1
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
2
|
Enbom T, Suominen K, Laitinen S, Ollgren J, Autio T, Rimhanen-Finne R. Cryptosporidium parvum: an emerging occupational zoonosis in Finland. Acta Vet Scand 2023; 65:25. [PMID: 37349848 DOI: 10.1186/s13028-023-00684-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Cryptosporidiosis has increased in recent years in Finland. We aimed to identify risk factors for human cryptosporidiosis and to determine the significance of Cryptosporidium parvum as a causative agent. Based on notifications to the Finnish Infectious Disease Register (FIDR), we conducted a case-control study and genotyped Cryptosporidium species from patient samples from July to December 2019. We also retrieved the occupational cryptosporidiosis cases from 2011 to 2019 from the Finnish Register of Occupational Diseases (FROD). RESULTS Of 272 patient samples analyzed, 76% were C. parvum and 3% C. hominis. In the multivariable logistic regression analysis of 82 C. parvum cases and 218 controls, cryptosporidiosis was associated with cattle contact (OR 81, 95% confidence interval (CI) 26-251), having a family member with gastroenteritis (OR 34, 95% CI 6.2-186), and spending time at one's own vacation home (OR 15, 95% CI 4.2-54). Of the cases, 65% had regular cattle contact. The most common gp60 subtypes identified were IIaA15G2R1 and IIaA13G2R1. In FROD, 68 recognized occupational cryptosporidiosis cases were registered in 2011-2019. CONCLUSIONS C. parvum is the most common Cryptosporidium species found in humans in Finland and poses a moderate to high risk of occupational infection for people working with cattle. The number of occupational notifications of cryptosporidiosis increased between 2011 and 2019. Cryptosporidiosis should be recognized as an important occupational disease among persons working with livestock in Finland, criteria to identify occupational cryptosporidiosis need to be created, and occupational safety in cattle-related work should be improved.
Collapse
Affiliation(s)
- Tuulia Enbom
- Animal Health Diagnostic Unit, Finnish Food Authority, Neulaniementie 4, Kuopio, Finland
| | - Kristiina Suominen
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, Finland.
| | - Sirpa Laitinen
- Occupational Safety, Finnish Institute of Occupational Health, Neulaniementie 4, Kuopio, Finland
| | - Jukka Ollgren
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, Finland
| | - Tiina Autio
- Animal Health Diagnostic Unit, Finnish Food Authority, Neulaniementie 4, Kuopio, Finland
| | - Ruska Rimhanen-Finne
- Department of Health Security, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, Finland
| |
Collapse
|
3
|
Pestechian N, Mohammadi Manesh R, Tavakoli S, Mokarian F, Rahmani M. Identification and Subtyping of Cryptosporidium parvum and Cryptosporidium hominis in Cancer Patients, Isfahan Province, Central Iran. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:497-505. [PMID: 36694568 PMCID: PMC9825695 DOI: 10.18502/ijpa.v17i4.11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
Background Cryptosporidium spp. are protozoan parasites that cause diarrhea in humans and animals. Subtyping data about Cryptosporidium spp. in Isfahan, Iran is limited; therefore, we aimed to study the prevalence rate of Cryptosporidium spp. in cancer patients, associated risk factors, and subtypes of Cryptosporidium spp. Methods Fecal samples were collected from 187 cancer patients from the Oncology Department of Seyed-al-Shohada Hospital, Isfahan University of Medical Sciences during 2014-2020 and screened for Cryptosporidium spp. using microscopical techniques. Nested PCR amplifying 18S rRNA gene was used to detect Cryptosporidium spp. in samples, followed by subtyping using nested PCR amplifying gp60 sequences. Results Overall, the rate of infection with Cryptosporidium spp. was 4.3% (n=8). Five samples out of eight samples were identified as Cryptosporidium spp. using a nested PCR for the 18S rRNA gene, two subtypes of C. parvum named IIaA18G3R1 (n = 2) and IIaA17G2R1 (n = 2), and one subtype of C. hominis named IbA6G3 were identified by sequencing of the gp60. The IbA6G3 subtype has rarely been detected in other investigations. Conclusion This is the first survey on the subtyping of Cryptosporidium spp. in this region. The results of the present survey show both zoonotic and anthroponotic transmission routes in the region.
