1
|
Mooney AH, Draper SL, Burn OK, Anderson RJ, Compton BJ, Tang C, Farrand KJ, Di Lucia P, Ravà M, Fumagalli V, Giustini L, Bono E, Godfrey DI, Heath WR, Yuan W, Chisari FV, Guidotti LG, Iannacone M, Sidney J, Sette A, Gulab SA, Painter GF, Hermans IF. Preclinical evaluation of therapeutic vaccines for chronic hepatitis B that stimulate antiviral activities of T cells and NKT cells. JHEP Rep 2024; 6:101038. [PMID: 38694959 PMCID: PMC11061331 DOI: 10.1016/j.jhepr.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 05/04/2024] Open
Abstract
Background & Aims Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.
Collapse
Affiliation(s)
- Anna H. Mooney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olivia K. Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Chingwen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francis V. Chisari
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shivali A. Gulab
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- Avalia Immunotherapies Limited, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
2
|
Tondeur EG, Voerman JS, Geleijnse MA, van Hofwegen LS, van Krimpen A, Koerner J, Mishra G, Song Z, Schliehe C. Sec22b and Stx4 Depletion Has No Major Effect on Cross-Presentation of PLGA Microsphere-Encapsulated Antigen and a Synthetic Long Peptide In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1203-1215. [PMID: 37638825 PMCID: PMC10592162 DOI: 10.4049/jimmunol.2200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.
Collapse
Affiliation(s)
- Emma G.M. Tondeur
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jane S.A. Voerman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mitchell A.A. Geleijnse
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure S. van Hofwegen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anneloes van Krimpen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gunja Mishra
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ziye Song
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Jansen DTSL, de Beijer MTA, Luijten RJ, Kwappenberg K, Wiekmeijer AS, Kessler AL, Pieterman RFA, Bouzid R, Krebber WJ, de Man RA, Melief CJM, Buschow SI. Induction of broad multifunctional CD8+ and CD4+ T cells by hepatitis B virus antigen-based synthetic long peptides ex vivo. Front Immunol 2023; 14:1163118. [PMID: 37781393 PMCID: PMC10534072 DOI: 10.3389/fimmu.2023.1163118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Therapeutic vaccination based on synthetic long peptides (SLP®) containing both CD4+ and CD8+ T cell epitopes is a promising treatment strategy for chronic hepatitis B infection (cHBV). Methods We designed SLPs for three HBV proteins, HBcAg and the non-secreted proteins polymerase and X, and investigated their ability to induce T cell responses ex vivo. A set of 17 SLPs was constructed based on viral protein conservation, functionality, predicted and validated binders for prevalent human leukocyte antigen (HLA) supertypes, validated HLA I epitopes, and chemical producibility. Results All 17 SLPs were capable of inducing interferon gamma (IFNɣ) production in samples from four or more donors that had resolved an HBV infection in the past (resolver). Further analysis of the best performing SLPs demonstrated activation of both CD8+ and CD4+ multi-functional T cells in one or more resolver and patient sample(s). When investigating which SLP could activate HBV-specific T cells, the responses could be traced back to different peptides for each patient or resolver. Discussion This indicates that a large population of subjects with different HLA types can be covered by selecting a suitable mix of SLPs for therapeutic vaccine design. In conclusion, we designed a set of SLPs capable of inducing multifunctional CD8+ and CD4+ T cells ex vivo that create important components for a novel therapeutic vaccine to cure cHBV.
