1
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. Front Immunol 2024; 15:1429909. [PMID: 39081315 PMCID: PMC11286471 DOI: 10.3389/fimmu.2024.1429909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noemí A. Saavedra-Ávila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher T. Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Alkan C, Jurado-Cobena E, Ikegami T. Distinct Pathological Changes in Preweaning Mice Infected with Live-Attenuated Rift Valley Fever Virus Strains. Viruses 2024; 16:999. [PMID: 39066162 PMCID: PMC11281583 DOI: 10.3390/v16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.S.A., and next-generation live-attenuated RVF vaccine candidates are being actively researched. Assessing the virulence phenotype of vaccine seeds or lots is crucial for managing vaccine safety. Previously, preweaning 19-day-old outbred CD1 mice have been used to evaluate the MP-12 strain. This study aimed to characterize the relative virulence of three live-attenuated RVF vaccine strains in 19-day-old inbred C57BL/6 mice: the recombinant MP-12 (rMP-12), the RVax-1, and the ∆NSs-∆NSm-rZH501 strains. Although this mouse model did not show dose-dependent pathogenesis, mice that succumbed to the infection exhibited distinct brain pathology. Mice infected with ∆NSs-∆NSm-rZH501 showed an infiltration of inflammatory cells associated with infected neurons, and focal lesions formed around virus-infected cells. In contrast, mice infected with rMP-12 or RVax-1 showed a minimal association of inflammatory cells in the brain, yet the virus spread diffusely. The preweaning model is likely useful for evaluating host responses to attenuated RVFV strains, although further refinement may be necessary to quantitate the virulence among different RVFV strains or vaccine lots.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
4
|
Schäfer A, Marzi A, Furuyama W, Catanzaro NJ, Nguyen C, Haddock E, Feldmann F, Meade-White K, Thomas T, Hubbard ML, Gully KL, Leist SR, Hock P, Bell TA, De la Cruz GE, Midkiff BR, Martinez DR, Shaw GD, Miller DR, Vernon MJ, Graham RL, Cowley DO, Montgomery SA, Schughart K, de Villena FPM, Wilkerson GK, Ferris MT, Feldmann H, Baric RS. Mapping of susceptibility loci for Ebola virus pathogenesis in mice. Cell Rep 2024; 43:114127. [PMID: 38652660 PMCID: PMC11348656 DOI: 10.1016/j.celrep.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela E De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J Vernon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Institute of Virology, University of Muenster, 48149 Muenster, Germany
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory K Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Kuroda M, Halfmann PJ, Thackray LB, Diamond MS, Feldmann H, Marzi A, Kawaoka Y. An Antiviral Role for TRIM14 in Ebola Virus Infection. J Infect Dis 2023; 228:S514-S521. [PMID: 37562033 PMCID: PMC10651195 DOI: 10.1093/infdis/jiad325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic virus that encodes 7 multifunctional structural proteins. Multiple host factors have been reported to interact with the EBOV proteins. Here, we found that tripartite motif-containing 14 (TRIM14), an interferon-stimulated gene that mediates cellular signaling pathways associated with type I interferon and inflammatory cytokine production, interacts with EBOV nucleoprotein to enhance interferon-β (IFN-β) and nuclear factor-κB (NF-κB) promotor activation. Moreover, TRIM14 overexpression reduced viral replication in an infectious but biologically contained EBOVΔVP30 system by approximately 10-fold without affecting viral protein expression. Furthermore, TRM14-deficient mice were more susceptible to mouse-adapted EBOV infection than wild-type mice. Our data suggest that TRIM14 is a host factor with anti-EBOV activity that limits EBOV pathogenesis.
