1
|
Hu Z, Xia J, Wu J, Zhao H, Ji P, Gu L, Gu W, Chen Z, Xu J, Huang X, Ma J, Chen A, Li J, Shu T, Fan XY. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg Microbes Infect 2024; 13:2300463. [PMID: 38164736 PMCID: PMC10769537 DOI: 10.1080/22221751.2023.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jingxian Xia
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Huimin Zhao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ping Ji
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ling Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Wenfei Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | | | - Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | | | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Zeng J, Zhang L, Ma S, Dai W, Xu M, Wei Y, Zhang Y, Cheng Y, Zhu G, Lu S, Li Q, Cao B. Dysregulation of peripheral and intratumoral KLRG1 + CD8 +T cells is associated with immune evasion in patients with non-small-cell lung cancer. Transl Oncol 2024; 45:101968. [PMID: 38713923 PMCID: PMC11097332 DOI: 10.1016/j.tranon.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024] Open
Abstract
OBJECTIVES Killer cell lectin like receptor G1 (KLRG1) is identified as a co-inhibitory receptor for NK cells and antigen-experienced T cells. The role of KLRG1 in immune regulation in patients with non-small cell lung cancer (NSCLC) remains poorly understood. MATERIALS AND METHODS We measured the proportion and immune function of KLRG1+CD8+T cells derived from peripheral blood in patients with NSCLC by flow cytometry. Besides, using data from the gene expression profiles and single-cell sequencing, we explored the expression and immune role of KLRG1 in tumor tissues of patients with NSCLC. We further determined the prognostic value of KLRG1 in terms of overall survival (OS) in NSCLC patients. RESULTS We found that the proportion of KLRG1+CD8+T cells in peripheral blood significantly increased in patients with NSCLC as compared to those with benign pulmonary nodules and healthy donors. Peripheral KLRG1+CD8+T cell proportion was increased in elder subjects compared to that in younger ones, implying an immunosenescence phenotype. Moreover, the KLRG1+CD8+T cell levels were positively correlated with tumor size and TNM stage in the NSCLC cohort. In vitro stimulation experiments demonstrated that the KLRG1+CD8+T cells from peripheral blood expressed higher levels of Granzyme B and perforin than the KLRG1-CD8+ T cells. However, single-cell RNA sequencing data revealed that the KLRG1+CD8+ T cells were less infiltrated in tumor microenvironment and exhibited impaired cytotoxicity. The KLRG1 gene expression levels were significantly lower in tumor tissues than that in normal lung tissues, and were inversely correlated with CDH1 expression levels. Moreover, higher expression of CDH1 in tumor tissues predicted worse overall survival only in patients with KLRG1-high expression, but not in the KLRG1-low subset. CONCLUSION This study demonstrates that KLRG1+CD8+T cells were associated with tumor immune evasion in NSCLC and suggests KLRG1 as a potential immunotherapy target.
Collapse
Affiliation(s)
- Juan Zeng
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Zhang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Ma
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Dai
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Man Xu
- Department of Healthy Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Wei
- Department of Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyang Zhang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Youfu Cheng
- Department of Healthy Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shun Lu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Biobank, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Zhang Y, Chen S, Tang X, Peng Y, Jiang T, Zhang X, Li J, Liu Y, Yang Z. The role of KLRG1: a novel biomarker and new therapeutic target. Cell Commun Signal 2024; 22:337. [PMID: 38898461 PMCID: PMC11186184 DOI: 10.1186/s12964-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.
