1
|
Han J, Yang C, Xiao Y, Li J, Jin N, Li Y. Influenza B Virus: Target and acting mechanism of antiviral drugs. Microb Pathog 2024:107051. [PMID: 39442816 DOI: 10.1016/j.micpath.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The influenza B virus is one of the causes of seasonal influenza, which has a long history of existence in various populations. Adolescents, children, pregnant women, the elderly, as well as patients with major diseases such as high blood pressure, diabetes, and cancer, and those with low immunity are more susceptible to infection by the influenza virus. During the influenza seasons, the influenza B virus can cause significant harm and economic burden. At present, neuraminidase inhibitors, hemagglutinin inhibitors and RNA polymerase inhibitors are the main antiviral drugs that are used in the clinical treatment of influenza B. Due to the repeated use of antiviral drugs in recent years, the emergence of resistant strains of the influenza virus exacerbated. By combining anti-viral drugs with different mechanisms of action or using a combination of traditional Chinese medicine and chemical drugs, the problem of reduced drug sensitivity can be improved. This article introduces the drug targets of the influenza B virus and the mechanism of virus resistance. It also emphasizes the clinically used antiviral drugs and their mechanisms of action, thereby providing a reference basis for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chunhui Yang
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yan Xiao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China.
| | - Jingjing Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
2
|
Kiso M, Yamayoshi S, Kawaoka Y. Efficacy of favipiravir against influenza virus resistant to both baloxavir and neuraminidase inhibitors. J Antimicrob Chemother 2023; 78:1649-1657. [PMID: 37209424 PMCID: PMC10320054 DOI: 10.1093/jac/dkad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVES Widespread resistance of influenza viruses to neuraminidase (NA) inhibitor or polymerase inhibitor, baloxavir, is a major public health concern. The amino acid mutations R152K in NA and I38T in polymerase acidic (PA) are responsible for resistance to NA inhibitors and baloxavir, respectively. METHODS We generated recombinant A(H1N1)pdm09 viruses possessing NA-R152K, PA-I38T or both mutations by using a plasmid-based reverse genetics system, characterized their virological properties in vitro and in vivo, and examined whether oseltamivir, baloxavir and favipiravir are effective against these mutant viruses. RESULTS The three mutant viruses showed similar or superior growth kinetics and virulence to those of wild-type virus. Although oseltamivir and baloxavir blocked the replication of the wild-type virus in vitro, oseltamivir and baloxavir failed to suppress the replication of the NA-R152K and PA-I38T viruses in vitro, respectively. Mutant virus possessing both mutations grew in the presence of oseltamivir or baloxavir in vitro. Baloxavir treatment protected mice from lethal infection with wild-type or NA-R152K virus, but failed to protect mice from lethal infection with PA-I38T or PA-I38T/NA-R152K virus. Favipiravir treatment protected mice from lethal infection with all viruses tested, whereas oseltamivir treatment did not protect at all. CONCLUSIONS Our findings indicate that favipiravir should be used to treat patients with suspected baloxavir-resistant virus infection.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison WI, USA
| |
Collapse
|
3
|
Mu S, Zou X, Wang Y, Deng X, Cui D, Liu S, Cao B. The combined effect of oseltamivir and favipiravir on influenza a virus evolution in patients hospitalized with severe influenza. Antiviral Res 2023:105657. [PMID: 37369282 DOI: 10.1016/j.antiviral.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Our previous study shows favipiravir and oseltamivir combination therapy may accelerate clinical recovery compared to oseltamivir monotherapy in severe influenza, but its effect on virological evolution and resistance mutation against oseltamivir is still unknown. In this study, we collected longitudinal respiratory samples from influenza patients who underwent combination therapy and applied them to next generation sequencing of the whole genome of the influenza A virus (IAV). We also included a cohort untreated with any antivirals to serve as the control. In total, 62 samples from 19 patients treated with combination therapy and 20 samples from 20 patients untreated were successfully sequenced. The nucleotide diversity in the whole genome of IAV in the combination group showed no difference compared to that in the control group (P > 0.05). Moreover, we observed 174 kinds of nonsynonymous nucleotide substitutions in patients with combination therapy, mostly in NA (n = 44) and HA (n = 43). Of them, the G→A transition was the dominant variant type (27%) and 46/174 (26%) was reported to have biological effects, such as increased pathogenicity and polymerase activity. Among the 29 mutations conferring reduction in oseltamivir sensitivity we investigated, H275Y was the only mutation detected in the 4 samples from 1 of 19 patients and demonstrated increasing frequency during the treatment. Mutations conferring favipiravir resistance were not observed. Our studies showed combination therapy of favipiravir and oseltamivir has little effect on virus nucleotide diversity, nor prevents the increase of oseltamivir-resistant variants.