Collapse
Affiliation(s)
- Diahann T. S. L. Jansen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Monique T. A. de Beijer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robbie J. Luijten
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Amy L. Kessler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rachid Bouzid
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Immunopeptidome of hepatocytes isolated from patients with HBV infection and hepatocellular carcinoma. JHEP Rep 2022; 4:100576. [PMID: 36185575 PMCID: PMC9523389 DOI: 10.1016/j.jhepr.2022.100576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 01/01/2023] Open
Abstract
Background & Aims Antigen-specific immunotherapy is a promising strategy to treat HBV infection and hepatocellular carcinoma (HCC). To facilitate killing of malignant and/or infected hepatocytes, it is vital to know which T cell targets are presented by human leucocyte antigen (HLA)-I complexes on patient-derived hepatocytes. Here, we aimed to reveal the hepatocyte-specific HLA-I peptidome with emphasis on peptides derived from HBV proteins and tumour-associated antigens (TAA) to guide development of antigen-specific immunotherapy. Methods Primary human hepatocytes were isolated with high purity from (HBV-infected) non-tumour and HCC tissues using a newly designed perfusion-free procedure. Hepatocyte-derived HLA-bound peptides were identified by unbiased mass spectrometry (MS), after which source proteins were subjected to Gene Ontology and pathway analysis. HBV antigen and TAA-derived HLA peptides were searched for using targeted MS, and a selection of peptides was tested for immunogenicity. Results Using unbiased data-dependent acquisition (DDA), we acquired a high-quality HLA-I peptidome of 2 × 105 peptides that contained 8 HBV-derived peptides and 14 peptides from 8 known HCC-associated TAA that were exclusive to tumours. Of these, 3 HBV- and 12 TAA-derived HLA peptides were detected by targeted MS in the sample they were originally identified in by DDA. Moreover, 2 HBV- and 2 TAA-derived HLA peptides were detected in samples in which no identification was made using unbiased MS. Finally, immunogenicity was demonstrated for 5 HBV-derived and 3 TAA-derived peptides. Conclusions We present a first HLA-I immunopeptidome of isolated primary human hepatocytes, devoid of immune cells. Identified HBV-derived and TAA-derived peptides directly aid development of antigen-specific immunotherapy for chronic HBV infection and HCC. The described methodology can also be applied to personalise immunotherapeutic treatment of liver diseases in general. Lay summary Immunotherapy that aims to induce immune responses against a virus or tumour is a promising novel treatment option to treat chronic HBV infection and liver cancer. For the design of successful therapy, it is essential to know which fragments (i.e. peptides) of virus-derived and tumour-specific proteins are presented to the T cells of the immune system by diseased liver cells and are thus good targets for immunotherapy. Here, we have isolated liver cells from patients who have chronic HBV infection and/or liver cancer, analysed what peptides are presented by these cells, and assessed which peptides are able to drive immune responses. We developed a perfusion-free method to isolate primary hepatocytes that are depleted of immune cells. We derived a large-scale unbiased hepatocyte HLA ligandome from patients with HBV and/or HCC. The ligandome included peptides derived from HBV proteins and tumour-associated antigens (TAA). Using a targeted MS regime, the detection sensitivity of several HBV and TAA-derived peptides could be increased. Immunogenicity was demonstrated for a selection of TAA- and HBV-derived HLA peptides.
Collapse
Key Words
- Antigen presentation
- Cancer germline antigen
- Cancer testis antigen
- DDA, data-dependent acquisition
- GO, Gene Ontology
- HBV, Hepatitis B virus
- HCC, hepatocellular carcinoma
- HLA
- HLA, human leucocyte antigen
- IEDB, Immune Epitope Database
- IFNγ, interferon γ
- IP, immunoprecipitation
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LSEC, liver sinusoidal cell
- Liver cancer
- MHC
- MS, mass spectrometry
- PBMCs, peripheral blood mononuclear cells
- PRM, parallel reaction monitoring
- Peptidome
- Pol, polymerase
- T cell epitope
- TAA, tumour-associated antigen
- Viral hepatitis
- cHBV, chronic HBV
Collapse
|
5
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
6
|
Research Progress on the Mechanism of Persistent Low-Level HBsAg Expression in the Serum of Patients with Chronic HBV Infection. J Immunol Res 2022; 2022:1372705. [PMID: 35465353 PMCID: PMC9020929 DOI: 10.1155/2022/1372705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Among HBV-infected persons, there is a group of people with hepatitis B surface antigen (HBsAg) showing persistently low levels of expression. The production of low-level HBsAg does not mean a good outcome of chronic HBV infection. Patients still have virus replication and sustained liver damage, and they have the potential to transmit the infection. This risk poses a challenge to clinical diagnosis and blood transfusion safety and is a major concern of experts. However, the mechanism behind persistent low-level HBsAg expression in serum is not completely clear, and complete virus clearance by the host is vital. In this review, we summarize the research progress on the mechanism behind low-level expression of HBsAg in patients with chronic HBV infection in recent years.
