1
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Mertens A, Arnold BF, Benjamin-Chung J, Boehm AB, Brown J, Capone D, Clasen T, Fuhrmeister ER, Grembi JA, Holcomb D, Knee J, Kwong LH, Lin A, Luby SP, Nala R, Nelson K, Njenga SM, Null C, Pickering AJ, Rahman M, Reese HE, Steinbaum L, Stewart JR, Thilakaratne R, Cumming O, Colford JM, Ercumen A. Is detection of enteropathogens and human or animal faecal markers in the environment associated with subsequent child enteric infections and growth: an individual participant data meta-analysis. Lancet Glob Health 2024; 12:e433-e444. [PMID: 38365415 PMCID: PMC10882208 DOI: 10.1016/s2214-109x(23)00563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Quantifying contributions of environmental faecal contamination to child diarrhoea and growth faltering can illuminate causal mechanisms behind modest health benefits in recent water, sanitation, and hygiene (WASH) trials. We aimed to assess associations between environmental detection of enteropathogens and human or animal microbial source tracking markers (MSTM) and subsequent child health outcomes. METHODS In this individual participant data meta-analysis we searched we searched PubMed, Embase, CAB Direct Global Health, Agricultural and Environmental Science Database, Web of Science, and Scopus for WASH intervention studies with a prospective design and concurrent control that measured enteropathogens or MSTM in environmental samples, or both, and subsequently measured enteric infections, diarrhoea, or height-for-age Z-scores (HAZ) in children younger than 5 years. We excluded studies that only measured faecal indicator bacteria. The initial search was done on Jan 19, 2021, and updated on March 22, 2023. One reviewer (AM) screened abstracts, and two independent reviewers (AM and RT) examined the full texts of short-listed articles. All included studies include at least one author that also contributed as an author to the present Article. Our primary outcomes were the 7-day prevalence of caregiver-reported diarrhoea and HAZ in children. For specific enteropathogens in the environment, primary outcomes also included subsequent child infection with the same pathogen ascertained by stool testing. We estimated associations using covariate-adjusted regressions and pooled estimates across studies. FINDINGS Data from nine published reports from five interventions studies, which included 8603 children (4302 girls and 4301 boys), were included in the meta-analysis. Environmental pathogen detection was associated with increased infection prevalence with the same pathogen and lower HAZ (ΔHAZ -0·09 [95% CI -0·17 to -0·01]) but not diarrhoea (prevalence ratio 1·22 [95% CI 0·95 to 1·58]), except during wet seasons. Detection of MSTM was not associated with diarrhoea (no pooled estimate) or HAZ (ΔHAZ -0·01 [-0·13 to 0·11] for human markers and ΔHAZ -0·02 [-0·24 to 0·21] for animal markers). Soil, children's hands, and stored drinking water were major transmission pathways. INTERPRETATION Our findings support a causal chain from pathogens in the environment to infection to growth faltering, indicating that the lack of WASH intervention effects on child growth might stem from insufficient reductions in environmental pathogen prevalence. Studies measuring enteropathogens in the environment should subsequently measure the same pathogens in stool to further examine theories of change between WASH, faecal contamination, and health. Given that environmental pathogen detection was predictive of infection, programmes targeting specific pathogens (eg, vaccinations and elimination efforts) can environmentally monitor the pathogens of interest for population-level surveillance instead of collecting individual biospecimens. FUNDING The Bill & Melinda Gates Foundation and the UK Foreign and Commonwealth Development Office.
Collapse
Affiliation(s)
- Andrew Mertens
- Division of Epidemiology, University of California, Berkeley, CA, USA; Division of Biostatistics, University of California, Berkeley, CA, USA.
| | - Benjamin F Arnold
- Francis I Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Joe Brown
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | - Drew Capone
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Thomas Clasen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Erica R Fuhrmeister
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | - David Holcomb
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | - Jackie Knee
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - Laura H Kwong
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Rassul Nala
- Ministério da Saúde, Instituto Nacional de Saúde Maputo, Maputo, Mozambique
| | - Kara Nelson
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | | | | | - Amy J Pickering
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, Dhaka, Bangladesh
| | - Heather E Reese
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lauren Steinbaum
- California Department of Toxic Substances Control, Sacramento, CA, USA
| | - Jill R Stewart
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | | | - Oliver Cumming
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - John M Colford
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Lee T, Kang JM, Ahn JG, Thuy Truong DT, Nguyen TV, Ho TV, Thanh Ton HT, Le Hoang P, Kim MY, Yeom JS, Lee J. Prediction of effectiveness of universal rotavirus vaccination in Southwestern Vietnam based on a dynamic mathematical model. Sci Rep 2024; 14:4273. [PMID: 38383679 PMCID: PMC10881495 DOI: 10.1038/s41598-024-54775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Vaccinating young children against rotavirus (RV) is a promising preventive strategy against rotavirus gastroenteritis (RVGE). We evaluated the relative risk reduction of RVGE induced by universal vaccination in Vietnam through dynamic model analysis. We developed an age-stratified dynamic Vaccinated-Susceptible-Infectious-Recovered-Susceptible model to analyze RV transmission and assess vaccine effectiveness (VE). We assumed 3 different vaccine efficacies: 55%, 70%, and 85%. For model calibration, we used a database of patients under 5 years of age admitted to Ho Chi Minh No.1 Hospital with RVGE between January 2013 and December 2018. Assuming a vaccination rate of 95%, the number of RVGE hospitalizations after 5 years from universal RV vaccination decreased from 92,502 cases to 45,626 with 85% efficacy, to 54,576 cases with 70% efficacy, and to 63,209 cases with 55% efficacy. Additionally, RVGE hospitalizations after 10 years decreased from 177,950 to 89,517 with 85% efficacy and to 121,832 cases with 55% efficacy. The relative risk reductions of RVGE after 10 years were 49.7% with 85% efficacy, 40.6% with 70% efficacy, and 31.5% with 55% efficacy. The VE was 1.10 times (95% CI, 1.01-1.22) higher in the 4-months to 1-year-old age group than in the other age groups (P = 0.038), when applying 85% efficacy with 95% coverage. In conclusion, despite its relatively lower efficacy compared to high-income countries, RV vaccination remains an effective intervention in Southwestern Vietnam. In particular, implementing universal RV vaccination with higher coverage would result in a decrease in RVGE hospitalizations among Vietnamese children under 5 years of age.
Collapse
Affiliation(s)
- Taeyong Lee
- School of Mathematics and Computing (Mathematics), Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Dung Thi Thuy Truong
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | - Thang Vinh Ho
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Ha Thi Thanh Ton
- Department of Gastroenterology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Phuc Le Hoang
- Department of Gastroenterology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Min Young Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Jeehyun Lee
- School of Mathematics and Computing (Mathematics), Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
4
|
Williams FB, Kader MA, Dickson DM, Colgate ER, Alam M, Haque R, Petri WA, Kirkpatrick BD, Lee B. Maternal Breast Milk Secretor Phenotype Does Not Affect Infant Susceptibility to Rotavirus Diarrhea. Open Forum Infect Dis 2023; 10:ofad299. [PMID: 37333724 PMCID: PMC10270652 DOI: 10.1093/ofid/ofad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Breast milk secretor status is associated with antibody seroconversion to oral rotavirus vaccination. Here, we were unable to detect a similar impact on risk of infant rotavirus diarrhea or vaccine efficacy through 2 years of life, underscoring limitations of immunogenicity assessment alone in evaluation of oral rotavirus vaccine response.