Collapse
Affiliation(s)
- Nader Pestechian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mohammadi Manesh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Tavakoli
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Rahmani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Graydon RC, Mezzacapo M, Boehme J, Foldy S, Edge TA, Brubacher J, Chan HM, Dellinger M, Faustman EM, Rose JB, Takaro TK. Associations between extreme precipitation, drinking water, and protozoan acute gastrointestinal illnesses in four North American Great Lakes cities (2009-2014). JOURNAL OF WATER AND HEALTH 2022; 20:849-862. [PMID: 35635777 DOI: 10.2166/wh.2022.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climate change is already impacting the North American Great Lakes ecosystem and understanding the relationship between climate events and public health, such as waterborne acute gastrointestinal illnesses (AGIs), can help inform needed adaptive capacity for drinking water systems (DWSs). In this study, we assessed a harmonized binational dataset for the effects of extreme precipitation events (≥90th percentile) and preceding dry periods, source water turbidity, total coliforms, and protozoan AGIs - cryptosporidiosis and giardiasis - in the populations served by four DWSs that source surface water from Lake Ontario (Hamilton and Toronto, Ontario, Canada) and Lake Michigan (Green Bay and Milwaukee, Wisconsin, USA) from January 2009 through August 2014. We used distributed lag non-linear Poisson regression models adjusted for seasonality and found extreme precipitation weeks preceded by dry periods increased the relative risk of protozoan AGI after 1 and 3-5 weeks in three of the four cities, although only statistically significant in two. Our results suggest that the risk of protozoan AGI increases with extreme precipitation preceded by a dry period. As extreme precipitation patterns become more frequent with climate change, the ability to detect changes in water quality and effectively treat source water of varying quality is increasingly important for adaptive capacity and protection of public health.
Collapse
Affiliation(s)
- Ryan C Graydon
- International Joint Commission: Great Lakes Regional Office, 100 Ouellette Avenue, 8th Floor, Windsor, ON N9A 6T3, Canada
| | | | - Jennifer Boehme
- International Joint Commission: Great Lakes Regional Office, 100 Ouellette Avenue, 8th Floor, Windsor, ON N9A 6T3, Canada
| | - Seth Foldy
- Public Health Institute at Denver Health, Denver, CO, USA
| | | | - Jordan Brubacher
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | - Joan B Rose
- Michigan State University, East Lansing, MI, USA
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
McKerr C, Chalmers RM, Elwin K, Ayres H, Vivancos R, O’Brien SJ, Christley RM. Cross-sectional household transmission study of Cryptosporidium shows that C. hominis infections are a key risk factor for spread. BMC Infect Dis 2022; 22:114. [PMID: 35105330 PMCID: PMC8807379 DOI: 10.1186/s12879-022-07086-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infection with the Cryptosporidium parasite causes over 4000 cases of diagnosed illness (cryptosporidiosis) in England and Wales each year. The incidence of sporadic disease has not been sufficiently established, and how frequently this arises from contact with other infected people is not well documented. This project aimed to explore potential transmission in the home and attempt to identify asymptomatic infections, which might play a role in transmission. Risk factors and characteristics associated with spread of infection in the home were described including any differences between Cryptosporidium species. METHODS The study identified cryptosporidiosis cases from North West England and Wales over a year and invited them and their household to take part. Each household was sent a study pack containing study information and a questionnaire, and stool sample kits to provide samples from consenting household members. Cryptosporidium-positive stool samples, identified by immunofluorescence microscopy, were characterised using molecular methods to help describe any patterns of transmission. Characteristics of households with and without additional cases were described, and compared using odds ratios (OR) and a multivariable logistic regression identified independent risk factors for household transmission. Data collection ran for one year, beginning in September 2018 with an initial pilot phase. RESULTS We enrolled 128 index cases and their households. Additional illness occurred in over a quarter of homes, each reporting an average of two additional cases. The majority of these were undiagnosed and unreported to surveillance. This burden was even greater in households where the index case was infected with C. hominis versus C. parvum, or the index case was under five years old, with mums and siblings most at risk of secondary infection. Only having an index case of C. hominis was independently associated with transmission in the multivariable model (OR 4.46; p = 0.01). CONCLUSIONS Cryptosporidium was a considerable burden in the home. At-risk homes were those where the index was less than five years old and/or infected with C. hominis. Of particular risk were female caregivers and siblings. Hygiene advice should be specifically directed here. This work provides evidence for humans as sources of C. hominis infection and that person-person is a key pathway. We recommend that all stools submitted for the investigation of gastrointestinal pathogens are tested for Cryptosporidium to better capture cases, inclusion of speciation data in routine surveillance, and the consideration of specific clinical advice on prevention for high-risk homes.