Collapse
|
7
|
Jansen DT, Dou Y, de Wilde JW, Woltman AM, Buschow SI. Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures. Clin Transl Immunology 2021; 10:e1232. [PMID: 33489122 PMCID: PMC7809700 DOI: 10.1002/cti2.1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
In the mid‐90s, hepatitis B virus (HBV)‐directed immune responses were for the first time investigated in detail and revealed suboptimal T‐cell responses in chronic HBV patients. Based on these studies, therapeutic vaccination exploiting the antigen presentation capacity of dendritic cells to prime and/or boost HBV‐specific T‐cell responses was considered highly promising. Now, 25 years later, it has not yet delivered this promise. In this review, we summarise what has been clinically tested in terms of antigen targets and vaccine forms, how the immunological and therapeutic effects of these vaccines were assessed and what major clinical and immunological findings were reported. We combine the lessons learned from these trials with the most recent insights on HBV antigen presentation, T‐cell responses, vaccine composition, antiviral and immune‐modulatory drugs and disease biomarkers to derive novel opportunities for the next generation of therapeutic vaccines designed to cure chronic HBV either alone or in combination therapy.
Collapse
Affiliation(s)
- Diahann Tsl Jansen
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Yingying Dou
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Janet W de Wilde
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Department of Viroscience Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Institute of Medical Research Education Rotterdam Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
8
|
Vyas AK, Lslam M, Garg G, Singh AK, Trehanpati N. Humoral Immune Responses and Hepatitis B Infection. Dig Dis 2021; 39:516-525. [PMID: 33429386 DOI: 10.1159/000514274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronicity or seroclearance of hepatitis B virus (HBV) antigens is determined by the host immune responses. Current approaches to treat HBV patients are based on inhibition of replication using different antivirals (nucleoside or nucleotide analogs) as monotherapy, or along with immune modulators as combination therapy is being used worldwide for reducing the viral load. Understanding the role of immune cellular therapies with currently available treatments for persistent viral-mediated responses in HBV patients is unexplored. However, the generation of antibodies against a surface (HBs) and envelop (HBe) antigen of hepatitis B remains an issue for future studies and needs to be explored. SUMMARY Humoral immunity, specifically T follicular helper (TFh) cells, may serve as a target for therapy for HBsAg seroconversion. In this review, we have been engrossed in the importance and role of the humoral immune responses in CHBV infection and vertical transmission. Key Message: TFh cells have been suggested as the potential target of immunotherapy which lead to seroconversion of HBe and HBs antigens of HBV. HBsAg seroconversion and eradication of covalently closed circular DNA are the main challenges for existing and forthcoming therapies in HBV infection.
Collapse
Affiliation(s)
- Ashish Kumar Vyas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Mojahidul Lslam
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Garima Garg
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Anirudh K Singh
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Nirupma Trehanpati
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
9
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
11
|
Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength. J Virol 2020; 94:JVI.01663-19. [PMID: 31852786 PMCID: PMC7081907 DOI: 10.1128/jvi.01663-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies. Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Pol-derived reported epitopes with functional association and high conservation. We subsequently predicted novel HLA-binding peptides for 6 HLA supertypes prevalent in HBV-infected patients. Potential epitopes expected to be the least prone to immune escape were subjected to a state-of-the-art in vitro assay to validate their HLA-binding capacity. Using this method, a total of 13 HLA binders derived from HBx and 33 binders from Pol were identified across HLA types. Subsequently, we demonstrated interferon gamma (IFN-γ) production in response to 5 of the novel HBx-derived binders and 17 of the novel Pol-derived binders. In addition, we validated several infrequently described epitopes. Collectively, these results specify a set of highly potent T cell epitopes that represent a valuable resource for future HBV immunotherapy design. IMPORTANCE Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies.