Collapse
Affiliation(s)
- Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Davies KA, Welch SR, Jain S, Sorvillo TE, Coleman-McCray JD, Montgomery JM, Spiropoulou CF, Albariño C, Spengler JR. Fluorescent and Bioluminescent Reporter Mouse-Adapted Ebola Viruses Maintain Pathogenicity and Can Be Visualized in Vivo. J Infect Dis 2023; 228:S536-S547. [PMID: 37145895 PMCID: PMC11014640 DOI: 10.1093/infdis/jiad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Collapse
Affiliation(s)
- Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
7
|
O’Donnell KL, Callison J, Feldmann H, Hoenen T, Marzi A. Single-Dose Treatment With Vesicular Stomatitis Virus-Based Ebola Virus Vaccine Expressing Ebola Virus-Specific Artificial Micro-RNA Does Not Protect Mice From Lethal Disease. J Infect Dis 2023; 228:S677-S681. [PMID: 37186162 PMCID: PMC10651205 DOI: 10.1093/infdis/jiad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Although significant progress has been made in the development of therapeutics against Ebola virus (EBOV), we sought to expand upon existing strategies and combine an RNA interference-based intervention with the approved vesicular stomatitis virus-based Ebola virus (VSV-EBOV) vaccine to conjointly treat and vaccinate patients during an outbreak. We constructed VSV-EBOV vectors expressing artificial micro-RNAs (amiRNAs) targeting sequences of EBOV proteins. In vitro experiments demonstrated a robust decrease in EBOV replication using a minigenome system and infectious virus. For in vivo evaluation, mouse-adapted EBOV-infected CD-1 mice were treated 24 hours after infection with a single dose of the VSV-EBOV amiRNA constructs. We observed no difference in disease progression or survival compared to the control-treated mice. In summary, while amiRNAs decrease viral replication in vitro, the effect is not sufficient to protect mice from lethal disease, and this therapeutic approach requires further optimization.
Collapse
Affiliation(s)
- Kyle L O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
8
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Bourne N, Freiberg AN. The Susceptibility of BALB/c Mice to a Mouse-Adapted Ebola Virus Intravaginal Infection. Viruses 2023; 15:1590. [PMID: 37515275 PMCID: PMC10386242 DOI: 10.3390/v15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
9
|
History and impact of the mouse-adapted Ebola virus model. Antiviral Res 2023; 210:105493. [PMID: 36567023 DOI: 10.1016/j.antiviral.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV) is a member of the filoviridae family, which are comprised of negative sense, enveloped RNA hemorrhagic fever viruses that can cause severe disease and high lethality rates. These viruses require BSL-4 containment laboratories for study. Early studies of EBOV pathogenesis relied heavily on the use of nonhuman primates, which are expensive and cumbersome to handle in large numbers. Guinea pig models were also developed, but even to this day limited reagents are available in this model. In 1998, Mike Bray and colleagues developed a mouse-adapted EBOV (maEBOV) that caused lethality in adult immunocompetent mice. This model had significant advantages, including being inexpensive, allowing for higher animal numbers for statistical analysis, availability of reagents for studying pathogenesis, and availability of a vast array of genetically modified strains. The model has been used to test vaccines, therapeutic drugs, EBOV mutants, and pathogenesis, and its importance is demonstrated by the hundreds of citations referencing the original publication. This review will cover the history of the maEBOV model and its use in filovirus research.
Collapse
|
10
|
Bluemling GR, Mao S, Natchus MG, Painter W, Mulangu S, Lockwood M, De La Rosa A, Brasel T, Comer JE, Freiberg AN, Kolykhalov AA, Painter GR. The prophylactic and therapeutic efficacy of the broadly active antiviral ribonucleoside N 4-Hydroxycytidine (EIDD-1931) in a mouse model of lethal Ebola virus infection. Antiviral Res 2023; 209:105453. [PMID: 36379378 DOI: 10.1016/j.antiviral.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022]
Abstract
The unprecedented magnitude of the 2013-2016 Ebola virus (EBOV) epidemic in West Africa resulted in over 11 000 deaths and spurred an international public health emergency. A second outbreak in 2018-2020 in DRC resulted in an additional >3400 cases and nearly 2300 deaths (WHO, 2020). These large outbreaks across geographically diverse regions highlight the need for the development of effective oral therapeutic agents that can be easily distributed for self-administration to populations with active disease or at risk of infection. Herein, we report the in vivo efficacy of N4-hydroxycytidine (EIDD-1931), a broadly active ribonucleoside analog and the active metabolite of the prodrug EIDD-2801 (molnupiravir), in murine models of lethal EBOV infection. Twice daily oral dosing with EIDD-1931 at 200 mg/kg for 7 days, initiated either with a prophylactic dose 2 h before infection, or as therapeutic treatment starting 6 h post-infection, resulted in 92-100% survival of mice challenged with lethal doses of EBOV, reduced clinical signs of Ebola virus disease (EVD), reduced serum virus titers, and facilitated weight loss recovery. These results support further investigation of molnupiravir as a potential therapeutic or prophylactic treatment for EVD.