Collapse
Affiliation(s)
- Frank B Williams
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Md Abdul Kader
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Dorothy M Dickson
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - E Ross Colgate
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Benjamin Lee
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Debellut F, Pecenka C, Hausdorff WP, Clark A. Potential impact and cost-effectiveness of injectable next-generation rotavirus vaccines in 137 LMICs: a modelling study. Hum Vaccin Immunother 2022; 18:2040329. [PMID: 35240926 PMCID: PMC9009916 DOI: 10.1080/21645515.2022.2040329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
While current live, oral rotavirus vaccines (LORVs) are reducing severe diarrhea everywhere, their effectiveness is lower in high burden settings. Alternative approaches are in advanced stages of clinical development, including injectable next-generation rotavirus vaccine (iNGRV) candidates, which have the potential to better protect children, be combined with existing routine immunizations and be more affordable than current LORVs. In an effort to better understand the real public health value of iNGRVs and to help inform decisions by international agencies, funders, and vaccine manufacturers, we conducted an impact and cost-effectiveness analysis examining 20 rotavirus vaccine use cases. We evaluated several currently licensed LORVs, one neonatal oral NGRV (oNGRV), one iNGRV, and one iNGRV-DTP (iNGRV comprising part of a DTP-containing combination) over a ten-year timeframe in 137 low- and middle-income countries. The most promising use case identified was a high efficacy iNGRV-DTP, predicted to have the lowest vaccine program cost (US$1.4 billion), the highest vaccine benefit (750,000 rotavirus deaths averted, 13 million rotavirus hospital admissions averted, US$ 2.7 billion health-care cost averted), and most favorable cost-effectiveness (cost-saving). iNGRV-DTP vaccine remained the most affordable, safe, and cost-effective option even when it was assumed to have equivalent efficacy to the current LORVs. This study shows that while the development of iNGRVs with superior efficacy to currently licensed LORVs would be ideal, iNGRVs with similar efficacy to LORVs would offer substantial public health value. It also highlights the economic value of accelerating the development of DTP-based combination vaccines that include iNGRV to provide rotavirus protection.
Collapse
Affiliation(s)
| | - Clint Pecenka
- PATH, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - William P. Hausdorff
- PATH, Center for Vaccine Innovation and Access, Washington, DC, USA
- Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew Clark
- Faculty of Public Health and Policy, Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Chen J, Grow S, Iturriza-Gómara M, Hausdorff WP, Fix A, Kirkwood CD. The Challenges and Opportunities of Next-Generation Rotavirus Vaccines: Summary of an Expert Meeting with Vaccine Developers. Viruses 2022; 14:v14112565. [PMID: 36423174 PMCID: PMC9699535 DOI: 10.3390/v14112565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The 2nd Next Generation Rotavirus Vaccine Developers Meeting, sponsored by PATH and the Bill and Melinda Gates Foundation, was held in London, UK (7-8 June 2022), and attended by vaccine developers and researchers to discuss advancements in the development of next-generation rotavirus vaccines and to consider issues surrounding vaccine acceptability, introduction, and uptake. Presentations included updates on rotavirus disease burden, the impact of currently licensed oral vaccines, various platforms and approaches for next generation rotavirus vaccines, strategies for combination pediatric vaccines, and the value proposition for novel parenteral rotavirus vaccines. This report summarizes the information shared at the convening and poses various topics worthy of further exploration.
Collapse
Affiliation(s)
- Jessie Chen
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
- Correspondence:
| | - Stephanie Grow
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - William P. Hausdorff
- Faculty of Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium
- PATH, Washington, DC 20001, USA
| | | | - Carl D. Kirkwood
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Debellut F, Tang K, Clark A, Pecenka C, Assao B, Guindo O, Grais RF, Isanaka S. Impact and cost-effectiveness of rotavirus vaccination in Niger: a modelling study evaluating alternative rotavirus vaccines. BMJ Open 2022; 12:e061673. [PMID: 36198460 PMCID: PMC9535195 DOI: 10.1136/bmjopen-2022-061673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To evaluate the cost-effectiveness of alternative rotavirus vaccines in Niger, using UNIVAC, a proportionate outcomes model. SETTING The study leverages global, regional and local data to inform cost-effectiveness modelling. Local data were collected as part of a clinical trial taking place in the Madarounfa district, Maradi region, Niger. PARTICIPANTS The study models impact of infants vaccination on rotavirus gastroenteritis in children under 5 years of age. INTERVENTIONS We compared the use of ROTARIX (GlaxoSmithKline, Belgium), ROTAVAC (Bharat Biotech, India) and ROTASIIL (Serum Institute, India) to no vaccination and to each other over a 10-year period starting in 2021. RESULTS We estimated that ROTARIX, ROTAVAC and ROTASIIL would each prevent 13 million cases and 20 000 deaths of children under 5 years over a 10-year period in Niger. Compared with no vaccination, the cost to avert a disability-adjusted life-year was US$146 with ROTARIX, US$107 with ROTASIIL and US$76 with ROTAVAC from the government perspective. ROTAVAC dominated ROTARIX and ROTASIIL (eg, provided similar or higher benefits at a lower cost) and had 90% chance to be cost-effective at a US$100 willingness-to-pay threshold. CONCLUSIONS This study can inform decision-making around rotavirus vaccination policy in Niger, demonstrating that ROTAVAC is likely the most cost-effective option. Alternative products (ROTASIIL and ROTARIX) may also be considered by decision-makers if they are priced more competitively, or if their cold chain requirements could bring additional economic benefits.
Collapse
Affiliation(s)
| | - Kevin Tang
- Epicentre, Paris, France
- London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew Clark
- Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Clint Pecenka
- Center for Vaccine Innovation and Access, PATH, Seattle, Washington, USA
| | | | | | | | - Sheila Isanaka
- Epicentre, Paris, France
- Departments of Nutrition and Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Mooney J, Price J, Bain C, Bawa JT, Gurley N, Kumar A, Liyanage G, Mkisi RE, Odero C, Seck K, Simpson E, Hausdorff WP. Healthcare provider perspectives on delivering next generation rotavirus vaccines in five low-to-middle-income countries. PLoS One 2022; 17:e0270369. [PMID: 35737718 PMCID: PMC9223340 DOI: 10.1371/journal.pone.0270369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Live oral rotavirus vaccines (LORVs) have significantly reduced rotavirus hospitalizations and deaths worldwide. However, LORVs are less effective in low- and middle-income countries (LMICs). Next-generation rotavirus vaccines (NGRVs) may be more effective but require administration by injection or a neonatal oral dose, adding operational complexity. Healthcare providers (HPs) were interviewed to assess rotavirus vaccine preferences and identify delivery issues as part of an NGRV value proposition. OBJECTIVE Determine HP vaccine preferences about delivering LORVs compared to injectable (iNGRV) and neonatal oral (oNGRV) NGRVs. METHODS 64 HPs from Ghana, Kenya, Malawi, Peru, and Senegal were interviewed following a mixed-method guide centered on three vaccine comparisons: LORV vs. iNGRV; LORV vs. oNGRV; oNGRV vs. iNGRV. HPs reviewed attributes for each vaccine in the comparisons, then indicated and explained their preference. Additional questions elicited views about co-administering iNGRV+LORV for greater public health impact, a possible iNGRV-DTP-containing combination vaccine, and delivering neonatal doses. RESULTS Almost all HPs preferred oral vaccine options over iNGRV, with many emphasizing an aversion to additional injections. Despite this strong preference, HPs described challenges delivering oral doses. Preferences for LORV vs. oNGRV were split, marked by disparate views on rotavirus disease epidemiology and the safety, need, and feasibility of delivering neonatal vaccines. Although overwhelmingly enthusiastic about an iNGRV-DTP-containing combination option, several HPs had concerns. HP views were divided on the feasibility of co-administering iNGRV+LORV, citing challenges around logistics and caregiver sensitization. CONCLUSION Our findings provide valuable insights on delivering NGRVs in routine immunization. Despite opposition to injectables, openness to co-administering LORV+iNGRV to improve efficacy suggests future HP support of iNGRV if adequately informed of its advantages. Rationales for LORV vs. oNGRV underscore needs for training on rotavirus epidemiology and stronger service integration. Expressed challenges delivering existing LORVs merit further examination and indicate need for improved delivery.
