1
|
van Eekeren LE, Matzaraki V, Zhang Z, van de Wijer L, Blaauw MJT, de Jonge MI, Vandekerckhove L, Trypsteen W, Joosten LAB, Netea MG, de Mast Q, Koenen HJPM, Li Y, van der Ven AJAM. People with HIV have higher percentages of circulating CCR5+ CD8+ T cells and lower percentages of CCR5+ regulatory T cells. Sci Rep 2022; 12:11425. [PMID: 35794176 PMCID: PMC9259737 DOI: 10.1038/s41598-022-15646-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhenhua Zhang
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa van de Wijer
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc J T Blaauw
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Leo A B Joosten
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - André J A M van der Ven
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Beckford-Vera DR, Flavell RR, Seo Y, Martinez-Ortiz E, Aslam M, Thanh C, Fehrman E, Pardons M, Kumar S, Deitchman AN, Ravanfar V, Schulte B, Wu IWK, Pan T, Reeves JD, Nixon CC, Iyer NS, Torres L, Munter SE, Hyunh T, Petropoulos CJ, Hoh R, Franc BL, Gama L, Koup RA, Mascola JR, Chomont N, Deeks SG, VanBrocklin HF, Henrich TJ. First-in-human immunoPET imaging of HIV-1 infection using 89Zr-labeled VRC01 broadly neutralizing antibody. Nat Commun 2022; 13:1219. [PMID: 35264559 PMCID: PMC8907355 DOI: 10.1038/s41467-022-28727-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody, 89Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in 89Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (N = 5) and on suppressive ART (N = 5) compared to uninfected controls (N = 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.
Collapse
Affiliation(s)
- Denis R Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Enrique Martinez-Ortiz
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Thanh
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Emily Fehrman
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Shreya Kumar
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Vahid Ravanfar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Brailee Schulte
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - I-Wei Katherine Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Tony Pan
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline D Reeves
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher C Nixon
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nikita S Iyer
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leonel Torres
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sadie E Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony Hyunh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Christos J Petropoulos
- Monogram Biosciences, Inc., Laboratory Corporation of America, South San Francisco, San Francisco, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L Franc
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Lucio Gama
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Tebas P, Jadlowsky JK, Shaw PA, Tian L, Esparza E, Brennan AL, Kim S, Naing SY, Richardson MW, Vogel AN, Maldini CR, Kong H, Liu X, Lacey SF, Bauer AM, Mampe F, Richman LP, Lee G, Ando D, Levine BL, Porter DL, Zhao Y, Siegel DL, Bar KJ, June CH, Riley JL. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J Clin Invest 2021; 131:144486. [PMID: 33571163 PMCID: PMC8011906 DOI: 10.1172/jci144486] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
BackgroundWe conducted a phase I clinical trial that infused CCR5 gene-edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.MethodsThe aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene-edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene-edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.ResultsInfusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.ConclusionThese findings demonstrate how CCR5 gene-edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATIONClinicalTrials.gov NCT02388594.FundingNIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.
Collapse
Affiliation(s)
| | | | - Pamela A. Shaw
- Department of Biostatistics, Epidemiology and Informatics, and
| | - Lifeng Tian
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin Esparza
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea L. Brennan
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Ashley N. Vogel
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby R. Maldini
- Department of Microbiology and Center for Cellular Immunotherapies
| | - Hong Kong
- Department of Microbiology and Center for Cellular Immunotherapies
| | - Xiaojun Liu
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon F. Lacey
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Gary Lee
- Sangamo Therapeutics Inc., Richmond, California, USA
| | - Dale Ando
- Sangamo Therapeutics Inc., Richmond, California, USA
| | - Bruce L. Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Yangbing Zhao
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Carl H. June
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies
| |
Collapse
|
4
|
Cardozo-Ojeda EF, Duke ER, Peterson CW, Reeves DB, Mayer BT, Kiem HP, Schiffer JT. Thresholds for post-rebound SHIV control after CCR5 gene-edited autologous hematopoietic cell transplantation. eLife 2021; 10:57646. [PMID: 33432929 PMCID: PMC7803377 DOI: 10.7554/elife.57646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023] Open
Abstract
Autologous, CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC) transplantation is a promising strategy for achieving HIV remission. However, only a fraction of HSPCs can be edited ex vivo to provide protection against infection. To project the thresholds of CCR5-edition necessary for HIV remission, we developed a mathematical model that recapitulates blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted HSPCs are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76–94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur.