Collapse
Affiliation(s)
- Yakun Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Chen
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinyi Tang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Peng
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Jiang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Yang Y, Shi H, Zhou Y, Zhou Y. Expression of HLA-DR and KLRG1 enhances the cytotoxic potential and cytokine secretion capacity of CD3 + T cells in tuberculosis patients. Int Immunopharmacol 2024; 133:112115. [PMID: 38652959 DOI: 10.1016/j.intimp.2024.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Human T cells play an important role in immunity against tuberculosis (TB) infection. Activating receptor HLA-DR and inhibitory receptor KLRG1 are critical regulators of T cell function during viral infection and tumorigenesis, but they have been less studied in TB infection. METHODS In this study, we explored the relationship between CD3+ T cell expression of HLA-DR and KLRG1 receptors and function against TB infection. Flow cytometry was conducted to assess the immunomodulatory effects of HLA-DR and KLRG1 receptors on CD3+ T cells in patients with different TB infection status. RESULTS We found activating receptors HLA-DR, NKG2C, CD57 and NKP46, and inhibitory receptors KLRG1 and KIR on CD3+ T cells in different TB infection status showed different distribution patterns; the cytotoxic potential and cytokine secretion capacity of CD3+ T cells after Mtb-specific antigen stimulation were significantly enhanced in TB infection groups. Further studies revealed HLA-DR+ T and KLRG1+ T cells expressed higher activating and inhibitory receptors than the negative population. In addition, the expression of cytotoxic potential and cytokine secretion capacity of HLA-DR+ T and KLRG1+ T cells was significantly higher than that of HLA-DR- T and KLRG1- T cells. CONCLUSIONS Expression of HLA-DR and KLRG1 enhances the cytotoxic potential and cytokine secretion capacity of CD3+ T cells in TB patients, suggesting CD3+ T cells expressing HLA-DR and KLRG1 are important effector cell phenotypes involved in the host anti-TB infection. HLA-DR and KLRG1 expressed by CD3+ T cells may be potential predictive markers of TB disease progression and clinical immune assessment.
Collapse
Affiliation(s)
- Yiqi Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Hanlu Shi
- Clinical Research Center, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 360000, China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Yonglie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
6
|
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLDM, Rossi-Bergmann B, Gomes DCO. Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta Trop 2024; 252:107125. [PMID: 38280636 DOI: 10.1016/j.actatropica.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Division of Medicine, University College London, London, United Kingdom
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil.
| |
Collapse
|
7
|
Marques-Neto LM, Trentini MM, Kanno AI, Rodriguez D, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front Immunol 2023; 14:1205449. [PMID: 37520577 PMCID: PMC10374402 DOI: 10.3389/fimmu.2023.1205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Vaccine-induced protection against Mycobacterium tuberculosis (Mtb) is usually ascribed to the induction of Th1, Th17, and CD8+ T cells. However, protective immune responses should also involve other immune cell subsets, such as memory T cells. We have previously shown improved protection against Mtb challenge using the rBCG-LTAK63 vaccine (a recombinant BCG strain expressing the LTAK63 adjuvant, a genetically detoxified derivative of the A subunit from E. coli heat-labile toxin). Here we show that mice immunized with rBCG-LTAK63 exhibit a long-term (at least until 6 months) polyfunctional Th1/Th17 response in the draining lymph nodes and in the lungs. This response was accompanied by the increased presence of a diverse set of memory T cells, including central memory, effector memory and tissue-resident memory T cells. After the challenge, the T cell phenotype in the lymph nodes and lungs were characterized by a decrease in central memory T cells, and an increase in effector memory T cells and effector T cells. More importantly, when challenged 6 months after the immunization, this group demonstrated increased protection in comparison to BCG. In conclusion, this work provides experimental evidence in mice that the rBCG-LTAK63 vaccine induces a persistent increase in memory and effector T cell numbers until at least 6 months after immunization, which correlates with increased protection against Mtb. This improved immune response may contribute to enhance the long-term protection.