Collapse
Affiliation(s)
- Shengrui Mu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Deng
- Tsinghua University School of Medicine, Beijing, China
| | - Dan Cui
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Tsinghua University School of Medicine, Beijing, China; Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Liu M, Yang J, Qian S, Sun Z, Jin Y, Liu X, Ye D, Rong R, Yang Y. Mahuang Xixin Fuzi decoction protects the BALB/c-nude mice infected with influenza A virus by reducing inflammatory cytokines storm and weakly regulating SIgA immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116070. [PMID: 36549371 DOI: 10.1016/j.jep.2022.116070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the immunocompromised individuals infected with influenza A virus (IAV). AIM OF THE STUDY The study aims to explore the regulatory of MXF on inflammation and secretory immunoglobulin A (SIgA) antibodies immune response in BALB/c-nude mice infected with IAV. MATERIALS AND METHODS The BALB/c-nude mice were infected with IAV, then different dosages of MXF were orally administrated to the mice. The weight, rectal temperature, spontaneous activity, spleen index, lung index, pathological changes of lung tissues, and the relative mRNA expression level of H1N1 M gene were measured for the purpose of valuing the antiviral effect of MXF. The expression levels of cytokines in lungs and immunoglobulin A (IgA) in serum of BALB/c-nude mice were determined with Cytometric Bead Array System (CBA). SIgA in bronchoalveolar lavage fluids (BALF) was detected with Enzyme-linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of B cell activating factor (BAFF), chemokine receptors 10 (CCR10), and polymeric immunoglobulin receptor (pIgR) in the lung tissues, which are related to the secretion of SIgA, were determined by using RT-PCR and Western blot. RESULTS MXF could alleviate the clinical features and reduce the severity of viral lung lesions, including improving the body weight, rectal temperature and spontaneous activity of nude mice infected with IAV, increasing spleen index, decreasing lung index, alleviating pathological damage, and decreasing the relative expression level of H1N1 M gene. Levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-12p70 (IL-12p70), and interleukin-17A (IL-17A) were also significantly decreased after treatment with MXF. Interferon-γ (IFN-γ), an antiviral cytokine, was significantly up-regulated in high dose MXF (3.12 g/kg) group. Moreover, after MXF treatment, the expressions of SIgA in BALF and IgA in serum were both at relatively low levels. And the mRNA and protein expressions of BAFF, CCR10, and pIgR were significantly decreased after treatment with MXF. CONCLUSIONS MXF has obviously protective effects on BALB/c-nude mice infected with IAV by inhibiting virus replication, calming inflammatory cytokine storm, and regulating SIgA immune response weakly.
Collapse
Affiliation(s)
- Meiyi Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Shensi Qian
- Shandong University of Traditional Chinese Medicine, PR China
| | - Zhuyun Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yifan Jin
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
5
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Takashita E. Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038687. [PMID: 32122918 PMCID: PMC8091960 DOI: 10.1101/cshperspect.a038687] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase is highly conserved among influenza A, B, C, and D viruses. It comprises three subunits: polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA) in influenza A and B viruses or polymerase 3 protein (P3) in influenza C and D viruses. Because this polymerase is essential for influenza virus replication, it has been considered as a target for antiviral agents. Recently, several polymerase inhibitors that target each subunit have been developed. This review discusses the mechanism of action, antiviral activity, and emergence of resistance to three inhibitors approved for the treatment of influenza or in late-phase clinical trials: the PB1 inhibitor favipiravir, the PB2 inhibitor pimodivir, and the PA inhibitor baloxavir marboxil.