Collapse
Affiliation(s)
- E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States
| | - Elizabeth R Duke
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States.,Department of Medicine, University of Washington, Seattle, United States
| | - Christopher W Peterson
- Department of Medicine, University of Washington, Seattle, United States.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Daniel B Reeves
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States
| | - Hans-Peter Kiem
- Department of Medicine, University of Washington, Seattle, United States.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Pathology, University of Washington, Seattle, United States
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States.,Department of Medicine, University of Washington, Seattle, United States.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
5
|
Ruiz-Mateos E, Tarancon-Diez L, Alvarez-Rios AI, Dominguez-Molina B, Genebat M, Pulido I, Abad MA, Muñoz-Fernandez MA, Leal M. Association of heterozygous CCR5Δ32 deletion with survival in HIV-infection: A cohort study. Antiviral Res 2017; 150:15-19. [PMID: 29221798 DOI: 10.1016/j.antiviral.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022]
Abstract
The role of a 32 base pair deletion in the CCR5 gene (CCR5Δ32) in HIV-disease progression and response to combined antiretroviral therapy (cART) is well established. However, the impact of CCR5Δ32 in the long-term survival pre-cART and after cART introduction in a large cohort of HIV-infected patients is unknown. We analyzed the association of CCR5Δ32 deletion in the long-term survival of HIV-infected patients recruited between June 1981 and October 2016 (n = 1006). Clinical and epidemiological variables were recorded and CCR5Δ32 deletion was assessed by PCR and electrophoretic analysis. The association of CCR5Δ32 deletion with the time to death was analyzed by Log-Rank tests and Cox Regression models. The CCR5 WT/Δ32 prevalence was 13.4% (n = 135). We did not find any homozygous subject for CCR5Δ32 deletion. AIDS (n = 85, 41.5%) and non-AIDS (n = 87, 42.4%) events were the main causes of 205 deaths. CCR5Δ32 deletion was independently associated with survival (p = 0.022; hazard ratio (HR): 0.572, confidence interval (CI) [0.354-0.923]), after adjusting by HIV diagnosis before 1997, age at diagnosis, being on cART, risk of transmission, nadir CD4+ T-cell counts and CDC stage C. This result was reproduced when the analysis was restricted to patients on cART (p = 0.045; HR: 0.530 [0.286-0.985]). These results confirm the protective role of CCR5Δ32, and extend it to the long-term survival in a large cohort of HIV-infected patients. Beyond its antiviral effect, CCR5Δ32 enhanced the long-term survival of patients on cART.
Collapse
Affiliation(s)
- Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.
| | - Laura Tarancon-Diez
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Ana I Alvarez-Rios
- Department of Clinical Biochemistry, Virgen del Rocio University Hospital (IBiS/CSIC/SAS/University of Seville), Seville, Spain
| | - Beatriz Dominguez-Molina
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Miguel Genebat
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Ildefonso Pulido
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Maria Antonia Abad
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Maria Angeles Muñoz-Fernandez
- Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Highly active antiretroviral treatment has dramatically improved the prognosis for people living with HIV by preventing AIDS-related morbidity and mortality through profound suppression of viral replication. However, a long-lived viral reservoir persists in latently infected cells that harbor replication-competent HIV genomes. If therapy is discontinued, latently infected memory cells inevitably reactivate and produce infectious virus, resulting in viral rebound. The reservoir is the biggest obstacle to a cure of HIV. RECENT FINDINGS This review summarizes significant advances of the past year in the development of cellular and gene therapies for HIV cure. In particular, we highlight work done on suppression or disruption of HIV coreceptors, vectored delivery of antibodies and antibody-like molecules, T-cell therapies and HIV genome disruption. SUMMARY Several recent advancements in cellular and gene therapies have emerged at the forefront of HIV cure research, potentially having broad implications for the future of HIV treatment.