Collapse
|
8
|
McLeish E, Sooda A, Slater N, Kachigunda B, Beer K, Paramalingam S, Lamont PJ, Chopra A, Mastaglia FL, Needham M, Coudert JD. Uncovering the significance of expanded CD8+ large granular lymphocytes in inclusion body myositis: Insights into T cell phenotype and functional alterations, and disease severity. Front Immunol 2023; 14:1153789. [PMID: 37063893 PMCID: PMC10098158 DOI: 10.3389/fimmu.2023.1153789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionInclusion body myositis (IBM) is a progressive inflammatory myopathy characterised by skeletal muscle infiltration and myofibre invasion by CD8+ T lymphocytes. In some cases, IBM has been reported to be associated with a systemic lymphoproliferative disorder of CD8+ T cells exhibiting a highly differentiated effector phenotype known as T cell Large Granular Lymphocytic Leukemia (T-LGLL). MethodsWe investigated the incidence of a CD8+ T-LGL lymphoproliferative disorder in 85 IBM patients and an aged-matched group of 56 Healthy Controls (HC). Further, we analysed the phenotypical characteristics of the expanded T-LGLs and investigated whether their occurrence was associated with any particular HLA alleles or clinical characteristics. ResultsBlood cell analysis by flow cytometry revealed expansion of T-LGLs in 34 of the 85 (40%) IBM patients. The T cell immunophenotype of T-LGLHIGH patients was characterised by increased expression of surface molecules including CD57 and KLRG1, and to a lesser extent of CD94 and CD56 predominantly in CD8+ T cells, although we also observed modest changes in CD4+ T cells and γδ T cells. Analysis of Ki67 in CD57+ KLRG1+ T cells revealed that only a small proportion of these cells was proliferating. Comparative analysis of CD8+ and CD4+ T cells isolated from matched blood and muscle samples donated by three patients indicated a consistent pattern of more pronounced alterations in muscles, although not significant due to small sample size. In the T-LGLHIGH patient group, we found increased frequencies of perforin-producing CD8+ and CD4+ T cells that were moderately correlated to combined CD57 and KLRG1 expression. Investigation of the HLA haplotypes of 75 IBM patients identified that carriage of the HLA-C*14:02:01 allele was significantly higher in T-LGLHIGH compared to T-LGLLOW individuals. Expansion of T-LGL was not significantly associated with seropositivity patient status for anti-cytosolic 5'-nucleotidase 1A autoantibodies. Clinically, the age at disease onset and disease duration were similar in the T-LGLHIGH and T-LGLLOW patient groups. However, metadata analysis of functional alterations indicated that patients with expanded T-LGL more frequently relied on mobility aids than T-LGLLOW patients indicating greater disease severity. ConclusionAltogether, these results suggest that T-LGL expansion occurring in IBM patients is correlated with exacerbated immune dysregulation and increased disease burden.
Collapse
Affiliation(s)
- Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Emily McLeish, ; Jerome David Coudert,
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Barbara Kachigunda
- Harry Butler Institute, Centre for Biosecurity and One Health, Murdoch University, Murdoch, WA, Australia
| | - Kelly Beer
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | | | - Phillipa J. Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, WA, Australia
| | - Abha Chopra
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Frank Louis Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Department of Neurology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Jerome David Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- *Correspondence: Emily McLeish, ; Jerome David Coudert,
| |
Collapse
|
9
|
Saito M, Suzuki H, Asano T, Tanaka T, Yoshikawa T, Kaneko MK, Kato Y. KLMab-1: An Anti-human KLRG1 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:279-284. [PMID: 36306514 DOI: 10.1089/mab.2022.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Immune checkpoint molecules have received attention as targets of cancer immunotherapy. Killer cell lectin-like receptor subfamily G member 1 (KLRG1) is one of the immune checkpoint molecules expressed in CD4+ T, CD8+ T, and natural killer (NK) cells. KLRG1 exhibits antiviral and antitumor immunity, and its expression in T and NK cells is upregulated by viral infectious diseases and some tumors. Thus, monoclonal antibodies (mAbs) for KLRG1 would be useful tools for the diagnosis and immunotherapy against viral infectious diseases and cancers. We have developed anti-human KLRG1 (hKLRG1) mAb (clone KLMab-1, mouse IgG1, kappa) by the Cell-Based Immunization and Screening method. We have also demonstrated that KLMab-1 recognizes both exogenous and endogenous hKLRG1 in flow cytometry. In this study, we first showed that KLMab-1 and its recombinant mAb (recKLMab-1) bound to exogenous hKLRG1 overexpressed in Chinese hamster ovary (CHO)-K1 cells, but not in parental CHO-K1 cells, in immunocytochemistry. We next showed that both mAbs detected endogenous hKLRG1 expressed in human NK cells. These results demonstrate that KLMab-1 and recKLMab-1 are available for immunocytochemistry.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Antibody Drug Development, and Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Qian H, Dong D, Fan P, Feng Y, Peng Y, Yao X, Wang R. Expression of KLRG1 on subpopulations of lymphocytes in the peripheral blood of patients with locally advanced nasopharyngeal carcinoma and prognostic analysis. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hengjun Qian
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Danning Dong
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Peiwen Fan
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yaning Feng
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Ruozheng Wang
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi China
| |
Collapse
|
11
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
12
|
Borys SM, Bag AK, Brossay L, Adeegbe DO. The Yin and Yang of Targeting KLRG1 + Tregs and Effector Cells. Front Immunol 2022; 13:894508. [PMID: 35572605 PMCID: PMC9098823 DOI: 10.3389/fimmu.2022.894508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
The literature surrounding KLRG1 has primarily focused on NK and CD8+ T cells. However, there is evidence that the most suppressive Tregs express KLRG1. Until now, the role of KLRG1 on Tregs has been mostly overlooked and remains to be elucidated. Here we review the current literature on KLRG1 with an emphasis on the KLRG1+ Treg subset role during cancer development and autoimmunity. KLRG1 has been recently proposed as a new checkpoint inhibitor target, but these studies focused on the effects of KLRG1 blockade on effector cells. We propose that when designing anti-tumor therapies targeting KLRG1, the effects on both effector cells and Tregs will have to be considered.