Collapse
Affiliation(s)
| | | | - Carolyn Bain
- PATH, Seattle, Washington, United States of America
| | | | - Nikki Gurley
- PATH, Seattle, Washington, United States of America
| | | | - Guwani Liyanage
- Department of Pediatrics, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | | | - Evan Simpson
- PATH, Seattle, Washington, United States of America
| | - William P. Hausdorff
- PATH, Washington, D.C., United States of America, and Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Nazurdinov A, Azizov Z, Mullojonova M, Sadykova U, Mosina L, Singh S, Suleymonova S, Tishkova F, Videbaek D, Cortese MM, Daniels DS, Burke RM. Impact and effectiveness of monovalent rotavirus vaccine in Tajik children. Vaccine 2022; 40:3705-3712. [PMID: 35581101 DOI: 10.1016/j.vaccine.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND In 2015, Tajikistan became the second country in Central Asia to introduce rotavirus vaccine into its national immunization program. Before vaccine introduction, rotavirus was estimated to cause > 40% of pediatric diarrhea hospitalizations in Tajikistan. We aimed to assess the impact of rotavirus vaccine introduction on rotavirus disease burden and estimate rotavirus vaccine effectiveness (VE). METHODS Using surveillance data from 2013 through 2019, we examined trends in monthly hospital admissions among children < 5 years old, before and after rotavirus vaccine introduction. Poisson regression was used to quantify decreases. VE was estimated using a test-negative case control design, with data from admissions during 2017 - 2019. Immunization records were obtained from clinics. RESULTS Among enrolled children, rotavirus positivity declined from 42% to 25% in the post-vaccine introduction period, a decrease of 41% (95% Confidence Interval [CI]: 36 - 45%). Declines were greatest in children < 12 months of age. Estimated VE of a complete course of rotavirus vaccine was 55% (95% CI: 21 - 73%) among children 5 - 59 months of age and 64% (95% CI: 36 - 80%) among children 5 - 23 months of age. VE point estimates were higher among children receiving both doses of rotavirus vaccine non-concurrently with OPV and among children receiving their first dose of rotavirus vaccine at 4 - 11 months of age, but CIs were wide and overlapping. CONCLUSIONS Our data demonstrate that rotavirus vaccine introduction was associated with a substantial reduction in pediatric rotavirus hospitalization burden in Tajikistan, and that rotavirus vaccination is effective in Tajik children.
Collapse
Affiliation(s)
- Anvar Nazurdinov
- State Institution "Republican Center of Immunoprophylaxis", Dushanbe, Tajikistan; Department of Epidemiology of the State Educational Institution "Avicenna Tajik State Medical University", Dushanbe, Tajikistan.
| | - Zafarjon Azizov
- State Institution "Republican Center of Immunoprophylaxis", Dushanbe, Tajikistan
| | - Manija Mullojonova
- Virology Laboratory of Tajik Research Institute of Preventive Medicine, Dushanbe, Tajikistan
| | - Umeda Sadykova
- Tajikistan Country Office, World Health Organization, Dushanbe, Tajikistan
| | - Liudmila Mosina
- Vaccine-preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Simarjit Singh
- Vaccine-preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Sudoba Suleymonova
- State Institution "Republican Center of Immunoprophylaxis", Dushanbe, Tajikistan
| | - Farida Tishkova
- Virology Laboratory of Tajik Research Institute of Preventive Medicine, Dushanbe, Tajikistan
| | - Dovile Videbaek
- Vaccine-preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Margaret M Cortese
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Danni S Daniels
- Vaccine-preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark; Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel M Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
10
|
Hausdorff WP, Price J, Debellut F, Mooney J, Torkelson AA, Giorgadze K, Pecenka C. Does Anybody Want an Injectable Rotavirus Vaccine, and Why? Understanding the Public Health Value Proposition of Next-Generation Rotavirus Vaccines. Vaccines (Basel) 2022; 10:149. [PMID: 35214608 PMCID: PMC8880741 DOI: 10.3390/vaccines10020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Routine infant immunization with live, oral rotavirus vaccines (LORVs) has had a major impact on severe gastroenteritis disease. Nevertheless, in high morbidity and mortality settings rotavirus remains an important cause of disease, partly attributable to the sub-optimal clinical efficacy of LORVs in those settings. Regardless of the precise immunological mechanism(s) underlying the diminished efficacy, the introduction of injectable next-generation rotavirus vaccines (iNGRV), currently in clinical development, could offer a potent remedy. In addition to the potential for greater clinical efficacy, precisely how iNGRVs are delivered (multiple doses to young infants; alongside LORVs or as a booster; co-formulated with Diphtheria-Tetanus-Pertussis (DTP)-containing vaccines), their pricing, and their storage and cold chain characteristics could each have major implications on the resultant health outcomes, on cost-effectiveness as well as on product preferences by national stakeholders and healthcare providers. To better understand these implications, we critically assessed whether there is a compelling public health value proposition for iNGRVs based on potential (but still hypothetical) vaccine profiles. Our results suggest that the answer is highly dependent on the specific use cases and potential attributes of such novel vaccines. Notably, co-formulation of iNGRVs with similar or greater efficacy than LORVs with a DTP-containing vaccine, such as DTP-Hib-HepB, scored especially high on potential impact, cost-effectiveness, and strength of preference by national stakeholders and health care providers in lower and middle income countries.
