologies are still needed, and potential low-level viral replication should always be considered in cure strategies.IMPORTANCE Residual viremia is common among HIV-infected people on ART. It remains controversial if this viremia is a consequence of propagating infection. We hypothesized that molecular evolution would be detectable during viral propagation and that therapy intensified with the entry inhibitor maraviroc would demonstrate less evolution. We performed a randomized double-blinded treatment trial with 18 acutely infected men (standard ART versus standard ART plus maraviroc). From longitudinally collected blood plasma and cells, levels of HIV DNA and cell-free HIV RNA were quantified by droplet digital PCR, and HIV DNA (env, gag, and pol coding regions) was deep sequenced (454 Roche). Investigating people who started ART during the earliest stages of their HIV infection, when viral diversity is low, provides an opportunity to detect evidence of viral evolution. Despite using a battery of analytical techniques, no clear and consistent evidence of viral propagation for over 90 weeks of observation could be discerned.
Collapse
|
19
|
Gao Y, Tian W, Han X, Gao F. Immunological and virological characteristics of human immunodeficiency virus type 1 superinfection: implications in vaccine design. Front Med 2017; 11:480-489. [PMID: 29170914 DOI: 10.1007/s11684-017-0594-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/30/2017] [Indexed: 02/04/2023]
Abstract
Superinfection is frequently detected among individuals infected by human immunodeficiency virus type I (HIV-1). Superinfection occurs at similar frequencies at acute and chronic infection stages but less frequently than primary infection. This observation indicates that the immune responses elicited by natural HIV-1 infection may play a role in curb of superinfection; however, these responses are not sufficiently strong to completely prevent superinfection. Thus, a successful HIV-1 vaccine likely needs to induce more potent and broader immune responses than those elicited by primary infection. On the other hand, potent and broad neutralization responses are more often detected after superinfection than during monoinfection. This suggests that broadly neutralizing antibodies are more likely induced by sequential immunization of multiple different immunogens than with only one form of envelope glycoprotein immunogens. Understanding why the protection from superinfection by immunity induced by primary infection is insufficient and if superinfection can lead to cross-reactive immune responses will be highly informative for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Wen Tian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Dual Infection Contributes to Rapid Disease Progression in Men Who Have Sex With Men in China. J Acquir Immune Defic Syndr 2017; 75:480-487. [PMID: 28490044 PMCID: PMC5483982 DOI: 10.1097/qai.0000000000001420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Considerable numbers of HIV-1–infected men who have sex with men (MSM) show a relatively rapid disease progression in China; however, the cause remains elusive. HIV-1 dual infection was reported to occur commonly among the MSM population, and its contribution to clinical prognosis remains controversial. We investigated the occurrence and impact on disease progression of dual infection in a prospective MSM cohort in China. Methods: Sixty-four HIV-1 early-infected participants were longitudinally followed up for 2 years. Deep sequencing was used as dual-infection screening. CD4+ T-cell counts and HIV-1 viral load were compared between coinfection and single-infection participants and pre- versus post-superinfection. Results: Eight coinfected participants and 10 superinfected participants were identified, including 9 participants with intersubtype and 9 with intrasubtype dual infections. The prevalence of coinfection was 13.1%, with a superinfection incidence of 15.6%. Coinfection participants showed lower CD4+ T-cell counts at 120 days after infection (P = 0.042) and a higher viral set point tendency (P = 0.053) as compared with single-infection participants. Kaplan–Meier analysis showed that the time for the viral load to increase to above 4 log10 copies per milliliter was shorter in coinfection participants than in single-infection participants (P < 0.001). After superinfection, the median CD4+ T-cell count decreased from 635 to 481 cells/μL (P = 0.027). Conclusions: The occurrence of dual infection among Chinese MSM is relatively high, and HIV-1 dual infection might contribute to rapid disease progression seen in the MSM population.