Collapse
Affiliation(s)
- Gregory R Bluemling
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA; Drug Innovation Ventures at Emory (DRIVE), 1230 Peachtree Street NE, Suite 3875, Atlanta, GA, 30309, USA
| | - Shuli Mao
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Wendy Painter
- Ridgeback Biotherapeutics, LP, 3480 Main Highway, Unit 402, Miami, FL, 33133, USA
| | - Sabue Mulangu
- Ridgeback Biotherapeutics, LP, 3480 Main Highway, Unit 402, Miami, FL, 33133, USA
| | - Mark Lockwood
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Abel De La Rosa
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA; Drug Innovation Ventures at Emory (DRIVE), 1230 Peachtree Street NE, Suite 3875, Atlanta, GA, 30309, USA
| | - Trevor Brasel
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Jason E Comer
- Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute of Translational Sciences, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA; The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Alexander A Kolykhalov
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA; Drug Innovation Ventures at Emory (DRIVE), 1230 Peachtree Street NE, Suite 3875, Atlanta, GA, 30309, USA.
| | - George R Painter
- Emory Institute for Drug Development (EIDD), 954 North Gatewood Road NE, Atlanta, GA, 30329, USA; Drug Innovation Ventures at Emory (DRIVE), 1230 Peachtree Street NE, Suite 3875, Atlanta, GA, 30309, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, 5001 Rollins Research Center, Atlanta, GA, 30322, USA
| |
Collapse
|
11
|
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. J Funct Biomater 2022; 14:jfb14010016. [PMID: 36662063 PMCID: PMC9860647 DOI: 10.3390/jfb14010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.
Collapse
|
12
|
Rathnasinghe R, Jangra S, Ye C, Cupic A, Singh G, Martínez-Romero C, Mulder LCF, Kehrer T, Yildiz S, Choi A, Yeung ST, Mena I, Gillespie V, De Vrieze J, Aslam S, Stadlbauer D, Meekins DA, McDowell CD, Balaraman V, Corley MJ, Richt JA, De Geest BG, Miorin L, Krammer F, Martinez-Sobrido L, Simon V, García-Sastre A, Schotsaert M. Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera. Nat Commun 2022; 13:3921. [PMID: 35798721 PMCID: PMC9261898 DOI: 10.1038/s41467-022-30763-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/13/2022] [Indexed: 12/25/2022] Open
Abstract
Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.476726.6Present Address: Seqirus, Cambridge, MT USA
| | - Sonia Jangra
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Chengjin Ye
- grid.250889.e0000 0001 2215 0219Texas Biomedical Research Institute, San Antonio, TX USA
| | - Anastasija Cupic
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Gagandeep Singh
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Carles Martínez-Romero
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Lubbertus C. F. Mulder
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Thomas Kehrer
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Soner Yildiz
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Angela Choi
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.479574.c0000 0004 1791 3172Present Address: Moderna Therapeutics, Cambridge, MT USA
| | - Stephen T. Yeung
- grid.5386.8000000041936877XDivision of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, NY USA
| | - Ignacio Mena
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Virginia Gillespie
- grid.59734.3c0000 0001 0670 2351Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Jana De Vrieze
- grid.5342.00000 0001 2069 7798Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Sadaf Aslam
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Daniel Stadlbauer
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.479574.c0000 0004 1791 3172Present Address: Moderna Therapeutics, Cambridge, MT USA
| | - David A. Meekins
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Chester D. McDowell
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Velmurugan Balaraman
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Michael J. Corley
- grid.5386.8000000041936877XDivision of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, NY USA
| | - Juergen A. Richt
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Bruno G. De Geest
- grid.5342.00000 0001 2069 7798Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Lisa Miorin
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | | | - Florian Krammer
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Luis Martinez-Sobrido
- grid.250889.e0000 0001 2215 0219Texas Biomedical Research Institute, San Antonio, TX USA
| | - Viviana Simon
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
| |
Collapse
|
13
|