Collapse
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
7
|
Kiso M, Yamayoshi S, Murakami J, Kawaoka Y. Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. J Infect Dis 2021; 221:1699-1702. [PMID: 31837268 DOI: 10.1093/infdis/jiz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immunocompromised patients infected with influenza virus require prolonged treatment with neuraminidase inhibitors, because these patients are not able to eradicate the virus from the respiratory tract, leading to the emergence of drug-resistant mutant viruses. METHODS In this study, we examined the efficacy of baloxavir marboxil in nude mice that were immunologically deficient. RESULTS Daily treatment with a suboptimal dose of baloxavir marboxil increased the survival time of the virus-infected nude mice but did not clear the virus from their respiratory organs, resulting in gradual body weight loss after termination of treatment. CONCLUSIONS Despite the prolonged baloxavir marboxil treatment, few resistant mutants were detected.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Mahal A, Duan M, Zinad DS, Mohapatra RK, Obaidullah AJ, Wei X, Pradhan MK, Das D, Kandi V, Zinad HS, Zhu Q. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Adv 2021; 11:1804-1840. [PMID: 35424082 PMCID: PMC8693540 DOI: 10.1039/d0ra07283d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Influenza virus is the main cause of an infectious disease called influenza affecting the respiratory system including the throat, nose and lungs. Neuraminidase inhibitors are reagents used to block the enzyme called neuraminidase to prevent the influenza infection from spreading. Neuraminidase inhibitors are widely used in the treatment of influenza infection, but still there is a need to develop more potent agents for the more effective treatment of influenza. Complications of the influenza disease lead to death, and one of these complications is drug resistance; hence, there is an urgent need to develop more effective agents. This review focuses on the recent advances in chemical synthesis pathways used for the development of new neuraminidase agents along with the medicinal aspects of chemically modified molecules, including the structure-activity relationship, which provides further rational designs of more active small molecules.
Collapse
Affiliation(s)
- Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil Erbil Kurdistan Region Iraq
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences South China Botanical Garden Guangzhou 510650 People's Republic of China
- Guangzhou HC Pharmaceutical Co., Ltd Guangzhou 510663 People's Republic of China
| | - Meitao Duan
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515 People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics Guangzhou 510515 People's Republic of China
| | - Dhafer S Zinad
- Applied Science Department, University of Technology Baghdad 10001 Iraq
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering Keonjhar Odisha 758002 India
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences South China Botanical Garden Guangzhou 510650 People's Republic of China
| | - Manoj K Pradhan
- Department of Chemistry, Government College of Engineering Keonjhar Odisha 758002 India
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College Subarnapur Odisha 767017 India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences Karimnagar Telangana India
| | - Hany S Zinad
- Biosciences Institute, Faculty of Medical Science, Newcastle University NE2 4HH Newcastle upon Tyne UK
- Iraq Natural History Museum and Research Centre (INHM), University of Baghdad Baghdad Iraq
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515 People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics Guangzhou 510515 People's Republic of China
| |
Collapse
|
9
|
Mhamdi Z, Fausther-Bovendo H, Uyar O, Carbonneau J, Venable MC, Abed Y, Kobinger G, Boivin G, Baz M. Effects of Different Drug Combinations in Immunodeficient Mice Infected with an Influenza A/H3N2 Virus. Microorganisms 2020; 8:microorganisms8121968. [PMID: 33322333 PMCID: PMC7764069 DOI: 10.3390/microorganisms8121968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged treatment of immunosuppressed (IS) individuals with anti-influenza monotherapies may lead to the emergence of drug-resistant variants. Herein, we evaluated oseltamivir and polymerase inhibitors combinations against influenza A/H3N2 infections in an IS mouse model. Mice were IS with cyclophosphamide and infected with 3 × 103 PFU of a mouse-adapted A/Switzerland/9715293/2013 (H3N2) virus. Forty-eight hours post-infection, the animals started oseltamivir, favipiravir or baloxavir marboxil (BXM) as single or combined therapies for 10 days. Weight losses, survival rates and lung viral titers (LVTs) were determined. The neuraminidase (NA) and polymerase genes from lung viral samples were sequenced. All untreated animals died. Oseltamivir and favipiravir monotherapies only delayed