Collapse
|
21
|
No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 2017; 91:JVI.00769-17. [PMID: 28794047 DOI: 10.1128/jvi.00769-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
During primary HIV infection, the presence of minority drug resistance mutations (DRM) may be a consequence of sexual transmission, de novo mutations, or technical errors in identification. Baseline blood samples were collected from 24 HIV-infected antiretroviral-naive, genetically and epidemiologically linked source and recipient partners shortly after the recipient's estimated date of infection. An additional 32 longitudinal samples were available from 11 recipients. Deep sequencing of HIV reverse transcriptase (RT) was performed (Roche/454), and the sequences were screened for nucleoside and nonnucleoside RT inhibitor DRM. The likelihood of sexual transmission and persistence of DRM was assessed using Bayesian-based statistical modeling. While the majority of DRM (>20%) were consistently transmitted from source to recipient, the probability of detecting a minority DRM in the recipient was not increased when the same minority DRM was detected in the source (Bayes factor [BF] = 6.37). Longitudinal analyses revealed an exponential decay of DRM (BF = 0.05) while genetic diversity increased. Our analysis revealed no substantial evidence for sexual transmission of minority DRM (BF = 0.02). The presence of minority DRM during early infection, followed by a rapid decay, is consistent with the "mutation-selection balance" hypothesis, in which deleterious mutations are more efficiently purged later during HIV infection when the larger effective population size allows more efficient selection. Future studies using more recent sequencing technologies that are less prone to single-base errors should confirm these results by applying a similar Bayesian framework in other clinical settings.IMPORTANCE The advent of sensitive sequencing platforms has led to an increased identification of minority drug resistance mutations (DRM), including among antiretroviral therapy-naive HIV-infected individuals. While transmission of DRM may impact future therapy options for newly infected individuals, the clinical significance of the detection of minority DRM remains controversial. In the present study, we applied deep-sequencing techniques within a Bayesian hierarchical framework to a cohort of 24 transmission pairs to investigate whether minority DRM detected shortly after transmission were the consequence of (i) sexual transmission from the source, (ii) de novo emergence shortly after infection followed by viral selection and evolution, or (iii) technical errors/limitations of deep-sequencing methods. We found no clear evidence to support the sexual transmission of minority resistant variants, and our results suggested that minor resistant variants may emerge de novo shortly after transmission, when the small effective population size limits efficient purge by natural selection.
Collapse
|
22
|
Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response. J Virol 2017; 91:JVI.00475-17. [PMID: 28615205 DOI: 10.1128/jvi.00475-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection.IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection.
Collapse
|
23
|
Vesa J, Chaillon A, Wagner GA, Anderson CM, Richman DD, Smith DM, Little SJ. Increased HIV-1 superinfection risk in carriers of specific human leukocyte antigen alleles. AIDS 2017; 31:1149-1158. [PMID: 28244954 PMCID: PMC5559224 DOI: 10.1097/qad.0000000000001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the demographic, behavioural, clinical and immunogenetic determinants of HIV-1 superinfection in a high-risk cohort of MSM. DESIGN A retrospective cohort study of prospectively followed MSM. METHODS Ninety-eight MSM with acute or early HIV-1 monoinfection were followed for a median of 15.6 months. Demographic and human leukocyte antigen (HLA) genotype data were collected at enrolment. Sexual behaviour, clinical and the infection status (monoinfection or superinfection) data were recorded at each visit (at enrolment and thereafter at a median of 4.2-month intervals). HIV-1 superinfection risk was determined by Cox regression and Kaplan-Meier survival analysis. RESULTS Ten individuals (10.2%) had superinfection during follow-up. Cox regression did not show significantly increased superinfection risk for individuals with an increased amount of condomless anal intercourse, lower CD4 T-cell count or higher viral load, but higher number of sexual contacts demonstrated a trend towards significance [hazard ratio, 4.74; 95% confidence interval (95% CI), 0.87-25.97; P = 0.073]. HLA-A*29 (hazard ratio, 4.10; 95% CI, 0.88-14.76; P = 0.069), HLA-B*35 (hazard ratio, 4.64; 95% CI, 1.33-18.17; P = 0.017), HLA-C*04 (hazard ratio, 5.30; 95% CI, 1.51-20.77; P = 0.010), HLA-C*16 (hazard ratio, 4.05; 95% CI, 0.87-14.62; P = 0.071), HLA-DRB1*07 (hazard ratio, 3.29; 95% CI, 0.94-12.90; P = 0.062) and HLA-DRB1*08 (hazard ratio, 15.37; 95% CI, 2.11-79.80; P = 0.011) were associated with an increased risk of superinfection at α = 0.10, whereas HLA-DRB1*11 was associated with decreased superinfection risk (hazard ratio, 0.13; 95% CI, 0.00-1.03; P = 0.054). CONCLUSION HLA genes may, in part, elucidate the genetic basis of differential superinfection risk, and provide important information for the development of efficient prevention and treatment strategies of HIV-1 superinfection.
Collapse
Affiliation(s)
- Jouni Vesa
- University of California San Diego, La Jolla
| | | | | | | | - Douglas D. Richman
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Davey M. Smith
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
24
|
Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS One 2017; 12:e0173705. [PMID: 28288209 PMCID: PMC5348025 DOI: 10.1371/journal.pone.0173705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 11/22/2022] Open
Abstract
HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.