Collapse
Affiliation(s)
- Samantha M Borys
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Arup K Bag
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
13
|
Zhou Y, Lan H, Shi H, Wu P, Zhou Y. Evaluating the diversity of circulating natural killer cells between active tuberculosis and latent tuberculosis infection. Tuberculosis (Edinb) 2022; 135:102221. [DOI: 10.1016/j.tube.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
|
14
|
Association between senescence of T cells and disease activity in patients with systemic lupus erythematosus. Reumatologia 2021; 59:292-301. [PMID: 34819703 PMCID: PMC8609380 DOI: 10.5114/reum.2021.110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) patients are predisposed to chronic immune activation, leading to accelerated immunosenescence. The aging of the immune system causes the T cells to express several senescence markers such as CD57 and KLRG1, which produce pro-inflammatory cytokine interferon γ (IFN-γ). Immunosenescence was associated with high morbidity and mortality in other diseases. This research was conducted to prove the association between senescent T cells and SLE disease activity. Material and methods This research was an observational cross-sectional study on 53 women aged 16–45 years diagnosed with SLE based on SLICC 2012 criteria. All subjects were recorded for demographic and clinical data, and their SLE disease activity index (SLEDAI) score was measured to evaluate disease activity. Active disease was defined as SLEDAI score ≥ 3. The CD57 antigen and KLRG1 expression on CD4+ and CD8+ T cells were calculated from peripheral blood mononuclear cells (PBMC) by flow cytometry. Interferon γ was measured from serum using ELISA. The comparison was done using the Mann-Whitney U test, and correlation was tested using the Spearman test. Associations between variables were calculated using linear regression models. Results Systemic lupus erythematosus patients with active disease had markedly higher CD4+KLRG1+ (3.1 [1.3–5.5]% vs. 0.3 [0.1–0.5]%), CD8+CD57+ (11.6 ±7.1% vs. 2.4 ±2.0%, p = 0.000), and CD8+KLRG1+ T cell percentages (13.7 ±7.5% vs. 0.3 ±0.1%, p = 0.000), and IFN- γ levels (208.9 [148.3–233.8] vs. 146.7 [130.2–210.8] pg/ml, p = 0.048), compared to the inactive patients. Positive correlation and association was found between the CD8+CD57+ and CD8+KLRG1+ percentages with the SLEDAI score (p = 0.007 and p = 0.007, for the linear regression analysis, respectively). Conclusions Systemic lupus erythematosus patients showed significantly higher senescence T cell markers compared to controls, and the increase of T cell senescence, especially in the CD8 compartment, has some association with increased disease activity in patients with SLE.