Collapse
Affiliation(s)
- William P. Hausdorff
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jessica Price
- Center for Vaccine Innovation and Access, PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA; (J.P.); (J.M.); (C.P.)
| | - Frédéric Debellut
- Center for Vaccine Innovation and Access, PATH, Rue de Varembé 7, 1202 Geneva, Switzerland;
| | - Jessica Mooney
- Center for Vaccine Innovation and Access, PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA; (J.P.); (J.M.); (C.P.)
| | | | - Khatuna Giorgadze
- Linksbridge SPC, 808 5th Ave N, Seattle, WA 98109, USA; (A.A.T.); (K.G.)
| | - Clint Pecenka
- Center for Vaccine Innovation and Access, PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA; (J.P.); (J.M.); (C.P.)
| |
Collapse
|
11
|
Bergman H, Henschke N, Hungerford D, Pitan F, Ndwandwe D, Cunliffe N, Soares-Weiser K. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2021; 11:CD008521. [PMID: 34788488 PMCID: PMC8597890 DOI: 10.1002/14651858.cd008521.pub6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence). In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence). In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence). We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare. AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Daniel Hungerford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council , Cape Town, South Africa
| | - Nigel Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
12
|
Haber M, Tate JE, Lopman BA, Qi W, Ainslie KEC, Parashar UD. Comparing statistical methods for detecting and estimating waning efficacy of rotavirus vaccines in developing countries. Hum Vaccin Immunother 2021; 17:4632-4635. [PMID: 34613877 DOI: 10.1080/21645515.2021.1968738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Vaccination has significantly reduced morbidity and mortality resulting from rotavirus infection worldwide. However, rotavirus vaccine efficacy (VE) appears to wane over the first 2 years since vaccination, particularly in developing countries. Statistical methods for detecting VE waning and estimating its rate have been used in a few studies, but comparisons of methods for evaluating VE waning have not yet been performed. In this work we present and compare three methods - Durham's method, Tian's method, and time-dependent covariate (TDC) method - based on generalizations of the Cox proportional hazard model. METHODS We developed a new stochastic agent-based simulation model to generate data from a hypothetical rotavirus vaccine trial where the protective efficacy of the vaccine may vary over time. Input parameters to the simulation model were obtained from studies on rotavirus infections in four developing countries. We applied each of the methods to four simulated datasets and compared the type-1 error probabilities and the powers of the resulting statistical tests. We also compared estimated and true values of VE over time. RESULTS Durham's method had the highest power of detecting true VE waning of the three methods. This method also provided quite accurate estimates of VE in each period and of the per-period drop in VE. CONCLUSIONS Durham's method is somewhat more powerful than the other two Cox proportional hazards model-based methods for detecting VE waning and provides more information about the temporal behavior of VE.
Collapse
Affiliation(s)
- Michael Haber
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Benjamin A Lopman
- Centers for Disease Control and Prevention, Atlanta, GA, USA.,Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Wenrui Qi
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Kylie E C Ainslie
- Mrc Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | | |
Collapse
|
13
|
Re-evaluation of population-level protection conferred by a rotavirus vaccine using the 'fried-egg' approach in a rural setting in Bangladesh. Vaccine 2021; 39:5876-5882. [PMID: 34454788 PMCID: PMC8494114 DOI: 10.1016/j.vaccine.2021.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
The “fried-egg” analytic approach was applied to a cluster randomized trial (CRT). Overall analysis failed to reveal rotavirus vaccine (RV) herd protection. Same approach unmasked herd protection of other enteric vaccines failed for RV.
Background Vaccine herd protection assessed in a cluster-randomized trial (CRT) may be masked by disease transmission into the cluster from outside. However, herd effects can be unmasked using a ‘fried-egg’ approach whereby the analysis, restricted to the innermost households of clusters, ‘yolk’, creates an insulating ‘egg-white’ periphery. This approach has been demonstrated to unmask vaccine herd protection in reanalyses of cholera and typhoid vaccine CRTs. We applied this approach to an earlier CRT in Bangladesh of rotavirus vaccine (RV) whose overall analysis had failed to detect herd protection. Herein we present the results of this analysis. Methods In the study area, infants in 142 villages were randomized to receive two doses of RV with routine EPI vaccines (RV villages) or only EPI vaccines (non-RV villages). We analyzed RV protection against acute rotavirus diarrhoea for the entire cluster (P100) and P75, P50, P25 clusters, representing 75%, 50% and 25% of the innermost households for each cluster, respectively. Results During 2 years of follow-up, there was evidence of 27% overall (95 %CI: 7, 43) and 42% total protection (95 %CI: 23, 56) in the P100 cluster, but it did not increase when moved in smaller yolks. There was no evidence of indirect vaccine protection in the yolks at any cluster size. Conclusion Our reanalysis of the CRT using the fried- egg approach did not detect RV herd protection. Whether these findings reflect a true inability of the RV to confer herd protection in this setting, or are due to limitations of the approach, requires further study.
Collapse
|
14
|
Platts-Mills JA, Houpt ER, Liu J, Zhang J, Guindo O, Sayinzoga-Makombe N, McMurry TL, Elwood S, Langendorf C, Grais RF, Isanaka S. Etiology and Incidence of Moderate-to-Severe Diarrhea in Young Children in Niger. J Pediatric Infect Dis Soc 2021; 10:1062-1070. [PMID: 34468743 PMCID: PMC8719619 DOI: 10.1093/jpids/piab080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND High-resolution data on the etiology of childhood diarrhea in countries with the highest burden and mortality remain sparse and are needed to inform burden estimates and prioritize interventions. METHODS We tested stool specimens collected between October 2014 and December 2017 from children under 2 years of age from the per-protocol population of a placebo-controlled clinical trial of a bovine rotavirus pentavalent vaccine (Rotasiil) in Niger. We tested 1729 episodes of moderate-to-severe diarrhea (Vesikari score ≥ 7) using quantitative PCR and estimated pathogen-specific burdens by age, season, severity, and trial intervention arm. RESULTS The 4 pathogens with the highest attributable incidence of diarrhea were Shigella (7.2 attributable episodes per 100 child-years; 95% confidence interval: 5.2, 9.7), Cryptosporidium (6.5; 5.8, 7.2), rotavirus (6.4; 5.9, 6.7), and heat-stabile toxin-producing enterotoxigenic Escherichia coli (ST-ETEC) (6.2; 3.1, 7.7). Cryptosporidium was the leading etiology of severe diarrhea (Vesikari score ≥ 11) and diarrhea requiring hospitalization. Shigella was the leading etiology of diarrhea in children 12-23 months of age but also had a substantial burden in the first year of life, with 60.5% of episodes of severe shigellosis occurring in infants. Shigella, Cryptosporidium, and ST-ETEC incidence peaked during the warmer and wetter period and coincided with peak all-cause diarrhea incidence. CONCLUSIONS In this high-burden setting, the leading diarrheal pathogens were Shigella, Cryptosporidium, rotavirus, and ST-ETEC, and each was disproportionately seen in infants. Vaccine development should target these pathogens, and the impact of vaccine schedule on diarrhea burden in the youngest children will need to be considered.