Collapse
Affiliation(s)
- Caoimhe McKerr
- NIHR Health Protection Research Unit in Gastrointestinal Infections, The University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, The University of Liverpool, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Swansea Medical School, Swansea University, Swansea, UK
- Present Address: Public Health Wales, Cardiff, UK
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
- Swansea Medical School, Swansea University, Swansea, UK
- Present Address: Public Health Wales, Cardiff, UK
| | - Kristin Elwin
- Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
- Present Address: Public Health Wales, Cardiff, UK
| | - Heather Ayres
- Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
- Present Address: Public Health Wales, Cardiff, UK
| | - Roberto Vivancos
- NIHR Health Protection Research Unit in Gastrointestinal Infections, The University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, The University of Liverpool, Liverpool, UK
- Field Epidemiology Services, Public Health England, Liverpool, UK
| | - Sarah J. O’Brien
- NIHR Health Protection Research Unit in Gastrointestinal Infections, The University of Liverpool, Liverpool, UK
| | - Robert M. Christley
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, The University of Liverpool, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Guo Y, Ryan U, Feng Y, Xiao L. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol 2021; 38:335-343. [PMID: 34972653 DOI: 10.1016/j.pt.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Zoonotic cryptosporidiosis is a major public health problem in industrialized nations; in those countries it is caused mainly by Cryptosporidium parvum IIa subtypes that are prevalent in dairy calves. Because of the short history of intensive animal farming in China, strains of C. parvum are found only on some dairy farms in this country and are the IId subtypes. However, the prevalence of C. parvum is increasing rapidly, with IIa subtypes recently detected in a few grazing animals, and both IIa and IId subtypes are emerging in humans. As animal farming intensifies, China may follow in the footsteps of industrialized nations where zoonotic cryptosporidiosis is rampant. One Health and biosecurity measures are urgently needed to slow down the dispersal of autochthonous IId subtypes and imported IIa subtypes.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Hartmann J, Chacon-Hurtado JC, Verbruggen E, Schijven J, Rorije E, Wuijts S, de Roda Husman AM, van der Hoek JP, Scholten L. Model development for evidence-based prioritisation of policy action on emerging chemical and microbial drinking water risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:112902. [PMID: 34171775 DOI: 10.1016/j.jenvman.2021.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
While the burden of disease from well-studied drinking water contaminants is declining, risks from emerging chemical and microbial contaminants arise because of social, technological, demographic and climatological developments. At present, emerging chemical and microbial drinking water contaminants are not assessed in a systematic way, but reactively and incidence based. Furthermore, they are assessed separately despite similar pollution sources. As a result, risks might be addressed ineffectively. Integrated risk assessment approaches are thus needed that elucidate the uncertainties in the risk evaluation of emerging drinking water contaminants, while considering risk assessors' values. This study therefore aimed to (1) construct an assessment hierarchy for the integrated evaluation of the potential risks from emerging chemical and microbial contaminants in drinking water and (2) develop a decision support tool, based on the agreed assessment hierarchy, to quantify (uncertain) risk scores. A multi-actor approach was used to construct the assessment hierarchy, involving chemical and microbial risk assessors, drinking water experts and members of responsible authorities. The concept of value-focused thinking was applied to guide the problem-structuring and model-building process. The development of the decision support tool was done using Decisi-o-rama, an open-source Python library. With the developed decision support tool (uncertain) risk scores can be calculated for emerging chemical and microbial drinking water contaminants, which can be used for the evidence-based prioritisation of actions on emerging chemical and microbial drinking water risks. The decision support tool improves existing prioritisation approaches as it combines uncertain indicator levels with a multi-stakeholder approach and integrated the risk assessment of chemical and microbial contaminants. By applying the concept of value-focused thinking, this study addressed difficulties in evidence-based decision-making related to emerging drinking water contaminants. Suggestions to improve the model were made to guide future research in assisting policy makers to effectively protect public health from emerging drinking water risks.