Collapse
|
15
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
16
|
Zhang Y, Li K, Li C, Liang W, Li K, Li J, Wei X, Yang J. An atypical KLRG1 in Nile tilapia involves in adaptive immunity as a potential marker for activated T lymphocytes. FISH & SHELLFISH IMMUNOLOGY 2021; 113:51-60. [PMID: 33798718 DOI: 10.1016/j.fsi.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Killer cell lectin-like receptor G subfamily 1 (KLRG1) is a receptor generally expressed on effector CD8+ T cells or NK cells at terminal differentiation stage, and it will be highly induced for lymphocyte cytotoxicity upon pathogen infection or lymphocyte activation. However, little is known about the character or function of KLRG1 in lower vertebrates. In present study, we reappraised a molecule that previously defined as KLRG1 in the genomic sequence of Nile tilapia Oreochromis niloticus, and identified it as an atypical KLRG1-like molecule (defined as On-KLRG1-L), and illustrated its potential function serving as a marker representing effector T lymphocytes of fish species. On-KLRG1-L consists of two C-type lectin-like domains (CTLDs) without transmembrane region, and the tertiary structure of the CTLD is highly alike to that in mouse KLRG1. As a CTLD-containing protein, the recombinant On-KLRG1-L could bind PGN and several microbes in vitro. On-KLRG1-L was widely expressed in immune-associated tissues, with the highest expression level in the gill. Once Nile tilapia is infected by Aeromonas hydrophila, mRNA level of On-KLRG1-L in spleen lymphocytes were significantly up-regulated on 5 days after infection. Meanwhile, On-KLRG1-L protein was also induced on 5 or 8 days after A. hydrophila infection. Furthermore, we found both mRNA and protein levels of On-KLRG1-L were dramatically enhanced within several hours after spleen lymphocytes were activated by T cell-specific mitogen PHA in vitro. More importantly, the ratio of On-KLRG1-L+ T cells was also augmented after PHA stimulation. The observations suggested that the KLRG1-like molecule from Nile tilapia participated in lymphocyte activation and anti-bacterial adaptive immune response, and could serve as an activation marker of T lymphocytes. Our study thus provided new evidences to understand lymphocyte-mediated adaptive immunity of teleost.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
17
|
In Vivo Antigen Expression Regulates CD4 T Cell Differentiation and Vaccine Efficacy against Mycobacterium tuberculosis Infection. mBio 2021; 12:mBio.00226-21. [PMID: 33879592 PMCID: PMC8092222 DOI: 10.1128/mbio.00226-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions, and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.
Collapse
|
18
|
Guo Y, Feng Y, Fan P, Yao X, Peng Y, Wang R, Kuerban G. Expression and Clinical Significance of KLRG1 and 2B4 on T Cells in the Peripheral Blood and Tumour of Patients with Cervical Cancer. Immunol Invest 2021; 51:670-687. [PMID: 33401997 DOI: 10.1080/08820139.2020.1867567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Killer cell lectin-like receptor G1 (KLRG1) and 2B4 play important roles in the immune regulation and immune tolerance to tumor cells by inhibiting T cell function. However, the clinical relevance of KLRG1 and 2B4 to cervical cancer remains to be understood.Methods: We measured the frequency of KLRG1+ or 2B4+ cells in CD4+ or CD8 + T cells derived from peripheral blood or tumour biopsies in cervical cancer patients by flow cytometry.Results: Compared with healthy controls, the level of KLRG1 and 2B4 on CD8 + T cells in the blood of the patients increased significantly (P = .0056 and .0441). KLRG1 level on CD8 + T cells and 2B4 level on CD4 + T cells in peripheral blood were significantly higher than in tumor tissues (P < .0001 and P = .0003). Higher KLRG1 level on blood-derived CD8 + T cells was observed in patients older than 54 years (P = .001) or tested to be HPV-negative (P = .026). Tumor-infiltrated CD8 + T cells demonstrated elevated KLRG1 level in patients having pelvic lymph node metastasis (P = .016). Increased 2B4 level on blood-derived CD8 + T cells was also observed in patients older than 54 years (P < .001). KLRG1 expression on both CD4 + T (P = .0158) and CD8 + T (P = .0187) cells in the peripheral blood increased after radiotherapy.Conclusion: KLRG1 level on T cells was related to age and HPV in patients with cervical cancer, while 2B4 level on T cells was related to age, underlying their roles in the host immune response to cervical cancer. Radiotherapy can improve the immune function of patients.