Collapse
|
7
|
Martínez-Bonet M, González-Serna A, Clemente MI, Morón-López S, Díaz L, Navarro M, Puertas MC, Leal M, Ruiz-Mateos E, Martinez-Picado J, Muñoz-Fernández MA. Relationship between CCR5 (WT/Δ32) heterozygosity and HIV-1 reservoir size in adolescents and young adults with perinatally acquired HIV-1 infection. Clin Microbiol Infect 2016; 23:318-324. [PMID: 28042001 DOI: 10.1016/j.cmi.2016.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several host factors contribute to human immunodeficiency virus (HIV) disease progression in the absence of combination antiretroviral therapy (cART). Among them, the CC-chemokine receptor 5 (CCR5) is known to be the main co-receptor used by HIV-1 to enter target cells during the early stages of an HIV-1 infection. OBJECTIVE We evaluated the association of CCR5(WT/Δ32) heterozygosity with HIV-1 reservoir size, lymphocyte differentiation, activation and immunosenescence in adolescents and young adults with perinatally acquired HIV infection receiving cART. METHODS CCR5 genotype was analysed in 242 patients with vertically transmitted HIV-1 infection from Paediatric Spanish AIDS Research Network Cohort (coRISpe). Proviral HIV-1 DNA was quantified by digital-droplet PCR, and T-cell phenotype was evaluated by flow cytometry in a subset of 24 patients (ten with CCR5(Δ32/WT) genotype and 14 with CCR5(WT/WT) genotype). RESULTS Twenty-three patients were heterozygous for the Δ32 genotype but none was homozygous for the mutated CCR5 allele. We observed no difference in the HIV-1 reservoir size (455 and 578 copies of HIV-1 DNA per million CD4+ T cells in individuals with CCR5(WT/WT) and CCR5(Δ32/WT) genotypes, respectively; p 0.75) or in the immune activation markers between both genotype groups. However, we found that total HIV-1 DNA in CD4+ T cells correlated with the percentage of memory CD4+ T cells: a direct correlation in CCR5(WT/Δ32) patients but an inverse correlation in those with the CCR5(WT/WT) genotype. CONCLUSIONS This finding suggests a differential distribution of the viral reservoir compartment in CCR5(WT/Δ32) patients with perinatal HIV infection, which is a characteristic that may affect the design of strategies for reservoir elimination.
Collapse
Affiliation(s)
- M Martínez-Bonet
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - A González-Serna
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - M I Clemente
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - S Morón-López
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - L Díaz
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Navarro
- Department of Infection Disease Section, Paediatric Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - M Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - E Ruiz-Mateos
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - J Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - M A Muñoz-Fernández
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The introduction of effective antiretroviral therapy (ART) has transformed HIV infection from a deadly to a chronic infection. Despite its successes in reducing mortality, ART fails to cure HIV allowing HIV to persist in vivo. HIV persistence under ART is thought to be mediated by a combination of latent infection of long-lived cells, homeostatic proliferation of latently infected cells, anatomic sanctuaries, and low-level virus replication. To understand the contribution of specific cell types and anatomic sites to virus persistence in vivo animal models are necessary. RECENT FINDINGS The advancements in ART and our understanding of animal models have facilitated the development of models of HIV persistence in nonhuman primates and mice. Simian immunodeficiency virus (SIV) or simian/HIV infection (SHIV) of rhesus and pigtail macaques followed by effective ART represents the most faithful animal model of HIV persistence. HIV infection of humanized mice also provides a useful model for answering specific questions regarding virus persistence in a uniquely mutable system. SUMMARY In this review, we describe the most recent findings using animal models of HIV persistence. We will first describe the important aspects of HIV infection that SIV/SHIV infection of nonhuman primates are able to recapitulate, then we will discuss some recent studies that have used these models to understand viral persistence.
Collapse
|