Banerjee G, Shokeen K, Chakraborty N, Agarwal S, Mitra A, Kumar S, Banerjee P. Modulation of immune response in Ebola virus disease. Curr Opin Pharmacol 2021; 60:158-167. [PMID: 34425392 DOI: 10.1016/j.coph.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus disease targets and destroys immune cells, including macrophages and dendritic cells, leading to impairment of host response. After infection, a combination of strategies including alteration and evasion of immune response culminating in a strong inflammatory response can lead to multi-organ failure and death in most infected patients. This review discusses immune response dynamics, mainly focusing on how Ebola manipulates innate and adaptive immune responses and strategizes to thwart host immune responses. We also discuss the challenges and prospects of developing therapeutics and vaccines against Ebola.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilanjan Chakraborty
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Saumya Agarwal
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arindam Mitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Escaffre O, Juelich TL, Neef N, Massey S, Smith J, Brasel T, Smith JK, Kalveram B, Zhang L, Perez D, Ikegami T, Freiberg AN, Comer JE. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 2021; 13:v13071388. [PMID: 34372594 PMCID: PMC8310124 DOI: 10.3390/v13071388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014–2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Natasha Neef
- XTR Toxicologic Pathology Services LLC, Sterling, VA 20165, USA;
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Trevor Brasel
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - David Perez
- Texas A&M University Division of Research, Texas A&M University, College Station, TX 77843, USA;
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| | - Jason E. Comer
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| |
Collapse
|
15
|
Bhatia B, Furuyama W, Hoenen T, Feldmann H, Marzi A. Ebola Virus Glycoprotein Domains Associated with Protective Efficacy. Vaccines (Basel) 2021; 9:630. [PMID: 34200548 PMCID: PMC8229685 DOI: 10.3390/vaccines9060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
Ebola virus (EBOV) is the cause of sporadic outbreaks of human hemorrhagic disease in Africa, and the best-characterized virus in the filovirus family. The West African epidemic accelerated the clinical development of vaccines and therapeutics, leading to licensure of vaccines and antibody-based therapeutics for human use in recent years. The most widely used vaccine is based on vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) (VSV-EBOV). Due to its favorable immune cell targeting, this vaccine has also been used as a base vector for the development of second generation VSV-based vaccines against Influenza, Nipah, and Zika viruses. However, in these situations, it may be beneficial if the immunogenicity against EBOV GP is minimized to induce a better protective immune response against the other foreign immunogen. Here, we analyzed if EBOV GP can be truncated to be less immunogenic, yet still able to drive replication of the vaccine vector. We found that the EBOV GP glycan cap and the mucin-like domain are both dispensable for VSV-EBOV replication. The glycan cap, however, appears critical for mediating a protective immune response against lethal EBOV challenge in mice.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| |
Collapse
|
16
|
Pathogen Dose in Animal Models of Hemorrhagic Fever Virus Infections and the Potential Impact on Studies of the Immune Response. Pathogens 2021; 10:pathogens10030275. [PMID: 33804381 PMCID: PMC7999429 DOI: 10.3390/pathogens10030275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic fever viruses come from a wide range of virus families and are a significant cause of morbidity and mortality worldwide each year. Animal models of infection with a number of these viruses have contributed to our knowledge of their pathogenesis and have been crucial for the development of therapeutics and vaccines that have been approved for human use. Most of these models use artificially high doses of virus, ensuring lethality in pre-clinical drug development studies. However, this can have a significant effect on the immune response generated. Here I discuss how the dose of antigen or pathogen is a critical determinant of immune responses and suggest that the current study of viruses in animal models should take this into account when developing and studying animal models of disease. This can have implications for determination of immune correlates of protection against disease as well as informing relevant vaccination and therapeutic strategies.