Collapse
Affiliation(s)
- Yuping Guo
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yaning Feng
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peiwen Fan
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute (CAMS Oxford Institute), University of Oxford, Oxford, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute (CAMS Oxford Institute), University of Oxford, Oxford, UK
| | - Ruozheng Wang
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gulina Kuerban
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
19
|
Du Bruyn E, Ruzive S, Lindestam Arlehamn CS, Sette A, Sher A, Barber DL, Wilkinson RJ, Riou C. Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunol 2021; 14:491-499. [PMID: 32678272 PMCID: PMC7855386 DOI: 10.1038/s41385-020-0322-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023]
Abstract
Recent data from mice and non-human primate models of tuberculosis suggested that CD153, a TNF super family member, plays an important role in Mycobacterium tuberculosis (Mtb) control. However, this molecule has not been comprehensively evaluated in humans. Here, we show that the proportion of Mtb-specific CD4 T cells expressing CD153 was significantly reduced in active TB patients compared to latently infected persons. Importantly, the CD153+ Mtb-specific CD4 response inversely correlated with lung bacterial load, inferred by Xpert cycle threshold, irrespective of HIV status. Antitubercular treatment partially restored CD153 expression on Mtb-specific CD4 T cells. This is the first report of a subset of Mtb-specific CD4 T cells showing strong negative correlation with bacterial burden. Building on substantial evidence from animal models implicating CD153 as a mediator of host protection, our findings suggest it may play a similar role in humans and its measurement may be useful to evaluate TB vaccine efficacy.
Collapse
Affiliation(s)
- Elsa Du Bruyn
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Sheena Ruzive
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | | | - Alessandro Sette
- grid.185006.a0000 0004 0461 3162Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Alan Sher
- grid.419681.30000 0001 2164 9667Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Daniel L. Barber
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Robert J. Wilkinson
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.7445.20000 0001 2113 8111Department of Infectious Diseases, Imperial College London, London, W2 1PG UK ,grid.7836.a0000 0004 1937 1151Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, NW1 1AT UK
| | - Catherine Riou
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.7836.a0000 0004 1937 1151Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Clemmensen HS, Knudsen NPH, Billeskov R, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Mortensen R. Rescuing ESAT-6 Specific CD4 T Cells From Terminal Differentiation Is Critical for Long-Term Control of Murine Mtb Infection. Front Immunol 2020; 11:585359. [PMID: 33240275 PMCID: PMC7677256 DOI: 10.3389/fimmu.2020.585359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
In most cases, Mycobacterium tuberculosis (Mtb) causes life-long chronic infections, which poses unique challenges for the immune system. Most of the current tuberculosis (TB) subunit vaccines incorporate immunodominant antigens and at this point, it is poorly understood how the CD4 T cell subsets recognizing these antigens are affected during long-term infection. Very little is known about the requirements for sustainable vaccine protection against TB. To explore this, we screened 62 human-recognized Mtb antigens during chronic murine Mtb infection and identified the four most immunodominant antigens in this setting (MPT70, Rv3020c, and Rv3019c and ESAT-6). Combined into a subunit vaccine, this fusion protein induced robust protection both in a standard short-term model and in a long-term infection model where immunity from BCG waned. Importantly, replacement of ESAT-6 with another ESAT-6-family antigen, Rv1198, led to similar short-term protection but a complete loss of bacterial control during chronic infection. This observation was further underscored, as the ESAT-6 containing vaccine mediated sustainable protection in a model of post-exposure vaccination, where the ESAT-6-replacement vaccine did not. An individual comparison of the CD4 T cell responses during Mtb infection revealed that ESAT-6-specific T cells were more terminally differentiated than the other immunodominant antigens and immunization with the ESAT-6 containing vaccine led to substantially greater reduction in the overall T cell differentiation status. Our data therefore associates long-term bacterial control with the ability of a vaccine to rescue infection-driven CD4T cell differentiation and future TB antigen discovery programs should focus on identifying antigens with the highest accompanying T cell differentiation, like ESAT-6. This also highlights the importance of long-term readouts in both preclinical and clinical studies with TB vaccines.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
21
|
Chen ZY, Wang L, Gu L, Qu R, Lowrie DB, Hu Z, Sha W, Fan XY. Decreased Expression of CD69 on T Cells in Tuberculosis Infection Resisters. Front Microbiol 2020; 11:1901. [PMID: 32849474 PMCID: PMC7426741 DOI: 10.3389/fmicb.2020.01901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD69 is a biomarker of T-cell activation status, but its activation status in human Mycobacterium tuberculosis (Mtb) infection remains elusive. METHODS A set of cohorts of patients with different tuberculosis (TB) infection status including active TB patients (ATB), latent tuberculous infection patients (LTBI) and close contacts (CCs) of ATB was designed, and the expression profiles of CD69 and several T-cell markers were determined on Mtb antigen-stimulated T cells by flow cytometry. RESULTS The frequencies of CD4+ and CD8+ T cells were both comparable among Mtb-infected individuals including ATB and LTBI, which guaranteed the consistency of the background level. A t-Distributed Stochastic Neighbor Embedding (tSNE) analysis on a panel of six phenotypic markers showed a unique color map axis gated on T cells in the CCs group compared with ATB and LTBI populations. By further gating on cells positive for each individual marker and then overlaying those events on top of the tSNE plots, their distribution suggested that some markers were expressed differently in the CCs group. Further analysis showed that the expression levels of CD69 on both CD4+ and CD8+ T cells were significantly lower in the CCs group, especially in interferon-γ-responding T cells. CONCLUSION Our findings suggest that the T-cell activation status of CD69 is associated with Mtb infection and may have the potential to distinguish LTBI from those populations who have been exposed continuously to Mtb but have not become infected.