mortality (the mean day to death (MDD) of 21.4 and 24 compared to 11.4 days for those untreated) while a synergistic improvement in survival (80%) and LVT reduction was observed in the oseltamivir/favipiravir group compared to the oseltamivir group. BXM alone or in double/triple combination provided a complete protection and significantly reduced LVTs. Oseltamivir and BXM monotherapies induced the E119V (NA) and I38T (PA) substitutions, respectively, while no resistance mutation was detected with combinations. We found that the multiple dose regimen of BXM alone provided superior benefits compared to oseltamivir and favipiravir monotherapies. Moreover, we suggest the potential for drug combinations to reduce the incidence of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mariana Baz
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48281)
| |
Collapse
|
10
|
Tilmanis D, Koszalka P, Barr IG, Rossignol JF, Mifsud E, Hurt AC. Host-targeted nitazoxanide has a high barrier to resistance but does not reduce the emergence or proliferation of oseltamivir-resistant influenza viruses in vitro or in vivo when used in combination with oseltamivir. Antiviral Res 2020; 180:104851. [DOI: 10.1016/j.antiviral.2020.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022]
|
11
|
Pascua PNQ, Marathe BM, Vogel P, Webby RJ, Govorkova EA. Optimizing T-705 (favipiravir) treatment of severe influenza B virus infection in the immunocompromised mouse model. J Antimicrob Chemother 2020; 74:1333-1341. [PMID: 30715325 DOI: 10.1093/jac/dky560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza B virus infections remain insufficiently studied and antiviral management in immunocompromised patients is not well defined. The treatment regimens for these high-risk patients, which have elevated risk of severe disease-associated complications, require optimization and can be partly addressed via animal models. METHODS We examined the efficacy of monotherapy with the RNA-dependent RNA polymerase inhibitor T-705 (favipiravir) in protecting genetically modified, permanently immunocompromised BALB scid mice against lethal infection with B/Brisbane/60/2008 (BR/08) virus. Beginning at 24 h post-infection, BALB scid mice received oral T-705 twice daily (10, 50 or 250 mg/kg/day) for 5 or 10 days. RESULTS T-705 had a dose-dependent effect on survival after BR/08 challenge, resulting in 100% protection at the highest dosages. With the 5 day regimens, dosages of 50 or 250 mg/kg/day reduced the peak lung viral titres within the treatment window, but could not efficiently clear the virus after completion of treatment. With the 10 day regimens, dosages of 50 or 250 mg/kg/day significantly suppressed virus replication in the lungs, particularly at 45 days post-infection, limiting viral spread and pulmonary pathology. No T-705 regimen decreased virus growth in the nasal turbinates of mice, which potentially contributed to the viral dynamics in the lungs. The susceptibility of influenza B viruses isolated from T-705-treated mice remained comparable to that of viruses from untreated control animals. CONCLUSIONS T-705 treatment is efficacious against lethal challenge with BR/08 virus in immunocompromised mice. The antiviral benefit was greatest when longer T-705 treatment was combined with higher dosages.
Collapse
Affiliation(s)
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Abstract
Purpose of review We review antivirals inhibiting subunits of the influenza polymerase complex that are advancing in clinical development. Recent findings Favipiravir, pimodivir, and baloxavir are inhibitory in preclinical models for influenza A viruses, including pandemic threat viruses and those resistant to currently approved antivirals, and two (favipiravir and baloxavir) also inhibit influenza B viruses. All are orally administered, although the dosing regimens vary. The polymerase basic protein 1 transcriptase inhibitor favipiravir has shown inconsistent clinical effects in uncomplicated influenza, and is teratogenic effects in multiple species, contraindicating its use in pregnancy. The polymerase basic protein 2 cap-binding inhibitor pimodivir displays antiviral effects alone and in combination with oseltamivir in uncomplicated influenza, although variants with reduced susceptibility emerge frequently during monotherapy. Single doses of the polymerase acidic protein cap-dependent endonuclease inhibitor baloxavir are effective in alleviating symptoms and rapidly inhibiting viral replication in otherwise healthy and higher risk patients with acute influenza, although variants with reduced susceptibility emerge frequently during monotherapy. Combinations of newer polymerase inhibitors with neuraminidase inhibitors show synergy in preclinical models and are currently undergoing clinical testing in hospitalized patients. Summary These new polymerase inhibitors promise to add to the clinical management options and overall control strategies for influenza virus infections.