Collapse
|
25
|
Nedellec R, Herbeck JT, Hunt PW, Deeks SG, Mullins JI, Anton ED, Reeves JD, Mosier DE. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia. AIDS Res Hum Retroviruses 2017; 33:234-245. [PMID: 27604829 DOI: 10.1089/aid.2016.0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.
Collapse
Affiliation(s)
- Rebecca Nedellec
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| | - Joshua T. Herbeck
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, Washington
| | - Peter W. Hunt
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Elizabeth D. Anton
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Jacqueline D. Reeves
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Donald E. Mosier
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
26
|
Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J Neurovirol 2017; 23:460-473. [PMID: 28247269 DOI: 10.1007/s13365-017-0518-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Collapse
|
27
|
Lee VC, Sullivan PS, Baral SD. Global travel and HIV/STI epidemics among MSM: what does the future hold? Sex Health 2017; 14:51-58. [DOI: 10.1071/sh16099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
Abstract
Infectious disease epidemics occur within dynamic systems and environments that shape risk and, ultimately, the spread of infectious diseases. Gay men and other men who have sex with men (MSM) are disproportionately impacted by HIV everywhere in the world. Several emerging trends present risks for sustained or increased HIV acquisition and transmission, and the growth of global travel in the context of emerging online platforms for social/sexual networking is discussed here. Four factors associated with travel that could potentiate HIV transmission are highlighted: different patterns of sexual risk behaviours during travel; the growth of online tools to meet sex partners more efficiently; the global heterogeneity of HIV strains; and the potential for diassortative mixing of men from high- and low-HIV prevalence areas. Prevention tools and services must rise to these challenges, and innovative mobile applications and programs have played, and will continue to play, an important role in supporting MSM at risk for or living with HIV during their periods of travel.
Collapse
|
28
|
Novitsky V, Moyo S, Wang R, Gaseitsiwe S, Essex M. Deciphering Multiplicity of HIV-1C Infection: Transmission of Closely Related Multiple Viral Lineages. PLoS One 2016; 11:e0166746. [PMID: 27893822 PMCID: PMC5125632 DOI: 10.1371/journal.pone.0166746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A single viral variant is transmitted in the majority of HIV infections. However, about 20% of heterosexually transmitted HIV infections are caused by multiple viral variants. Detection of transmitted HIV variants is not trivial, as it involves analysis of multiple viral sequences representing intra-host HIV-1 quasispecies. METHODOLOGY We distinguish two types of multiple virus transmission in HIV infection: (1) HIV transmission from the same source, and (2) transmission from different sources. Viral sequences representing intra-host quasispecies in a longitudinally sampled cohort of 42 individuals with primary HIV-1C infection in Botswana were generated by single-genome amplification and sequencing and spanned the V1C5 region of HIV-1C env gp120. The Maximum Likelihood phylogeny and distribution of pairwise raw distances were assessed at each sampling time point (n = 217; 42 patients; median 5 (IQR: 4-6) time points per patient, range 2-12 time points per patient). RESULTS Transmission of multiple viral variants from the same source (likely from the partner with established HIV infection) was found in 9 out of 42 individuals (21%; 95 CI 10-37%). HIV super-infection was identified in 2 patients (5%; 95% CI 1-17%) with an estimated rate of 3.9 per 100 person-years. Transmission of multiple viruses combined with HIV super-infection at a later time point was observed in one individual. CONCLUSIONS Multiple HIV lineages transmitted from the same source produce a monophyletic clade in the inferred phylogenetic tree. Such a clade has transiently distinct sub-clusters in the early stage of HIV infection, and follows a predictable evolutionary pathway. Over time, the gap between initially distinct viral lineages fills in and initially distinct sub-clusters converge. Identification of cases with transmission of multiple viral lineages from the same source needs to be taken into account in cross-sectional estimation of HIV recency in epidemiological and population studies.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Medical Virology, Stellenbosch University, Tygerberg, South Africa
| | - Rui Wang
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | | | - M. Essex
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
29
|
Abstract
OBJECTIVE Compared with HIV monoinfection, HIV dual infection has been associated with decreased CD4 T-cell counts and increased viral loads. The same markers are also associated with the development of HIV-associated neurocognitive disorder (HAND), which continues to be a prevalent problem in the era of combination antiretroviral therapy (ART). We sought to determine the relationship between dual infection and HAND. METHODS Participants on ART (N = 38) underwent deep sequencing of four PCR-amplified HIV coding regions derived from peripheral blood mononuclear cell DNA samples. Phylogenetic analyses were performed to evaluate whether two distinct viral lineages, that is, dual infection, were present in the same individual. All study participants underwent neurocognitive, substance use, and neuromedical assessments at each study visit. RESULTS Of 38 participants, nine (23.7%) had evidence of dual infection. Using clinical ratings, global neurocognitive impairment was identified in 21 (55%) participants, and multivariate analysis demonstrated a significant association between dual infection and impairment; odds ratio (95% confidence interval) = 18.3 (1.9, 414.2), P = 0.028. Neurocognitive impairment was also associated with lower current (P = 0.028) and nadir (P = 0.043) CD4 T-cell counts. CONCLUSIONS Deep sequencing of HIV DNA populations in blood mononuclear cell identified dual infection in nearly a quarter of HIV-infected adults receiving ART, and dual infection was associated with HAND. Dual infection may contribute to the development of HAND, perhaps because of increased viral diversity. Further investigation is needed to determine how dual infection results in worse neurocognitive performance.