Collapse
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA,Corresponding Author: James A. Platts-Mills, MD, Division of Infectious Diseases & International Health, University of Virginia, PO Box 801340, Charlottesville, VA 22908, USA. E-mail:
| | - Eric R Houpt
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jixian Zhang
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Timothy L McMurry
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Elwood
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Sheila Isanaka
- Department of Research, Epicentre, Paris, France,Departments of Nutrition and Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Isanaka S, Langendorf C, McNeal MM, Meyer N, Plikaytis B, Garba S, Sayinzoga-Makombe N, Soumana I, Guindo O, Makarimi R, Scherrer MF, Adehossi E, Ciglenecki I, Grais RF. Rotavirus vaccine efficacy up to 2 years of age and against diverse circulating rotavirus strains in Niger: Extended follow-up of a randomized controlled trial. PLoS Med 2021; 18:e1003655. [PMID: 34214095 PMCID: PMC8253401 DOI: 10.1371/journal.pmed.1003655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rotavirus vaccination is recommended in all countries to reduce the burden of diarrhea-related morbidity and mortality in children. In resource-limited settings, rotavirus vaccination in the national immunization program has important cost implications, and evidence for protection beyond the first year of life and against the evolving variety of rotavirus strains is important. We assessed the extended and strain-specific vaccine efficacy of a heat-stable, affordable oral rotavirus vaccine (Rotasiil, Serum Institute of India, Pune, India) against severe rotavirus gastroenteritis (SRVGE) among healthy infants in Niger. METHODS AND FINDINGS From August 2014 to November 2015, infants were randomized in a 1:1 ratio to receive 3 doses of Rotasiil or placebo at approximately 6, 10, and 14 weeks of age. Episodes of gastroenteritis were assessed through active and passive surveillance and graded using the Vesikari score. The primary endpoint was vaccine efficacy of 3 doses of vaccine versus placebo against a first episode of laboratory-confirmed SRVGE (Vesikari score ≥ 11) from 28 days after dose 3, as previously reported. At the time of the primary analysis, median age was 9.8 months. In the present paper, analyses of extended efficacy were undertaken for 3 periods (28 days after dose 3 to 1 year of age, 1 to 2 years of age, and the combined period 28 days after dose 3 to 2 years of age) and by individual rotavirus G type. Among the 3,508 infants included in the per-protocol efficacy analysis (mean age at first dose 6.5 weeks; 49% male), the vaccine provided significant protection against SRVGE through the first year of life (3.96 and 9.98 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 60.3%, 95% CI 43.6% to 72.1%) and over the entire efficacy follow-up period up to 2 years of age (2.13 and 4.69 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 54.7%, 95% CI 38.1% to 66.8%), but the difference was not statistically significant in the second year of life. Up to 2 years of age, rotavirus vaccination prevented 2.56 episodes of SRVGE per 100 child-years. Estimates of efficacy against SRVGE by individual rotavirus genotype were consistent with the overall protective efficacy. Study limitations include limited generalizability to settings with administration of oral polio virus due to low concomitant administration, limited power to assess vaccine efficacy in the second year of life owing to a low number of events among older children, potential bias due to censoring of placebo children at the time of study vaccine receipt, and suboptimal adapted severity scoring based on the Vesikari score, which was designed for use in settings with high parental literacy. CONCLUSIONS Rotasiil provided protection against SRVGE in infants through an extended follow-up period of approximately 2 years. Protection was significant in the first year of life, when the disease burden and risk of death are highest, and against a changing pattern of rotavirus strains during the 2-year efficacy period. Rotavirus vaccines that are safe, effective, and protective against multiple strains represent the best hope for preventing the severe consequences of rotavirus infection, especially in resource-limited settings, where access to care may be limited. Studies such as this provide valuable information for the planning of national immunization programs and future vaccine development. TRIAL REGISTRATION ClinicalTrials.gov NCT02145000.
Collapse
Affiliation(s)
- Sheila Isanaka
- Department of Research, Epicentre, Paris, France
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | | | - Monica Malone McNeal
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nicole Meyer
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Brian Plikaytis
- BioStat Consulting, Jasper, Georgia, United States of America
| | | | | | | | | | | | | | | | - Iza Ciglenecki
- Operational Center Geneva, Médecins Sans Frontières, Geneva, Switzerland
| | | |
Collapse
|
16
|
Debellut F, Clark A, Pecenka C, Tate J, Baral R, Sanderson C, Parashar U, Atherly D. Evaluating the potential economic and health impact of rotavirus vaccination in 63 middle-income countries not eligible for Gavi funding: a modelling study. Lancet Glob Health 2021; 9:e942-e956. [PMID: 33891885 PMCID: PMC8205857 DOI: 10.1016/s2214-109x(21)00167-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Middle-income countries (MICs) that are not eligible for funding from Gavi, the Vaccine Alliance, have been slow to adopt rotavirus vaccines. Few studies have evaluated the cost-effectiveness and benefit-risk of rotavirus vaccination in these settings. We aimed to assess the potential economic and health impact of rotavirus vaccination in 63 MICs not eligible for funding from Gavi. METHODS In this modelling study, we estimated the cost-effectiveness and benefit-risk of rotavirus vaccination in 63 MICs not eligible to Gavi funding. We used an Excel-based proportionate outcomes model with a finely disaggregated age structure to estimate the number of rotavirus gastroenteritis cases, clinic visits, hospitalisations, and deaths averted by vaccination in children younger than 5 years over a 10-year period. We calculated cost-effectiveness ratios (costs per disability-adjusted life-years averted compared with no vaccination) and benefit-risk ratios (number of hospitalisations due to rotavirus gastroenteritis averted per excess hospitalisations due to intussusception). We evaluated three alternative vaccines available globally (Rotarix, Rotavac, and Rotasiil) and used information from vaccine manufacturers regarding anticipated vaccine prices. We ran deterministic and probabilistic uncertainty analyses. FINDINGS Over the period 2020-29, rotavirus vaccines could avert 77 million (95% uncertainty interval [UI] 51-103) cases of rotavirus gastroenteritis and 21 million (12-36) clinic visits, 3 million (1·4-5·6) hospitalisations, and 37 900 (25 900-55 900) deaths due to rotavirus gastroenteritis in 63 MICs not eligible for Gavi support. From a government perspective, rotavirus vaccination would be cost-effective in 48 (77%) of 62 MICs considered. The benefit-risk ratio for hospitalisations prevented versus those potentially caused by vaccination exceeded 250:1 in all countries. INTERPRETATION In most MICs not eligible for Gavi funding, rotavirus vaccination has high probability to be cost-effective with a favourable benefit-risk profile. Policy makers should consider this new evidence when making or revisiting decisions on the use of rotavirus vaccines in their respective countries. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Frédéric Debellut
- Center for Vaccine Innovation and Access, PATH, Geneva, Switzerland.
| | - Andrew Clark
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Clint Pecenka
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Jacqueline Tate
- Division of Viral Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ranju Baral
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Colin Sanderson
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Umesh Parashar
- Division of Viral Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Deborah Atherly
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| |
Collapse
|
17
|
Kraay ANM, Ionides EL, Lee GO, Trujillo WFC, Eisenberg JNS. Effect of childhood rotavirus vaccination on community rotavirus prevalence in rural Ecuador, 2008-13. Int J Epidemiol 2021; 49:1691-1701. [PMID: 32844206 DOI: 10.1093/ije/dyaa124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although live attenuated monovalent human rotavirus vaccine (Rotarix) efficacy has been characterized through randomized studies, its effectiveness, especially in non-clinical settings, is less clear. In this study, we estimate the impact of childhood Rotarix® vaccination on community rotavirus prevalence. METHODS We analyse 10 years of serial population-based diarrhoea case-control study, which also included testing for rotavirus infection (n = 3430), and 29 months of all-cause diarrhoea active surveillance from a child cohort (n = 376) from rural Ecuador during a period in which Rotarix vaccination was introduced. We use weighted logistic regression from the case-control data to assess changes in community rotavirus prevalence (both symptomatic and asymptomatic) and all-cause diarrhoea after the vaccine was introduced. We also assess changes in all-cause diarrhoea rates in the child cohort (born 2008-13) using Cox regression, comparing time to first all-cause diarrhoea case by vaccine status. RESULTS Overall, vaccine introduction among age-eligible children was associated with a 82.9% reduction [95% confidence interval (CI): 49.4%, 94.2%] in prevalence of rotavirus in participants without diarrhoea symptoms and a 46.0% reduction (95% CI: 6.2%, 68.9%) in prevalence of rotavirus infection among participants experiencing diarrhoea. Whereas all age groups benefited, this reduction was strongest among the youngest age groups. For young children, prevalence of symptomatic diarrhoea also decreased in the post-vaccine period in both the case-control study (reduction in prevalence for children <1 year of age = 69.3%, 95% CI: 8.7%, 89.7%) and the cohort study (reduction in hazard for receipt of two Rotarix doses among children aged 0.5-2 years = 57.1%, 95% CI: 16.6, 77.9%). CONCLUSIONS Rotarix vaccination may suppress transmission, including asymptomatic transmission, in low- and middle-income settings. It was highly effective among children in a rural community setting and provides population-level benefits through indirect protection among adults.