Collapse
|
13
|
Triple combination therapy of favipiravir plus two monoclonal antibodies eradicates influenza virus from nude mice. Commun Biol 2020; 3:219. [PMID: 32382088 PMCID: PMC7205604 DOI: 10.1038/s42003-020-0952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 01/21/2023] Open
Abstract
Prolonged treatment of immunocompromised influenza patients with viral neuraminidase (NA) inhibitors is required, because the immune system of such patients fails to eradicate the viruses. Here, we attempted to eradicate influenza virus from the respiratory organs of nude mice, which is a model of immunocompromised hosts, by using combination therapy of the viral polymerase inhibitor favipiravir and monoclonal antibodies (mAbs) against the receptor-binding site (RBS) and stem of viral hemagglutinin (HA). Although monotherapy or combination therapy of two antivirals (two mAbs or favipiravir plus a mAb) suppressed virus replication, they failed to eradicate viruses from nude mice. In contrast, the triple combination therapy of favipiravir plus anti-Stem and anti-RBS mAbs completely stopped virus replication in nude mice, resulting in virus clearance. Triple combination approaches should be considered for the treatment of human immunocompromised patients with severe influenza.
Collapse
|
14
|
Xing X, Hu S, Chen M, Zhan F, Liu H, Chen Z, Zhang H, Zeng G, Xu Q, Zhang H, Liu M, Liu H, Gao L, Zhang L. Severe acute respiratory infection risk following glucocorticosteroid treatment in uncomplicated influenza-like illness resulting from pH1N1 influenza infection: a case control study. BMC Infect Dis 2019; 19:1080. [PMID: 31878888 PMCID: PMC6933691 DOI: 10.1186/s12879-019-4669-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Current studies regarding glucocorticosteroid treatment of influenza have only estimated risk of critical illness or death which can be easily confounded by timing of treatment administration. We used severe acute respiratory infection (sARI) as an endpoint and investigated risk associated with receiving glucocorticosteroids before sARI onset. Methods sARI cases were defined as influenza-like illness (ILI) with pH1N1 infection and respiratory distress. Controls were defined as pH1N1 cases other than sARI and randomly selected from the community. We compared glucocorticosteroids and other medications used before sARI onset using a matched case control study adjusted for age group as well as underlying disease. Time-dependent risk and dose responses at different time periods over the course of sARI cases were also examined. Results Of the sARI cases, 34% received glucocorticosteroids before sARI onset compared to 3.8% of controls during equivalent days (ORM-H = 17,95%CI = 2.1–135). Receiving glucocorticosteroids before sARI onset increased risk of developing subsequent critical illness or death (ORM-H = 5.7,95%CI = 1.6–20.2), and the ORM-H increased from 5.7 to 8.5 for continued glucocorticosteroid use after sARI onset. However, only receiving glucocorticosteroids after sARI onset did not increase risk of severe illness (ORM-H = 1.1,95%CI = 0.3–4.6). Each increase in glucocorticosteroids dose of 1 mg/kg/day before sARI onset resulted in an increase of 0.62 (R2 = 0.87) in the pMEWS score at the time of sARI onset. Conclusions Early glucocorticosteroid treatment increased risk of sARI and subsequent critical illness or death; however, only receiving glucocorticosteroids after sARI onset did not increase risk of severe illness.
Collapse
Affiliation(s)
- Xuesen Xing
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China. .,Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Meihua Chen
- Wuhan No. 1 Hospital, Wuhan, Hubei Province, China
| | - Faxian Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Huihui Liu
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Zhang Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Hengjiao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Ge Zeng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Qiaohua Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China
| | - Man Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Honghui Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei Province, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan Province, China.
| | - Lijie Zhang
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Neuraminidase inhibitors (NAIs), including oseltamivir, zanamivir, and peramivir, is the main class of antiviral available for clinical use. As such, development of resistance toward these agents is of great clinical and public health concern. RECENT FINDINGS At present, NAI resistance remains uncommon among the circulating viruses (oseltamivir <3.5%, zanamivir <1%). Resistance risk is slightly higher in A(H1N1) than A(H3N2) and B viruses. Resistance may emerge during drug exposure, particularly among young children (<5 years), the immunocompromised, and individuals receiving prophylactic regimens. H275Y A(H1N1) variant, showing high-level oseltamivir resistance, is capable of causing outbreaks. R294K A(H7N9) variant shows reduced inhibition across NAIs. Multi-NAI resistance has been reported in the immunocompromised. SUMMARY These findings highlight the importance of continuous surveillance, and assessment of viral fitness and transmissibility of resistant virus strains. Detection can be challenging, especially in a mix of resistant and wild-type viruses. Recent advances in molecular techniques (e.g. targeted mutation PCR, iART, ddPCR, pyrosequencing, next-generation sequencing) have improved detection and our understanding of viral dynamics. Treatment options available for oseltamivir-resistant viruses are limited, and susceptibility testing of other NAIs may be required, but non-NAI antivirals (e.g. polymerase inhibitors) that are active against these resistant viruses are in late-stage clinical development.