Collapse
|
30
|
Kotani H, Sudo K, Hasegawa N, Fujiwara H, Hayakawa T, Iketani O, Yamaguchi M, Mochizuki M, Iwata S, Kato S. Possible involvement of distinct phylogenetic clusters of HIV-1 variants in the discrepancies between coreceptor tropism predictions based on viral RNA and proviral DNA. J Pharm Health Care Sci 2016; 2:31. [PMID: 27833760 PMCID: PMC5103409 DOI: 10.1186/s40780-016-0065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/02/2016] [Indexed: 12/02/2022] Open
Abstract
Background The coreceptor tropism testing should be conducted prior to commencing a regimen containing a CCR5 antagonist for treatment of HIV-1 infection. For aviremic patients on long antiretroviral therapy, proviral DNA is often used instead of viral RNA in genotypic tropism testing. However, the tropism predictions from RNA and DNA are sometimes different. We examined the cause of the discrepancies between HIV-1 tropism predictions based on viral RNA and proviral DNA. Methods The nucleotide sequence of the env C2V3C3 region was determined using pair samples of plasma RNA and peripheral blood mononuclear cell DNA from 50 HIV-1 subtype B-infected individuals using population-based sequencing. The samples with discrepant tropism assessments between RNA and DNA were further analyzed using deep sequencing, followed by phylogenetic analysis. The tropism was assessed using the algorithm geno2pheno with a false-positive rate cutoff of 10 %. Results In population-based sequencing, five of 50 subjects showed discrepant tropism predictions between their RNA and DNA samples: four exhibited R5 tropism in RNA and X4 tropism in DNA, while one exhibited the opposite pattern. In the deep sequencing and phylogenetic analysis, three subjects had single clusters comprising of RNA- and DNA-derived sequences that were a mixture of R5 and X4 sequences. The other two subjects had two and three distinct phylogenetic clusters of sequences, respectively, each of which was dominated by R5 or X4 sequences; sequences of the R5-dominated cluster were mostly found in RNA, while sequences of the X4-dominated cluster were mostly in DNA. Conclusions Some of HIV-1 tropism discrepancies between viral RNA and proviral DNA seem to be caused by phylogenetically distinct clusters which resides in plasma and cells in different frequencies. Our findings suggest that the tropism testing using PBMC DNA or deep sequencing may be required when the viral load is not suppressed or rebounds in the course of a CCR5 antagonist-containing regimen.