Collapse
Affiliation(s)
- Zhen-Yan Chen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Lei Wang
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Rong Qu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Douglas B. Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| | - Wei Sha
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, China
| |
Collapse
|
22
|
Xu D, Xie R, Xu Z, Zhao Z, Ding M, Chen W, Zhang J, Mao E, Chen E, Chen Y, Yang K, Zhou T, Fei J. mTOR-Myc axis drives acinar-to-dendritic cell transition and the CD4 + T cell immune response in acute pancreatitis. Cell Death Dis 2020; 11:416. [PMID: 32488108 PMCID: PMC7265283 DOI: 10.1038/s41419-020-2517-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The inflammatory response in acute pancreatitis (AP) is associated with acinar-to-dendritic cell transition. The CD4+ T-cell-mediated adaptive immune response is necessary for pancreatic inflammatory damage. However, the effect of acinar-to-dendritic cell transition on the CD4+ T-cell response and the regulatory mechanism remain undefined. A mouse animal model of AP was established by repeated intraperitoneal injection of CAE. The mTOR inhibitor rapamycin was administered before AP induction. Primary acinar cells were isolated and co-incubated with subsets of differentiated CD4+ T cells. The expression of DC-SIGN was also assessed in pancreatic tissues from human AP patients. We found acinar cells expressed DC-SIGN and displayed the phenotype of dendritic cells (DCs), which promoted the differentiation of naive CD4+ T cells into CD4+/IFN-γ+ Th1 and CD4+/IL-17A+ Th17 cells in pancreatic tissues during AP. DC-SIGN was the target gene of Myc. The mTOR inhibitor rapamycin inhibited AP-induced DC-SIGN expression, CD4+ Th1/Th17 cell differentiation and the pro-inflammatory response via Myc. Acinar cells expressed DC-SIGN in pancreatic tissues of human patients with AP. In conclusion, acinar-to-dendritic cell transition is implicated in the CD4+ T-cell immune response via mTOR-Myc-DC-SIGN axis, which might be an effective target for the prevention of local pancreatic inflammation in AP.
Collapse
Affiliation(s)
- Dan Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwei Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhifeng Zhao
- Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Min Ding
- Shanghai 6th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kaige Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Reply to Tonby et al. J Infect Dis 2019; 220:176-178. [PMID: 30888027 DOI: 10.1093/infdis/jiz057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Tonby K, Mortensen R, Ruhwald M, Dyrhol-Riise AM, Jenum S. KLRG1-Expressing CD4 T Cells Are Reduced in Tuberculosis Patients Compared to Healthy Mycobacterium tuberculosis-Infected Subjects, but Increase With Treatment. J Infect Dis 2019; 220:174-176. [PMID: 30888024 DOI: 10.1093/infdis/jiz056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kristian Tonby
- Department of Infectious Diseases, Oslo University Hospital, Norway
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Ruhwald
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital.,Institute of Clinical Medicine, Department of Infectious Diseases, University of Oslo.,Department of Clinical Science, University of Bergen, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Norway
| |
Collapse
|
25
|
Li J, Jin C, Wu C, Huang J. PD-1 modulating Mycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy. J Leukoc Biol 2019; 106:733-747. [PMID: 30861206 DOI: 10.1002/jlb.ma1118-450rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Host-pathogen interactions in tuberculosis (TB) should be studied at the disease sites because Mycobacterium tuberculosis (M.tb) is predominantly contained in local tissue lesions. T-cell immune responses are required to mount anti-mycobacterial immunity. However, T-cell immune responses modulated by programmed cell death protein 1 (PD-1) during tuberculosis pleurisy (TBP) remains poorly understood. We selected the pleural fluid mononuclear cells (PFMCs) from TBP and PBMCs from healthy donors (HD), and characterized PD-1-expresing T-cell phenotypes and functions. Here, we found that the PFMCs exhibited increases in numbers of PD-1-expressing CD4+ and CD8+ T cells, which preferentially displayed polarized effector memory phenotypes. The M.tb-specific Ag stimulation increased CD4+ PD-1+ and CD8+ PD-1+ T cells, which is in direct correlation with