Collapse
|
16
|
Seki M, Sakai-Tagawa Y, Yasuhara A, Watanabe Y. Adult influenza A (H3N2) with reduced susceptibility to baloxavir or peramivir cured after switching anti-influenza agents. IDCases 2019; 18:e00650. [PMID: 31692637 PMCID: PMC6804930 DOI: 10.1016/j.idcr.2019.e00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 02/01/2023] Open
Abstract
We describe two adults with A/H3N2 influenza with (patient 1), and without (patient 2) polymerase acidic (PA) subunit I38 T substitution during the same season. Patient 1 had a reduced clinical response to baloxavir, a cap-dependent endonuclease inhibitor (CEI), but was cured by peramivir, a neuraminidase inhibitor. Baloxavir was clinically effective for patient 2, for whom peramivir had been ineffective. Susceptibility to baloxavir can be decreased by a PA unit mutation, but response to treatment can be increased by switching and/or combination with a neuraminidase inhibitor, even though CEI are clinically effective against influenza in adults.
Collapse
Affiliation(s)
- Masafumi Seki
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Yuko Sakai-Tagawa
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuji Watanabe
- Laboratory for Clinical Microbiology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| |
Collapse
|
17
|
Mifsud EJ, Hayden FG, Hurt AC. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res 2019; 169:104545. [PMID: 31247246 DOI: 10.1016/j.antiviral.2019.104545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Current influenza antivirals have limitations with regard to their effectiveness and the potential emergence of resistance. Encouragingly, several new compounds which inhibit the polymerase of influenza viruses have recently been shown to have enhanced pre-clinical and clinical effectiveness compared to the neuraminidase inhibitors, the mainstay of influenza antiviral therapy over the last two decades. In this review we focus on four compounds which inhibit polymerase function, baloxavir marboxil, favipiravir, pimodivir and AL-794 and discuss their clinical and virological effectiveness, their propensity to select for resistance and their potential for future combination therapy with the most commonly used neuraminidase inhibitor, oseltamivir.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Predicting Host Immune Cell Dynamics and Key Disease-Associated Genes Using Tissue Transcriptional Profiles. Processes (Basel) 2019. [DOI: 10.3390/pr7050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation: Immune cell dynamics is a critical factor of disease-associated pathology (immunopathology) that also impacts the levels of mRNAs in diseased tissue. Deconvolution algorithms attempt to infer cell quantities in a tissue/organ sample based on gene expression profiles and are often evaluated using artificial, non-complex samples. Their accuracy on estimating cell counts given temporal tissue gene expression data remains not well characterized and has never been characterized when using diseased lung. Further, how to remove the effects of cell migration on transcript counts to improve discovery of disease factors is an open question. Results: Four cell count inference (i.e., deconvolution) tools are evaluated using microarray data from influenza-infected lung sampled at several time points post-infection. The analysis finds that inferred cell quantities are accurate only for select cell types and there is a tendency for algorithms to have a good relative fit (R 2 ) but a poor absolute fit (normalized mean squared error; NMSE), which suggests systemic biases exist. Nonetheless, using cell fraction estimates to adjust gene expression data, we show that genes associated with influenza virus replication and increased infection pathology are more likely to be identified as significant than when applying traditional statistical tests.