Collapse
Affiliation(s)
- Hiroshi Kotani
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Koji Sudo
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hiroshi Fujiwara
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Tomohisa Hayakawa
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Osamu Iketani
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masaya Yamaguchi
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Mayumi Mochizuki
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Satoshi Iwata
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Shingo Kato
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
31
|
Gianella S, Kosakovsky Pond SL, Oliveira MF, Scheffler K, Strain MC, De la Torre A, Letendre S, Smith DM, Ellis RJ. Compartmentalized HIV rebound in the central nervous system after interruption of antiretroviral therapy. Virus Evol 2016; 2:vew020. [PMID: 27774305 PMCID: PMC5072458 DOI: 10.1093/ve/vew020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To design effective eradication strategies, it may be necessary to target HIV reservoirs in anatomic compartments other than blood. This study examined HIV RNA rebound following interruption of antiretroviral therapy (ART) in blood and cerebrospinal fluid (CSF) to determine whether the central nervous system (CNS) might serve as an independent source of resurgent viral replication. Paired blood and CSF samples were collected longitudinally from 14 chronically HIV-infected individuals undergoing ART interruption. HIV env (C2-V3), gag (p24) and pol (reverse transcriptase) were sequenced from cell-free HIV RNA and cell-associated HIV DNA in blood and CSF using the Roche 454 FLX Titanium platform. Comprehensive sequence and phylogenetic analyses were performed to search for evidence of unique or differentially represented viral subpopulations emerging in CSF supernatant as compared with blood plasma. Using a conservative definition of compartmentalization based on four distinct statistical tests, nine participants presented a compartmentalized HIV RNA rebound within the CSF after interruption of ART, even when sampled within 2 weeks from viral rebound. The degree and duration of viral compartmentalization varied considerably between subjects and between time-points within a subject. In 10 cases, we identified viral populations within the CSF supernatant at the first sampled time-point after ART interruption, which were phylogenetically distinct from those present in the paired blood plasma and mostly persisted over time (when longitudinal time-points were available). Our data suggest that an independent source of HIV RNA contributes to viral rebound within the CSF after treatment interruption. The most likely source of compartmentalized HIV RNA is a CNS reservoir that would need to be targeted to achieve complete HIV eradication.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matt C Strain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio De la Torre
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathog 2016; 12:e1005619. [PMID: 27163788 PMCID: PMC4862634 DOI: 10.1371/journal.ppat.1005619] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. While the global spread of HIV-1 has been fueled by sexual transmission the genetic determinants underlying the transmission bottleneck remains poorly understood. Here we characterized founder virus population diversity from next generation sequencing data in a cohort of 74 acute and early HIV-1 infected individuals. We observe that the risk of multi-variant infection in men-who-have-sex-with-men (MSM) is not greater than that observed for heterosexuals (HSX), contrary to reports of higher rates of multiple founder virus infections in higher-risk MSM transmissions. These findings were further supported through a metadata analysis of 354 acute and early HIV-1 subjects. We did, however, observe differences between HSM and MSM founder viruses, including a higher selection barrier in HSX transmission with founder viruses being more cohort consensus-like that may be reflective of increased replicative fitness. We also identified a number of residues within Envelope that behave in a risk-dependent manner and could be key for HIV-1 transmission. These novel insights improve our understanding of the HIV-1 transmission bottleneck and underscore the differential selective pressures that founder viruses within the two major transmission risk groups are subjected to.
Collapse
|
33
|
Cornelissen M, Euler Z, van den Kerkhof TL, van Gils MJ, Boeser-Nunnink BD, Kootstra NA, Zorgdrager F, Schuitemaker H, Prins JM, Sanders RW, van der Kuyl AC. The Neutralizing Antibody Response in an Individual with Triple HIV-1 Infection Remains Directed at the First Infecting Subtype. AIDS Res Hum Retroviruses 2016; 32:1135-1142. [PMID: 26910384 DOI: 10.1089/aid.2015.0324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The effect of serial HIV-1 infection on the development of the broadly neutralizing antibody (bNAb) response was studied in an individual, H01-10366, with a serial HIV-1 superinfection (SI), hence triple infection, and compared with the bNAb response in three superinfected as well as 11 monoinfected men who have had sex with men (MSM) from Amsterdam, the Netherlands. Neutralization assays measuring heterologous neutralizing antibody (NAb) titers on a panel of six representative viruses from different HIV-1 subtypes were performed on blood serum samples obtained ∼3 years after primary HIV infection (PHI) and longitudinally for H01-10366. A bNAb response was defined as having a geometric mean neutralization titer (the reciprocal serum dilution giving 50% inhibition of virus infection, inhibitory dilution (ID50)) ≥100 and neutralizing >50% of viruses in the panel with an ID50 titer ≥100. H01-10366 quickly developed a potent NAb response against subtype B viruses before subtype B SI, but no broadening of the response occurred after the second subtype B infection or the third infection with CRF01_AE. When comparing H01-10366 with matched monoinfected (N = 11) and superinfected (N = 3) individuals analyzed 3 years after PHI, we found that 5 of the 15 individuals (4/11 monoinfected, 1/4 SI) developed a bNAb response. However, there was no statistically discernible difference between the bNAb response and HIV-1 SI. Thus, HIV-1 SI was not associated with the breadth and potency of the bNAb response in this small group of Dutch MSM with SI that included a triple HIV-1-infected individual.