Collapse
|
17
|
Hawman DW, Meade-White K, Leventhal S, Feldmann F, Okumura A, Smith B, Scott D, Feldmann H. Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. eLife 2021; 10:63906. [PMID: 33416494 PMCID: PMC7811403 DOI: 10.7554/elife.63906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. CCHF is caused by infection with the Crimean-Congo hemorrhagic fever virus (CCHFV) and case fatality rates can be as high as 30%. Despite causing severe disease in humans, our understanding of the host and viral determinants of CCHFV pathogenesis are limited. A major limitation in the investigation of CCHF has been the lack of suitable small animal models. Wild-type mice are resistant to clinical isolates of CCHFV and consequently, mice must be deficient in type I interferon responses to study the more severe aspects of CCHFV. We report here a mouse-adapted variant of CCHFV that recapitulates in adult, immunocompetent mice the severe CCHF observed in humans. This mouse-adapted variant of CCHFV significantly improves our ability to study host and viral determinants of CCHFV-induced disease in a highly tractable mouse model.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Friederike Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Brian Smith
- Texas Veterinary Pathology, Spring Branch, United States
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, United States
| |
Collapse
|
18
|
Kikwit Ebola Virus Disease Progression in the Rhesus Monkey Animal Model. Viruses 2020; 12:v12070753. [PMID: 32674252 PMCID: PMC7411891 DOI: 10.3390/v12070753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Ongoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013–2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock. Until reaching predetermined clinical disease endpoint criteria, six animals underwent anesthesia for repeated clinical sampling and were compared to six that did not. Groups of three animals were euthanized and necropsied on days 3, 4, 5, and 6 post-exposure, respectively. In addition, three uninfected animals served as controls. Here, we present detailed characterization of clinical and laboratory disease kinetics and complete blood counts, serum chemistries, Ebola virus titers, and disease kinetics for future medical countermeasure (MCM) study design and control data. We measured no statistical difference in hematology, chemistry values, or time to clinical endpoint in animals that were anesthetized for clinical sampling during the acute disease compared to those that were not.
Collapse
|
19
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
20
|
Comer JE, Escaffre O, Neef N, Brasel T, Juelich TL, Smith JK, Smith J, Kalveram B, Perez DD, Massey S, Zhang L, Freiberg AN. Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir. Viruses 2019; 11:v11020137. [PMID: 30717492 PMCID: PMC6410141 DOI: 10.3390/v11020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo ebolavirus and Taï Forest ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.
Collapse
Affiliation(s)
- Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Natasha Neef
- Experimental Pathology Laboratories, Inc., Sterling, VA 20167, USA.
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - David D Perez
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Alexander N Freiberg
- Sealy Institute for Vaccine Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Emanuel J, Callison J, Dowd KA, Pierson TC, Feldmann H, Marzi A. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci Rep 2018; 8:11043. [PMID: 30038228 PMCID: PMC6056530 DOI: 10.1038/s41598-018-29401-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with Zika virus (ZIKV) is commonly mild in humans but has been associated with alarming negative health outcomes including Guillain-Barré syndrome in adults and microcephaly in fetuses. As such, developing a vaccine for ZIKV is a global public health priority. Recombinant vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) has been successfully used as a vaccine platform in the past. In this study, two novel VSV-ZIKV vaccines were generated utilizing the favorable immune targeting of the existing VSV-EBOV vector. In addition to the EBOV GP, these new vaccines express the full-length pre-membrane and envelope proteins or pre-membrane and truncated soluble envelope proteins as antigens. Efficacy testing of both of the VSV vectors against ZIKV was conducted in IFNAR−/− mice and resulted in uniform protection when a single dose was administered 28 days prior to lethal challenge. Furthermore, this vaccine is fast-acting and can uniformly protect mice from lethal disease when administered as late as 3 days prior to ZIKV challenge. Thus, VSV-ZIKV vectors are promising vaccine candidates and should move forward along the licensure pathway.
Collapse
Affiliation(s)
- Jackson Emanuel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|