IFN-γ production and PD-L1+ APCs in PFMCs of these individuals. Moreover, blockage of PD-1/PD-L1 pathway enhanced the percentage of IFN-γ+ T cells, demonstrating that the PD-1/PD-L1 pathway played a negative regulation in T cell effector functions. Furthermore, CD4+ PD-1+ and CD8+ PD-1+ T-cell subsets showed greater memory phenotype, activation, and effector functions for producing Th1 cytokines than PD-1- counterparts. Thus, these PD-1+ T cells were not exhausted but appear to be central to maintaining Ag-specific effector. IL-12, a key immunoregulatory cytokine, enhanced the expression of PD-1 and restored a strong IFN-γ response through selectively inducing the phosphorylation of STAT4 in CD4+ PD-1+ T-bet+ and CD8+ PD-1+ T-bet+ T cells. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by PD-1, and may have implications for potential immune intervention in TBP.
Collapse
Affiliation(s)
- Jiangping Li
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Chenxi Jin
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jun Huang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
26
|
Hu Z, Lu SH, Lowrie DB, Fan XY. The predictive values of the tuberculin skin test and interferon-γ release assays for active tuberculosis development. THE LANCET. INFECTIOUS DISEASES 2019; 19:19-20. [PMID: 30587284 DOI: 10.1016/s1473-3099(18)30712-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Fudan University, 201508 Shanghai, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Fudan University, 201508 Shanghai, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Fudan University, 201508 Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, 201508 Shanghai, China.
| |
Collapse
|
27
|
Hu Z, Gu L, Li CL, Shu T, Lowrie DB, Fan XY. The Profile of T Cell Responses in Bacille Calmette-Guérin-Primed Mice Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine. Front Immunol 2018; 9:1796. [PMID: 30123219 PMCID: PMC6085409 DOI: 10.3389/fimmu.2018.01796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The kinds of vaccine-induced T cell responses that are beneficial for protection against Mycobacterium tuberculosis (Mtb) infection are not adequately defined. We had shown that a novel Sendai virus vectored vaccine, SeV85AB, was able to enhance immune protection induced by bacille Calmette–Guérin (BCG) in a prime-boost model. However, the profile of T cell responses boosted by SeV85AB was not determined. Herein, we show that the antigen-specific CD4+ and CD8+ T cell responses were both enhanced by the SeV85AB boost after BCG. Different profiles of antigen-specific po T cell subsets were induced in the local (lung) and systemic (spleen) sites. In the spleen, the CD4+ T cell responses that were enhanced by the SeV85AB boost were predominately IL-2 responses, whereas in the lung the greater increases were in IFN-γ- and TNF-α-producing CD4+ T cells; in CD8+ T cells, although IFN-γ was enhanced in both the spleen and lung, only IL-2+TNF-α+CD8+ T subset was boosted in the latter. After a challenge Mtb infection, there were significantly higher levels of recall IL-2 responses in T cells. In contrast, IFN-γ-producing cells were barely boosted by SeV85AB. After Mtb challenge a central memory phenotype of responding CD4+ T cells was a prominent feature in SeV85AB-boosted mice. Thus, our data strongly suggest that the enhanced immune protection induced by SeV85AB boosting was associated with establishment of an increased capacity to recall antigen-specific IL-2-mediated T cell responses and confirms this Sendai virus vector system as a promising candidate to be used in a heterologous prime-boost immunization regimen against TB.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chun-Ling Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Abstract
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4+ T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T-cell subsets, including classical and nonclassical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights into effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome, is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common comorbidities such as HIV, helminths and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease.
Collapse
Affiliation(s)
- Susanna Brighenti
- Karolinska Institutet, Department of Medicine, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simone A. Joosten
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, The Netherlands
| |
Collapse
|