Collapse
Affiliation(s)
- Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Zelda Euler
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom L.G.M. van den Kerkhof
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan M. Prins
- Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York
| | - Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Martin F, Lee J, Thomson E, Tarrant N, Hale A, Lacey CJ. Two cases of possible transmitted drug-resistant HIV: likely HIV superinfection and unmasking of pre-existing resistance. Int J STD AIDS 2016; 27:66-9. [PMID: 25663247 PMCID: PMC4674743 DOI: 10.1177/0956462415571671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022]
Abstract
In the UK, patients undergo HIV viral load and genotype testing before they are prescribed antiretroviral therapy. The genotype test guides clinicians in prescribing antiretroviral therapy with maximum efficacy against the patient's specific viral strain. HIV viral load escape under antiretroviral drug therapy, to which the virus was thought to be genotypically susceptible, is commonly observed in patients with poor adherence. We observed early viral escapes in two-newly diagnosed patients, during antiretroviral treatment, with different sequences compared to their original viral resistance test and who reported excellent adherence to and tolerance of their therapy. HIV superinfection with a new viral strain was identified in a patient with multiple risk factors and co-infections with sexually transmitted infections. The second patient was a case of the emergence of primary resistant virus under drug pressure. Both suppressed their virus promptly after treatment switch.
Collapse
Affiliation(s)
- Fabiola Martin
- Centre for Immunology and Infection, Department of Biology, University of York, York, UK
| | - John Lee
- Genitourinary Department, Josephine Butler Centre King Street Health Centre, Wakefield, UK
| | - Emma Thomson
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nick Tarrant
- Genitourinary Department, York Teaching Hospital, York, UK
| | - Antony Hale
- Department of Virology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Charles J Lacey
- Centre for Immunology and Infection, Department of Biology, University of York, York, UK
| |
Collapse
|
35
|
Redd AD, Wendel SK, Longosz AF, Fogel JM, Dadabhai S, Kumwenda N, Sun J, Walker MP, Bruno D, Martens C, Eshleman SH, Porcella SF, Quinn TC, Taha TE. Evaluation of postpartum HIV superinfection and mother-to-child transmission. AIDS 2015; 29:1567-73. [PMID: 26244396 PMCID: PMC4609898 DOI: 10.1097/qad.0000000000000740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study examined HIV superinfection in HIV-infected women postpartum, and its association with mother-to-child transmission (MTCT). DESIGN Plasma samples were obtained from HIV-infected women who transmitted HIV to their infants after 6 weeks of age (transmitters, n = 91) and HIV-infected women who did not transmit HIV to their infants (nontransmitters, n = 91). These women were originally enrolled in a randomized trial for prevention of MTCT of HIV in Malawi (Post-Exposure Prophylaxis of Infants trial in Malawi). METHODS Two HIV genomic regions (p24 and gp41) were analyzed by next-generation sequencing for HIV superinfection. HIV superinfection was established if the follow-up sample contained a new, phylogenetically distinct viral population. HIV superinfection and transmission risk were examined by multiple logistic regression, adjusted for Post-Exposure Prophylaxis of Infants study arm, baseline viral load, baseline CD4 cell count, time to resumption of sex, and breastfeeding duration. RESULTS Transmitters had lower baseline CD4 cell counts (P = 0.001) and higher viral loads (P < 0.0001) compared with nontransmitters. There were five cases of superinfection among transmitters (rate of superinfection = 4.7/100 person-years) compared with five cases among the nontransmitters (rate of superinfection = 4.4/100 person-years; P = 0.78). HIV superinfection was not associated with increased risk of postnatal MTCT of HIV after controlling for maternal age, baseline viral load, and CD4 cell count (adjusted odds ratio = 2.32, P = 0.30). Longer breastfeeding duration was independently associated with a lower risk of HIV superinfection after controlling for study arm and baseline viral load (P = 0.05). CONCLUSION There was a significant level of HIV superinfection in women postpartum, but this was not associated with an increased risk of MTCT via breastfeeding.
Collapse
Affiliation(s)
- Andrew D. Redd
- Laboratory of Immunoregulation, NIAID, NIH
- Johns Hopkins School of Medicine, Johns Hopkins University
| | | | | | | | - Sufia Dadabhai
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University
| | - Newton Kumwenda
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University
| | - Jin Sun
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University
| | - Michael P. Walker
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH
| | - Daniel Bruno
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH
| | | | - Stephen F. Porcella
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH
| | - Thomas C. Quinn
- Laboratory of Immunoregulation, NIAID, NIH
- Johns Hopkins School of Medicine, Johns Hopkins University
| | - Taha E. Taha
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University
| |
Collapse
|
36
|
HIV-1 neutralizing antibody response and viral genetic diversity characterized with next generation sequencing. Virology 2014; 474:34-40. [PMID: 25463602 DOI: 10.1016/j.virol.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
To better understand the dynamics of HIV-specific neutralizing antibody (NAb), we examined associations between viral genetic diversity and the NAb response against a multi-subtype panel of heterologous viruses in a well-characterized, therapy-naïve primary infection cohort. Using next generation sequencing (NGS), we computed sequence-based measures of diversity within HIV-1 env, gag and pol, and compared them to NAb breadth and potency as calculated by a neutralization score. Contemporaneous env diversity and the neutralization score were positively correlated (p=0.0033), as were the neutralization score and estimated duration of infection (EDI) (p=0.0038), and env diversity and EDI (p=0.0005). Neither early env diversity nor baseline viral load correlated with future NAb breadth and potency (p>0.05). Taken together, it is unlikely that neutralizing capability in our cohort was conditioned on viral diversity, but rather that env evolution was driven by the level of NAb selective pressure.