Collapse
Affiliation(s)
- Julia Hartmann
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, the Netherlands.
| | | | - Eric Verbruggen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Jack Schijven
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Utrecht University, Faculty of Geosciences, P.O. Box 80115, 3508TC, Utrecht, the Netherlands
| | - Emiel Rorije
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Susanne Wuijts
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Utrecht University, Faculty of Geosciences, P.O. Box 80115, 3508TC, Utrecht, the Netherlands
| | - Ana Maria de Roda Husman
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Jan Peter van der Hoek
- Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, the Netherlands; Waternet, P.O. Box 94370, 1090 GJ, Amsterdam, the Netherlands
| | - Lisa Scholten
- Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, the Netherlands
| |
Collapse
|
9
|
Trogu T, Formenti N, Marangi M, Viganò R, Bionda R, Giangaspero A, Lanfranchi P, Ferrari N. Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants. Pathogens 2021; 10:pathogens10060655. [PMID: 34070669 PMCID: PMC8228762 DOI: 10.3390/pathogens10060655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidium is a widespread apicomplexan protozoan of major zoonotic importance, characterized by a wide host range, and with relevant economic implications and potential negative effects on livestock and wildlife population dynamics. Considering the recent strong demographic increase of alpine ungulates, in this study, carried out in the Italian Northwestern Alps, we investigated the occurrence of Cryptosporidium spp. in these species and their potential involvement in environmental contamination with Cryptosporidium spp. oocysts. The immune-enzymatic approach revealed a Cryptosporidium prevalence of 1.7% (5/293), 0.5% (1/196) and 3.4% (4/119) in alpine chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus), respectively. Positive samples were subjected to polymerase chain reaction (PCR) amplification for the COWP and gp60 genes. The presence of Cryptosporidium was confirmed in one chamois and four roe deer. Sequences obtained clustered within Cryptosporidium ubiquitum, currently recognized as an emerging zoonotic species. This finding represents the first detection of zoonotic C. ubiquitum in chamois and in the Alpine environment. Despite the low observed prevalences, environmental contamination by oocysts could play a role as a potential source of infections for humans and livestock.
Collapse
Affiliation(s)
- Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘‘Bruno Ubertini’’ (IZSLER), via Bianchi 7/9, 25124 Brescia, Italy;
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘‘Bruno Ubertini’’ (IZSLER), via Bianchi 7/9, 25124 Brescia, Italy;
- Correspondence:
| | - Marianna Marangi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, via Napoli 25, 71121 Foggia, Italy; (M.M.); (A.G.)
| | - Roberto Viganò
- Studio Associato AlpVet, Piazza Venzaghi 2, 21052 Busto Arsizio, Italy;
| | - Radames Bionda
- Ente di Gestione delle Aree Protette dell’Ossola, Villa Gentinetta-Viale Pieri 27, 28868 Varzo, Italy;
| | - Annunziata Giangaspero
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, via Napoli 25, 71121 Foggia, Italy; (M.M.); (A.G.)
| | - Paolo Lanfranchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, via dell’Università 6, 26900 Lodi, Italy; (P.L.); (N.F.)
| | - Nicola Ferrari
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, via dell’Università 6, 26900 Lodi, Italy; (P.L.); (N.F.)