Collapse
Affiliation(s)
- Alicia N M Kraay
- Department of Epidemiology, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Edward L Ionides
- Department of Statistics, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Gwenyth O Lee
- Department of Epidemiology, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | | | - Joseph N S Eisenberg
- Department of Epidemiology, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Hai NM, Dung ND, Pho DC, Son VT, Hoan VN, Dan PT, The Anh BD, Giang LH, Hung PN. Immunogenicity, safety and reactogenicity of ROTAVAC® in healthy infants aged 6-8 weeks in Vietnam. Vaccine 2021; 39:1140-1147. [PMID: 33461837 DOI: 10.1016/j.vaccine.2020.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND ROTAVAC® is derived from human 116E rotavirus (RV) neonatal strain. In this study, we evaluated the immunogenicity, safety and reactogenicity of ROTAVAC® in Vietnam. METHOD We conducted a phase IV clinical trial in healthy infants aged 6-8 weeks using the complete regimen of ROTAVAC® with three doses. Serum anti-RV IgA was measured by enzyme-linked immunosorbent assay to assess the geometric mean concentration in infants who received the complete regimen of the vaccine. RESULTS A total of 360 participants were enrolled in this clinical trial. The mean age ± standard deviation at enrollment was 6.9 ± 0.6 weeks. The anti-RV IgA titer was 4.01 ± 3.74 mg/ml pre-vaccination and substantially increased to 29.27 ± 80.64 mg/ml post-vaccination. The value of logIgA significantly increased (p = 0.003) from 0.28 ± 0.79 to 1.03 ± 0.54. The proportion of participants with equal to and greater than 3-fold and 4-fold shifts in pre- to post-vaccination antibody titer (IgA) were 55.4% and 48.3%, respectively. No adverse events or serious adverse events were recorded immediately within 30 min after the administration of each dose. The most common adverse events within 14 days after each visit were fever, unusual crying and irritability. Other adverse events occurred at a low rate, and no case of intussusception was noted. CONCLUSIONS The complete regimen of ROTAVAC® demonstrated an immunological response with clinically acceptable safety profile. Post-completion of this study, ROTAVAC® is now a WHO-prequalified vaccine and available in Vietnam.
Collapse
Affiliation(s)
- Nguyen Minh Hai
- Department of Assessment and Accreditation, Vietnam Military Medical University (VMMU), Viet Nam
| | - Nguyen Dang Dung
- Department of Immunology, Vietnam Military Medical University (VMMU), Viet Nam
| | - Dinh Cong Pho
- Department of Infection Control, Military Hospital 103, Vietnam Military Medical University, Viet Nam
| | - Vu Tung Son
- Department of Epidemiology, Vietnam Military Medical University, Viet Nam
| | - Vu Ngoc Hoan
- Department of Epidemiology, Vietnam Military Medical University, Viet Nam
| | - Phan Tan Dan
- Department of Preventive Medicine, Vietnam Military Medical Department, Viet Nam
| | - Bui Dang The Anh
- Department of Epidemiology, Vietnam Military Medical University, Viet Nam
| | - La Huong Giang
- Department of Epidemiology, Vietnam Military Medical University, Viet Nam
| | - Pham Ngoc Hung
- Department of Epidemiology, Vietnam Military Medical University, Viet Nam; Department of Training, Vietnam Military Medical University, Viet Nam.
| |
Collapse
|
19
|
Lee B. Update on rotavirus vaccine underperformance in low- to middle-income countries and next-generation vaccines. Hum Vaccin Immunother 2020; 17:1787-1802. [PMID: 33327868 PMCID: PMC8115752 DOI: 10.1080/21645515.2020.1844525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the decade since oral rotavirus vaccines (ORV) were recommended by the World Health Organization for universal inclusion in all national immunization programs, significant yet incomplete progress has been made toward reducing the burden of rotavirus in low- to middle-income countries (LMIC). ORVs continue to demonstrate effectiveness and impact in LMIC, yet numerous factors hinder optimal performance and evaluation of these vaccines. This review will provide an update on ORV performance in LMIC, the increasing body of literature regarding factors that affect ORV response, and the status of newer and next-generation rotavirus vaccines as of early 2020. Fully closing the gap in rotavirus prevention between LMIC and high-income countries will likely require a multifaceted approach accounting for biological and methodological challenges and evaluation and roll-out of newer and next-generation vaccines.
Collapse
Affiliation(s)
- Benjamin Lee
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
20
|
Rotavirus vaccination and stunting: Secondary Data Analysis from the Peruvian Demographic and Health Survey. Vaccine 2020; 38:8010-8015. [PMID: 33139135 DOI: 10.1016/j.vaccine.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Rotavirus infection is the leading cause of acute diarrhea in children and is preventable with a vaccine. Malnutrition increases the risk for the development of enteric and respiratory diseases, but also diarrhea increases the risk for stunting, having a negative effect in height-for-age Z score (HAZ). Therefore, Rotavirus can be considered as one of the contributing factors to stunting. The objective was to determine if vaccination against rotavirus was associated with changes in HAZ of children aged 6-60 months. We analyzed the data of Demographic and Health Survey (DHS) 2015-2017 for Peru, which is a nationwide representative. We fitted linear regression models controlling for complex sampling. The vaccine coverage was close to 75.5%, and the mean HAZ was -0.76 standard deviations. After adjusting by demographic, health, and household characteristics, children who received rotavirus vaccine, had a mean HAZ 0.06 standard deviations higher than children who did not receive it. Additionally, BCG vaccination, a higher education level of the mother, a higher wealth index, and treating water for drinking were positively associated with HAZ. On the other hand, we found low birth weight, lack of flush toilet, and altitude higher than 2500 m above sea level negatively associated with HAZ. Rotavirus vaccine is associated with better anthropometric measurements.