Collapse
|
19
|
Fukao K, Ando Y, Noshi T, Kitano M, Noda T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A. Baloxavir marboxil, a novel cap-dependent endonuclease inhibitor potently suppresses influenza virus replication and represents therapeutic effects in both immunocompetent and immunocompromised mouse models. PLoS One 2019; 14:e0217307. [PMID: 31107922 PMCID: PMC6527232 DOI: 10.1371/journal.pone.0217307] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Baloxavir marboxil (BXM) is an orally available small molecule inhibitor of cap-dependent endonuclease (CEN), an essential enzyme in the initiation of mRNA synthesis of influenza viruses. In the present study, we evaluated the efficacy of BXM against influenza virus infection in mouse models. Single-day oral administration of BXM completely prevented mortality due to infection with influenza A and B virus in mice. Moreover, 5-day repeated administration of BXM was more effective for reducing mortality and body weight loss in mice infected with influenza A virus than oseltamivir phosphate (OSP), even when the treatment was delayed up to 96 hours post infection (p.i.). Notably, administration of BXM, starting at 72 hours p.i. led to significant decrease in virus titers of >2-log10 reduction compared to the vehicle control within 24 hours after administration. Virus reduction in the lung was significantly greater than that observed with OSP. In addition, profound and sustained reduction of virus titer was observed in the immunocompromised mouse model without emergence of variants possessing treatment-emergent amino acid substitutions in the target protein. In our immunocompetent and immunocompromised mouse models, delayed treatment with BXM resulted in rapid and potent reduction in infectious virus titer and prevention of signs of influenza infection, suggesting that BXM could extend the therapeutic window for patients with influenza virus infection regardless of the host immune status.
Collapse
Affiliation(s)
| | | | | | | | - Takahiro Noda
- Shionogi Techno Advance Research Co., Ltd., Osaka, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Tomozawa T, Hoshino K, Yamashita M, Kubo S. Efficacy of laninamivir octanoate in mice with advanced inflammation stage caused by infection of highly lethal influenza virus. J Infect Chemother 2019; 25:584-588. [PMID: 30935767 DOI: 10.1016/j.jiac.2019.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Four neuraminidase (NA) inhibitors and an RNA synthesis inhibitor were recently approved and are currently in clinical use for influenza. Among NA inhibitors, oseltamivir phosphate (OSE, Tamiflu®) and zanamivir are approved worldwide, whereas peramivir and laninamivir octanoate (LAN, Inavir®) are regionally approved for human use. Therefore, OSE has been used to treat infections of highly pathogenic influenza viruses, such as H5N1 and H7N9, which caused epidemic in southeast Asia and Egypt, and China, respectively. Generally, OSE is administered twice daily for 5 days by oral administration, and LAN once by inhalation for completing influenza therapy. In this study, we compared the efficacy of OSE and LAN administered according to the regimens in mice infected with highly lethal influenza viruses. The drugs were administered at the early and late stages of infection, which correspond to mild and severe inflammation in the lungs, respectively. Based on the drugs' regimens for human, a single administration of LAN at both stages of inflammation showed superior efficacy to repeated administration of OSE. LAN, as in OSE, could also be efficacious in treating severe influenza in humans.
Collapse
Affiliation(s)
- Takanori Tomozawa
- Vaccine Research Institute, Kitasato Daiichi Sankyo Vaccine Co. Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Kazuki Hoshino
- Vaccine Research Institute, Kitasato Daiichi Sankyo Vaccine Co. Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Shuku Kubo
- Vaccine Research Institute, Kitasato Daiichi Sankyo Vaccine Co. Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
22
|
Lu W, Pieters RJ. Carbohydrate–protein interactions and multivalency: implications for the inhibition of influenza A virus infections. Expert Opin Drug Discov 2019; 14:387-395. [DOI: 10.1080/17460441.2019.1573813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenjing Lu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Lee N, Ison MG. Inhibiting Viral Polymerase and Neuraminidase in Treating Influenza. J Infect Dis 2018; 219:1013-1015. [DOI: 10.1093/infdis/jiy548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nelson Lee
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Combination Therapy with Oseltamivir and Favipiravir Delays Mortality but Does Not Prevent Oseltamivir Resistance in Immunodeficient Mice Infected with Pandemic A(H1N1) Influenza Virus. Viruses 2018; 10:v10110610. [PMID: 30400276 PMCID: PMC6266789 DOI: 10.3390/v10110610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Immunosuppressed individuals can shed influenza virus for prolonged periods of time, leading to the frequent emergence of antiviral resistance. We evaluated the benefits of oseltamivir and favipiravir combination therapy compared to single antiviral agents and monitored the emergence of drug-resistant variants in a pharmacologically immunosuppressed mouse model infected with the A(H1N1) pandemic influenza virus. C57BL/6 mice were immunosuppressed with cyclophosphamide and infected with a lethal dose of pandemic influenza A(H1N1) virus. Forty-eight hours post-infection, mice were treated with oseltamivir (20 mg/kg), favipiravir (20 or 50 mg/kg) or both agents BID for 5 or 10 days. Body weight losses, survival rates, lung viral titers, cytokine levels and emergence of resistant viruses were evaluated. Treatment of immunosuppressed mice with high (50 mg/kg) but not low (20 mg/kg) doses of favipiravir in combination with oseltamivir (20 mg/kg) significantly delayed mortality and reduced lung viral titers compared to treatment with a single drug regimen with oseltamivir but did not prevent the emergence of oseltamivir-resistant H275Y neuraminidase variants. Combination therapy with oseltamivir and favipiravir should be considered for evaluation in clinical trials.