Collapse
|
12
|
Dou Y, Jansen DTSL, van den Bosch A, de Man RA, van Montfoort N, Araman C, van Kasteren SI, Zom GG, Krebber WJ, Melief CJM, Woltman AM, Buschow SI. Design of TLR2-ligand-synthetic long peptide conjugates for therapeutic vaccination of chronic HBV patients. Antiviral Res 2020; 178:104746. [PMID: 32081741 DOI: 10.1016/j.antiviral.2020.104746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/24/2019] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
Abstract
Synthetic long peptide (SLP) vaccination is a promising new treatment strategy for patients with a chronic hepatitis B virus (HBV) infection. We have previously shown that a prototype HBV-core protein derived SLP was capable of boosting CD4+ and CD8+ T cell responses in the presence of a TLR2-ligand in chronic HBV patients ex vivo. For optimal efficacy of a therapeutic vaccine in vivo, adjuvants can be conjugated to the SLP to ensure delivery of both the antigen and the co-stimulatory signal to the same antigen-presenting cell (APC). Dendritic cells (DCs) express the receptor for the adjuvant and are optimally equipped to efficiently process and present the SLP-contained epitopes to T cells. Here, we investigated TLR2-ligand conjugation of the prototype HBV-core SLP. Results indicated that TLR2-ligand conjugation reduced cross-presentation efficiency of the SLP-contained epitope by both monocyte-derived and naturally occurring DC subsets. Importantly, cross-presentation was improved after optimization of the conjugate by either shortening the SLP or by placing a valine-citrulline linker between the TLR2-ligand and the long SLP, to facilitate endosomal dissociation of SLP and TLR2-ligand after uptake. HBV-core SLP conjugates also triggered functional patient T cell responses ex vivo. These results provide an import step forward in the design of a therapeutic SLP-based vaccine to cure chronic HBV.
Collapse
Affiliation(s)
- Yingying Dou
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Diahann T S L Jansen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Aniek van den Bosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Can Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, the Netherlands
| | - Gijs G Zom
- ISA Pharmaceuticals BV, Leiden, the Netherlands
| | | | | | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Eramus MC), Rotterdam, the Netherlands.
| |
Collapse
|
13
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
14
|
Rajčáni J, Szathmary S. Peptide Vaccines: New Trends for Avoiding the Autoimmune Response. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874279301810010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:Several marketed antiviral vaccines (such as that against hepatitis virus A and/or B, influenza virus, human papillomavirus, yellow fever virus, measles, rubella and mumps viruses) may elicit various autoimmune reactions.Results:The cause of autoimmune response due to vaccination may be: 1. the adjuvant which is regularly added to the vaccine (especially in the case of various oil substrates), 2. the specific viral component itself (a protein or glycoprotein potentially possessing cross-reactive epitopes) and/or 3. contamination of the vaccine with traces of non-viral proteins mostly cellular in origin. Believing that peptide vaccines might represent an optimal solution for avoiding the above-mentioned problems, we discuss the principles of rational design of a typical peptide vaccine which should contain oligopeptides coming either from the selected structural virion components (i.e.capsid proteins and/or envelop glycoproteins or both) or from the virus-coded non-structural polypeptides. The latter should be equally immunogenic as the structural virus proteins. Describing the feasibility of identification and design of immunogenic epitopes, our paper also deals with possible problems of peptide vaccine manufacturing. The presented data are in part based on the experience of our own, in part, they are coming from the results published by others.Conclusion:Any peptide vaccine should be able to elicit relevant and specific antibody formation, as well as an efficient cell-mediated immune response. Consequently, the properly designed peptide vaccine is expected to consist of carefully selected viral peptides, which should stimulate the receptors of helper T/CD4 cells as well as of cytotoxic (T/CD8) lymphocytes.
Collapse
|