Collapse
|
21
|
Mujuru HA, Burnett E, Nathoo KJ, Ticklay I, Gonah NA, Mukaratirwa A, Berejena C, Manangazira P, Rupfutse M, Weldegebriel GG, Mwenda JM, Yen C, Parashar UD, Tate JE. Monovalent Rotavirus Vaccine Effectiveness Against Rotavirus Hospitalizations Among Children in Zimbabwe. Clin Infect Dis 2020; 69:1339-1344. [PMID: 30590488 DOI: 10.1093/cid/ciy1096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rotavirus is a leading cause of mortality among children <5 years old. We evaluated monovalent rotavirus vaccine effectiveness (VE) under conditions of routine use at 2 surveillance sites in Harare, Zimbabwe, after vaccine introduction in May 2014. METHODS Children aged <5 years hospitalized or treated in the accident and emergency department (A&E) for acute watery diarrhea were enrolled for routine surveillance. Copies of vaccination cards were collected to document vaccination status. Among children age-eligible to receive rotavirus vaccine, we estimated VE, calculated as 1 - odds ratio, using a test-negative case-control design. RESULTS We included 903 rotavirus-positive cases and 2685 rotavirus-negative controls in the analysis; 99% had verified vaccination status. Rotavirus-positive children had more severe diarrhea than rotavirus-negative children; 61% of cases and 46% of controls had a Vesikari score ≥11 (P < .01). Among cases and controls, 31% and 37%, respectively, were stunted for their age (P < .01). Among children 6-11 months old, adjusted 2-dose VE against hospitalization or treatment in A&E due to rotavirus of any severity was 61% (95% confidence interval [CI], 21%-81%) and 68% (95% CI, 13%-88%) against severe rotavirus disease. Stratified by nutritional status, adjusted VE was 45% (95% CI, -148% to 88%) among stunted infants and 71% (95% CI, 29%-88%) among infants with a normal height for age. CONCLUSIONS Monovalent rotavirus vaccine is effective in preventing hospitalizations due to severe rotavirus diarrhea among infants in Zimbabwe, providing additional evidence for countries considering rotavirus vaccine introduction that live, oral rotavirus vaccines are effective in high-child-mortality settings.
Collapse
Affiliation(s)
- Hilda A Mujuru
- Harare Central Hospital, University of Zimbabwe, Harare.,Department of Paediatrics and Child Health, University of Zimbabwe, Harare
| | - Eleanor Burnett
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kusum J Nathoo
- Harare Central Hospital, University of Zimbabwe, Harare.,Department of Paediatrics and Child Health, University of Zimbabwe, Harare
| | - Ismail Ticklay
- Department of Paediatrics and Child Health, University of Zimbabwe, Harare.,Parirenyatwa Group Hospitals, Harare
| | - Nhamo A Gonah
- Chitungwiza Central Hospital, Ministry of Health and Child Care
| | | | - Chipo Berejena
- National Virology Laboratory, Ministry of Health and Child Care
| | | | | | | | - Jason M Mwenda
- WHO Regional Office for Africa1, Brazzaville, Republic of Congo
| | - Catherine Yen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
22
|
Real-world effectiveness of rotavirus vaccines, 2006-19: a literature review and meta-analysis. LANCET GLOBAL HEALTH 2020; 8:e1195-e1202. [PMID: 32827481 DOI: 10.1016/s2214-109x(20)30262-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since licensure in 2006, rotavirus vaccines have been introduced in more than 100 countries. The efficacy of rotavirus vaccines is variable in settings with different child mortality levels. We did an updated review of the published literature to assess the real-world effectiveness of rotavirus vaccines in a range of settings. METHODS In this literature review and meta-analysis, we included observational, post-licensure studies of rotavirus vaccines, published from Jan 1, 2006, to Dec 31, 2019, in English, with laboratory-confirmed rotavirus as the endpoint. In addition to product-specific results for Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) or RotaTeq (Merck, West Point, PA, USA), we included Rotarix and RotaTeq mixed series, and non-product-specific vaccine effectiveness estimates from countries where Rotarix and RotaTeq are both available. Studies of other infant rotavirus vaccines were excluded because little or no post-licensure data were available. We fitted random-effects regression models to estimate vaccine effectiveness among children younger than 12 months and aged 12-23 months. On the basis of 2017 UNICEF mortality estimates for children younger than 5 years, countries were stratified as having low (lowest quartile), medium (second quartile), or high mortality (third and fourth quartiles). FINDINGS We identified and screened 1703 articles, of which 60 studies from 32 countries were included. 31 studies were from countries with low child mortality, eight were from medium-mortality countries, and 21 were from high-mortality countries. Rotarix vaccine effectiveness against laboratory-confirmed rotavirus among children younger than 12 months old was 86% (95% CI 81-90) in low-mortality countries, 77% (66-85) in medium-mortality countries, and 63% (54-70) in high-mortality countries. Rotarix vaccine effectiveness among children aged 12-23 months was 86% (81-90) in low-mortality countries, 54% (23-73) in medium-mortality countries, and 58% (38-72) in high-mortality countries. RotaTeq vaccine effectiveness among children younger than 12 months was 86% (76-92) in low-mortality countries and 66% (51-76) in high-mortality countries. RotaTeq vaccine effectiveness among children aged 12-23 months was 84% (79-89) in low-mortality countries. There was no substantial heterogeneity (I2 range: 0-36%). Median vaccine effectiveness in low-mortality countries was similar for Rotarix (83%; IQR 78-91), RotaTeq (85%; 81-92), mixed series (86%; 70-91), and non-product-specific (89%; 75-91) vaccination. INTERPRETATION Rotavirus vaccines were effective in preventing rotavirus diarrhoea, with higher performance in countries with lower child mortality. FUNDING None.
Collapse
|
23
|
Huang YC, Wu FT, Huang YC, Liu CC, Chun-Yi-Lee, Lin HC, Chi H, Huang LM, Ho YH, Lee JT, Shih SM, Ching-Yi-Huang, Hsiung CA. Long-term effectiveness of pentavalent and monovalent rotavirus vaccines against hospitalization in Taiwan children. Vaccine 2020; 38:6435-6441. [DOI: 10.1016/j.vaccine.2020.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023]
|
24
|
Pitzer VE, Bennett A, Bar-Zeev N, Jere KC, Lopman BA, Lewnard JA, Parashar UD, Cunliffe NA. Evaluating strategies to improve rotavirus vaccine impact during the second year of life in Malawi. Sci Transl Med 2020; 11:11/505/eaav6419. [PMID: 31413144 DOI: 10.1126/scitranslmed.aav6419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Rotavirus vaccination has substantially reduced the incidence of rotavirus-associated gastroenteritis (RVGE) in high-income countries, but vaccine impact and estimated effectiveness are lower in low-income countries for reasons that are poorly understood. We used mathematical modeling to quantify rotavirus vaccine impact and investigate reduced vaccine effectiveness, particularly during the second year of life, in Malawi, where vaccination was introduced in October 2012 with doses at 6 and 10 weeks. We fitted models to 12 years of prevaccination data and validated the models against postvaccination data to evaluate the magnitude and duration of vaccine protection. The observed rollout of vaccination in Malawi was predicted to lead to a 26 to 77% decrease in the overall incidence of moderate-to-severe RVGE in 2016, depending on assumptions about waning of vaccine-induced immunity and heterogeneity in vaccine response. Vaccine effectiveness estimates were predicted to be higher among 4- to 11-month-olds than 12- to 23-month-olds, even when vaccine-induced immunity did not wane, due to differences in the rate at which vaccinated and unvaccinated individuals acquire immunity from natural infection. We found that vaccine effectiveness during the first and second years of life could potentially be improved by increasing the proportion of infants who respond to vaccination or by lowering the rotavirus transmission rate. An additional dose of rotavirus vaccine at 9 months of age was predicted to lead to higher estimated vaccine effectiveness but to only modest (5 to 16%) reductions in RVGE incidence over the first 3 years after introduction, regardless of assumptions about waning of vaccine-induced immunity.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA.
| | - Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.,Epidemiology Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Umesh D Parashar
- Epidemiology Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
25
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
26
|
Lewnard JA, Lopman BA, Parashar UD, Bennett A, Bar-Zeev N, Cunliffe NA, Samuel P, Guerrero ML, Ruiz-Palacios G, Kang G, Pitzer VE. Heterogeneous susceptibility to rotavirus infection and gastroenteritis in two birth cohort studies: Parameter estimation and epidemiological implications. PLoS Comput Biol 2019; 15:e1007014. [PMID: 31348775 PMCID: PMC6690553 DOI: 10.1371/journal.pcbi.1007014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/12/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
Cohort studies, randomized trials, and post-licensure studies have reported reduced natural and vaccine-derived protection against rotavirus gastroenteritis (RVGE) in low- and middle-income countries. While susceptibility of children to rotavirus is known to vary within and between settings, implications for estimation of immune protection are not well understood. We sought to re-estimate naturally-acquired protection against rotavirus infection and RVGE, and to understand how differences in susceptibility among children impacted estimates. We re-analyzed data from studies conducted in Mexico City, Mexico and Vellore, India. Cumulatively, 573 rotavirus-unvaccinated children experienced 1418 rotavirus infections and 371 episodes of RVGE over 17,636 child-months. We developed a model that characterized susceptibility to rotavirus infection and RVGE among children, accounting for aspects of the natural history of rotavirus and differences in transmission rates between settings. We tested whether model-generated susceptibility measurements were associated with demographic and anthropometric factors, and with the severity of RVGE symptoms. We identified greater variation in susceptibility to rotavirus infection and RVGE in Vellore than in Mexico City. In both cohorts, susceptibility to rotavirus infection and RVGE were associated with male sex, lower birth weight, lower maternal education, and having fewer siblings; within Vellore, susceptibility was also associated with lower socioeconomic status. Children who were more susceptible to rotavirus also experienced higher rates of rotavirus-negative diarrhea, and higher risk of moderate-to-severe symptoms when experiencing RVGE. Simulations suggested that discrepant estimates of naturally-acquired immunity against RVGE can be attributed, in part, to between-setting differences in susceptibility of children, but result primarily from the interaction of transmission rates with age-dependent risk for infections to cause RVGE. We found that more children in Vellore than in Mexico City belong to a high-risk group for rotavirus infection and RVGE, and demonstrate that unmeasured individual- and age-dependent susceptibility may influence estimates of naturally-acquired immune protection against RVGE. Differences in susceptibility can help explain why some individuals, and not others, acquire infection and exhibit symptoms when exposed to infectious disease agents. However, it is difficult to distinguish between differences in susceptibility versus exposure in epidemiological studies. We developed a modeling approach to distinguish transmission intensity and susceptibility in data from cohort studies of rotavirus infection among children in Mexico City, Mexico, and Vellore, India, and evaluated how these factors may have contributed to differences in estimates of naturally-acquired immune protection between the studies. Given the same exposure, more children were at high risk of acquiring rotavirus infection, and of experiencing gastroenteritis when infected, in Vellore than in Mexico City. The probability of belonging to this high-risk stratum was associated with well-known individual factors such as lower socioeconomic status, lower birth weight, and incidence of diarrhea due to other causes. We also found the risk for rotavirus infections to cause symptoms declined with age, independent of acquired immunity. These findings can, in part, account for estimates of lower protective efficacy of acquired immunity against rotavirus gastroenteritis in high-incidence settings, mirroring estimates of reduced effectiveness of live oral rotavirus vaccines in low- and middle-income countries.
Collapse
Affiliation(s)
- Joseph A. Lewnard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Benjamin A. Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nigel A. Cunliffe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
| | - Prasanna Samuel
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - M. Lourdes Guerrero
- Instituto Nacional de Ciences Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Gagandeep Kang
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Virginia E. Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Clark A, van Zandvoort K, Flasche S, Sanderson C, Bines J, Tate J, Parashar U, Jit M. Efficacy of live oral rotavirus vaccines by duration of follow-up: a meta-regression of randomised controlled trials. THE LANCET. INFECTIOUS DISEASES 2019; 19:717-727. [PMID: 31178289 PMCID: PMC6595176 DOI: 10.1016/s1473-3099(19)30126-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The duration of protection offered by rotavirus vaccines varies across the world, and this variation is important to understanding and predicting the effects of the vaccines. There is now a large body of evidence on the efficacy of live oral rotavirus vaccines in different settings, but these data have never been synthesised to obtain robust estimates of efficacy by duration of follow-up. Our aim is to estimate the efficacy of live oral rotavirus vaccines at each point during follow-up and by mortality stratum. METHODS In our meta-regression study, we identified all randomised controlled trials of rotavirus vaccines published until April 4, 2018, using the results of a Cochrane systematic review, and cross checked these studies against those identified by another systematic review. We excluded trials that were based on special populations, trials without an infant schedule, and trials without clear reporting of numbers of enrolled infants and events in different periods of follow-up. For all reported periods of follow-up, we extracted the mean duration of follow-up (time since administration of the final dose of rotavirus vaccination), the number of enrolled infants, and case counts for rotavirus-positive severe gastroenteritis in both non-vaccinated and vaccinated groups. We used a Bayesian hierarchical Poisson meta-regression model to estimate the pooled cumulative vaccine efficacy (VE) and its waning with time for three mortality strata. We then converted these VE estimates into instantaneous VE (iVE). FINDINGS In settings with low mortality (15 observations), iVE pooled for infant schedules of Rotarix and RotaTeq was 98% (95% credibility interval 93-100) 2 weeks following the final dose of vaccination and 94% (87-98) after 12 months. In medium-mortality settings (11 observations), equivalent estimates were 82% (74-92) after 2 weeks and 77% (67-84) after 12 months. In settings with high mortality (24 observations), there were five different vaccines with observation points for infant schedules. The pooled iVE was 66% (48-81) after 2 weeks of follow-up and 44% (27-59) after 12 months. INTERPRETATION Rotavirus vaccine efficacy is lower and wanes more rapidly in high-mortality settings than in low-mortality settings, but the earlier peak age of disease in high-mortality settings means that live oral rotavirus vaccines are still likely to provide substantial benefit. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Andrew Clark
- London School of Hygiene and Tropical Medicine, London, UK.
| | | | - Stefan Flasche
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Julie Bines
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jacqueline Tate
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Jit
- London School of Hygiene and Tropical Medicine, London, UK; Modelling and Economics Unit, Public Health England, London, UK
| |
Collapse
|
28
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
29
|
Platts-Mills JA, Steele AD. Rotavirus vaccine impact in Africa: greater than the sum of its parts? LANCET GLOBAL HEALTH 2019; 6:e948-e949. [PMID: 30103987 DOI: 10.1016/s2214-109x(18)30356-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA.
| | - A Duncan Steele
- Bill & Melinda Gates Foundation, Enteric and Diarrheal Diseases, Seattle, WA, USA
| |
Collapse
|
30
|
Lopman BA, Pitzer VE. Waxing Understanding of Waning Immunity. J Infect Dis 2018; 217:851-853. [PMID: 29394364 PMCID: PMC5853538 DOI: 10.1093/infdis/jix670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|