Collapse
|
37
|
HIV-1 superinfection is associated with an accelerated viral load increase but has a limited impact on disease progression. AIDS 2014; 28:2281-6. [PMID: 25102090 DOI: 10.1097/qad.0000000000000422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE HIV-1 superinfection occurs frequently in high-risk populations, but its clinical consequences remain poorly characterized. We undertook this study to determine the impact of HIV-1 superinfection on disease progression. DESIGN/METHODS In the largest prospective cohort study of superinfection to date, we compared measures of HIV-1 progression in women who acquired superinfection with those who did not. Clinical and laboratory data were collected at quarterly intervals. Linear mixed effects models were used to compare postacute viral load and CD4 T-cell counts over time in singly infected and superinfected women. Cox proportional hazards analysis was used to determine the effect of superinfection on time to clinical progression [CD4 cell count <200 cells/μl, antiretroviral therapy (ART) initiation or death]. RESULTS Among 144 women, 21 of whom acquired superinfection during follow-up, the rate of viral load increase was higher in superinfected than in singly infected women (P = 0.0008). In adjusted analysis, superinfected women had lower baseline viral load before superinfection (P = 0.05) and a trend for increased viral load at superinfection acquisition (P = 0.09). We also observed a borderline association of superinfection with accelerated CD4 cell count decline (P = 0.06). However, there was no significant difference in time to clinical progression events. CONCLUSION These data suggest that superinfection is associated with accelerated progression in laboratory measures of HIV-1 disease, but has a limited impact on the occurrence of clinical events. Our observation that superinfected individuals have lower baseline viral load prior to superinfection suggests that there may be host or viral determinants of susceptibility to superinfection.
Collapse
|
38
|
Redd AD, Ssemwanga D, Vandepitte J, Wendel SK, Ndembi N, Bukenya J, Nakubulwa S, Grosskurth H, Parry CM, Martens C, Bruno D, Porcella SF, Quinn TC, Kaleebu P. Rates of HIV-1 superinfection and primary HIV-1 infection are similar in female sex workers in Uganda. AIDS 2014; 28:2147-2152. [PMID: 25265078 PMCID: PMC4921228 DOI: 10.1097/qad.0000000000000365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine and compare the rates of HIV superinfection and primary HIV infection in high-risk female sex workers (FSWs) in Kampala, Uganda. DESIGN A retrospective analysis of individuals who participated in a clinical cohort study among high-risk FSWs in Kampala, Uganda. METHODS Plasma samples from HIV-infected FSWs in Kampala, Uganda were examined with next-generation sequencing of the p24 and gp41 HIV genomic regions for the occurrence of superinfection. Primary HIV incidence was determined from initially HIV-uninfected FSWs from the same cohort, and incidence rate ratios were compared. RESULTS The rate of superinfection in these women (7/85; 3.4/100 person-years) was not significantly different from the rate of primary infection in the same population (3.7/100 person-years; incidence rate ratio = 0.91, P = 0.42). Seven women also entered the study dual-infected (16.5% either dual or superinfected). The women with any presence of dual infection were more likely to report sex work as their only source of income (P = 0.05), and trended to be older and more likely to be widowed (P = 0.07). CONCLUSIONS In this cohort of FSWs, HIV superinfection occurred at a high rate and was similar to that of primary HIV infection. These results differ from a similar study of high-risk female bar workers in Kenya that found the rate of superinfection to be significantly lower than the rate of primary HIV infection.