Collapse
|
25
|
Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines (Basel) 2018; 6:vaccines6030035. [PMID: 29949942 PMCID: PMC6161145 DOI: 10.3390/vaccines6030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is a major target for vaccines. HA initiates the internalization of the virus into the host cell by binding to host sialic acid receptors; therefore, inhibition of HA can significantly prevent influenza virus infection. However, the high diversity of HA permits the influenza virus to escape from host immunity. Moreover, the vaccine efficacy is poor in some high-risk populations (e.g., elderly or immunocompromised patients). Passive immunization with anti-HA monoclonal antibodies (mAbs) is an attractive therapy; however, this method has high production costs and requires repeated inoculations. To address these issues, several methods for long-term expression of mAb against influenza virus have been developed. Here, we provide an overview of methods using plasmid and viral adeno-associated virus (AAV) vectors that have been modified for higher expression of neutralizing antibodies in the host. We also examine two methods of injection, electro-transfer and hydrodynamic injection. Our results show that antibody gene transfer is effective against influenza virus infection even in immunocompromised mice, and antibody expression was detected in the serum and upper respiratory tract. We also demonstrate this method to be effective following influenza virus infection. Finally, we discuss the perspective of passive immunization with antibody gene transfer for future clinical trials.
Collapse
|
26
|
Tu V, Abed Y, Fage C, Baz M, Boivin G. Impact of R152K and R368K neuraminidase catalytic substitutions on in vitro properties and virulence of recombinant A(H1N1)pdm09 viruses. Antiviral Res 2018; 154:110-115. [PMID: 29674164 DOI: 10.1016/j.antiviral.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022]
Abstract
Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) are expected to occur at framework or catalytic residues of the NA enzyme. Numerous clinical and in vitro reports already described NAI-resistant A(H1N1)pdm09 variants harboring various framework NA substitutions. By contrast, variants with NA catalytic changes remain poorly documented. Herein, we investigated the effect of R152K and R368K NA catalytic mutations on the NA enzyme properties, in vitro replicative capacity and virulence of A(H1N1)pdm09 recombinant viruses. In NA inhibition assays, the R152K and R368K substitutions resulted in reduced inhibition [10- to 100-fold increases in IC50 vs the wild-type (WT)] or highly reduced inhibition (>100-fold increases in IC50) to at least 3 approved NAIs (oseltamivir, zanamivir, peramivir and laninamivir). Such resistance phenotype correlated with a significant reduction of affinity observed for the mutants in enzyme kinetics experiments [increased Km from 20 ± 1.77 for the WT to 200.8 ± 10.54 and 565.2 ± 135 μM (P < 0.01) for the R152K and R368K mutants, respectively]. The R152K and R368K variants grew at comparable or even higher titers than the WT in both MDCK and ST6GalI-MDCK cells. In experimentally-infected C57BL/6 mice, the recombinant WT and the R152K and R368K variants induced important signs of infection (weight loss) and resulted in mortality rates of 87.5%, 37.5% and 100%, respectively. The lung viral titers were comparable between the three infected groups. While the NA mutations were stable, an N154I substitution was detected in the HA2 protein of the R152K and R368K variants after in vitro passages as well as in lungs of infected mice. Due to the multi-drug resistance phenotypes and conserved fitness, the emergence of NA catalytic mutations accompanied with potential compensatory HA changes should be carefully monitored in A(H1N1)pdm09 viruses.
Collapse
Affiliation(s)
- Véronique Tu
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Yacine Abed
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Clément Fage
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Mariana Baz
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Guy Boivin
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada.
| |
Collapse
|