Collapse
Affiliation(s)
- Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Judith Vandepitte
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Sarah K Wendel
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, USA
| | - Nicaise Ndembi
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Justine Bukenya
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Susan Nakubulwa
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Heiner Grosskurth
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Chris M Parry
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH, Hamilton MT, USA
| | - Daniel Bruno
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH, Hamilton MT, USA
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH, Hamilton MT, USA
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute Research Unit on AIDS, Entebbe, Uganda
| |
Collapse
|
39
|
Marrazzo JM, del Rio C, Holtgrave DR, Cohen MS, Kalichman SC, Mayer KH, Montaner JSG, Wheeler DP, Grant RM, Grinsztejn B, Kumarasamy N, Shoptaw S, Walensky RP, Dabis F, Sugarman J, Benson CA. HIV prevention in clinical care settings: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 2014; 312:390-409. [PMID: 25038358 PMCID: PMC6309682 DOI: 10.1001/jama.2014.7999] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE Emerging data warrant the integration of biomedical and behavioral recommendations for human immunodeficiency virus (HIV) prevention in clinical care settings. OBJECTIVE To provide current recommendations for the prevention of HIV infection in adults and adolescents for integration in clinical care settings. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS Data published or presented as abstracts at scientific conferences (past 17 years) were systematically searched and reviewed by the International Antiviral (formerly AIDS) Society-USA HIV Prevention Recommendations Panel. Panel members supplied additional relevant publications, reviewed available data, and formed recommendations by full-panel consensus. RESULTS Testing for HIV is recommended at least once for all adults and adolescents, with repeated testing for those at increased risk of acquiring HIV. Clinicians should be alert to the possibility of acute HIV infection and promptly pursue diagnostic testing if suspected. At diagnosis of HIV, all individuals should be linked to care for timely initiation of antiretroviral therapy (ART). Support for adherence and retention in care, individualized risk assessment and counseling, assistance with partner notification, and periodic screening for common sexually transmitted infections (STIs) is recommended for HIV-infected individuals as part of care. In HIV-uninfected patients, those persons at high risk of HIV infection should be prioritized for delivery of interventions such as preexposure prophylaxis and individualized counseling on risk reduction. Daily emtricitabine/tenofovir disoproxil fumarate is recommended as preexposure prophylaxis for persons at high risk for HIV based on background incidence or recent diagnosis of incident STIs, use of injection drugs or shared needles, or recent use of nonoccupational postexposure prophylaxis; ongoing use of preexposure prophylaxis should be guided by regular risk assessment. For persons who inject drugs, harm reduction services should be provided (needle and syringe exchange programs, supervised injection, and available medically assisted therapies, including opioid agonists and antagonists); low-threshold detoxification and drug cessation programs should be made available. Postexposure prophylaxis is recommended for all persons who have sustained a mucosal or parenteral exposure to HIV from a known infected source and should be initiated as soon as possible. CONCLUSIONS AND RELEVANCE Data support the integration of biomedical and behavioral approaches for prevention of HIV infection in clinical care settings. A concerted effort to implement combination strategies for HIV prevention is needed to realize the goal of an AIDS-free generation.
Collapse
Affiliation(s)
| | | | - David R Holtgrave
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | | - Beatriz Grinsztejn
- Evandro Chagas Clinical Research Institute (IPEC)-FIOCRUZ, Rio de Janeiro, Brazil
| | - N Kumarasamy
- YR Gaitonde Centre for AIDS Research and Education, Chennai, India
| | | | | | | | | | | |
Collapse
|
40
|
Limited HIV-1 superinfection in seroconverters from the CAPRISA 004 Microbicide Trial. J Clin Microbiol 2013; 52:844-8. [PMID: 24371237 DOI: 10.1128/jcm.03143-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV-1 superinfection (SI) occurs when an infected individual acquires a distinct new viral strain. The rate of superinfection may be reflective of the underlying HIV risk in a population. The Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 clinical trial demonstrated that women who used a tenofovir-containing microbicide gel had lower rates of HIV infection than women using a placebo gel. Women who contracted HIV-1 during the trial were screened for the occurrence of superinfection by next-generation sequencing of the viral gag and env genes. There were two cases (one in each trial arm) of subtype C superinfection identified from the 76 women with primary infection screened at two time points (rate of superinfection, 1.5/100 person-years). Both women experienced a >0.5-log increase in viral load during the window when superinfection occurred. The rate of superinfection was significantly lower than the overall primary HIV incidence in the microbicide trial (incidence rate ratio [IRR], 0.20; P=0.003). The women who seroconverted during the trial reported a significant increase in sexual contact with their stable partner 4 months after seroconversion (P<0.001), which may have lowered the risk of superinfection in this population. The lower frequency of SI compared to the primary incidence is in contrast to a report from a general heterosexual African population but agrees with a study of high-risk women in Kenya. A better understanding of the rate of HIV superinfection could have important implications for ongoing HIV vaccine research.
Collapse
|