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. High Diversity of Cryptosporidium Species and Subtypes Identified in Cryptosporidiosis Acquired in Sweden and Abroad. Pathogens 2021; 10:pathogens10050523. [PMID: 33926039 PMCID: PMC8147002 DOI: 10.3390/pathogens10050523] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. The aim of this study was to expand the knowledge on the molecular epidemiology of human cryptosporidiosis in Sweden to better understand transmission patterns and potential zoonotic sources. Cryptosporidium-positive fecal samples were collected between January 2013 and December 2014 from 12 regional clinical microbiology laboratories in Sweden. Species and subtype determination was achieved using small subunit ribosomal RNA and 60 kDa glycoprotein gene analysis. Samples were available for 398 patients, of whom 250 (63%) and 138 (35%) had acquired the infection in Sweden and abroad, respectively. Species identification was successful for 95% (379/398) of the samples, revealing 12 species/genotypes: Cryptosporidium parvum (n = 299), C. hominis (n = 49), C. meleagridis (n = 8), C. cuniculus (n = 5), Cryptosporidium chipmunk genotype I (n = 5), C. felis (n = 4), C. erinacei (n = 2), C. ubiquitum (n = 2), and one each of C. suis, C. viatorum, C. ditrichi, and Cryptosporidium horse genotype. One patient was co-infected with C. parvum and C. hominis. Subtyping was successful for all species/genotypes, except for C. ditrichi, and revealed large diversity, with 29 subtype families (including 4 novel ones: C. parvum IIr, IIs, IIt, and Cryptosporidium horse genotype Vic) and 81 different subtypes. The most common subtype families were IIa (n = 164) and IId (n = 118) for C. parvum and Ib (n = 26) and Ia (n = 12) for C. hominis. Infections caused by the zoonotic C. parvum subtype families IIa and IId dominated both in patients infected in Sweden and abroad, while most C. hominis cases were travel-related. Infections caused by non-hominis and non-parvum species were quite common (8%) and equally represented in cases infected in Sweden and abroad.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
| | | | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
- Correspondence:
| |
Collapse
|
11
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
12
|
Guy RA, Yanta CA, Muchaal PK, Rankin MA, Thivierge K, Lau R, Boggild AK. Molecular characterization of Cryptosporidium isolates from humans in Ontario, Canada. Parasit Vectors 2021; 14:69. [PMID: 33482898 PMCID: PMC7821412 DOI: 10.1186/s13071-020-04546-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/13/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cryptosporidiosis is a gastrointestinal disease with global distribution. It has been a reportable disease in Canada since 2000; however, routine molecular surveillance is not conducted. Therefore, sources of contamination are unknown. The aim of this project was to identify species and subtypes of Cryptosporidium in clinical cases from Ontario, the largest province in Canada, representing one third of the Canadian population, in order to understand transmission patterns. METHODS A total of 169 frozen, banked, unpreserved stool specimens that were microscopy positive for Cryptosporidium over the period 2008-2017 were characterized using molecular tools. A subset of the 169 specimens were replicate samples from individual cases. DNA was extracted directly from the stool and nested PCR followed by Sanger sequencing was conducted targeting the small subunit ribosomal RNA (SSU) and glycoprotein 60 (gp60) genes. RESULTS Molecular typing data and limited demographic data were obtained for 129 cases of cryptosporidiosis. Of these cases, 91 (70.5 %) were due to Cryptosporidium parvum and 24 (18.6%) were due to Cryptosporidium hominis. Mixed infections of C. parvum and C. hominis occurred in four (3.1%) cases. Five other species observed were Cryptosporidium ubiquitum (n = 5), Cryptosporidium felis (n = 2), Cryptosporidium meleagridis (n = 1), Cryptosporidium cuniculus (n = 1) and Cryptosporidium muris (n = 1). Subtyping the gp60 gene revealed 5 allelic families and 17 subtypes of C. hominis and 3 allelic families and 17 subtypes of C. parvum. The most frequent subtype of C. hominis was IbA10G2 (22.3%) and of C. parvum was IIaA15G2R1 (62.4%). CONCLUSIONS The majority of isolates in this study were C. parvum, supporting the notion that zoonotic transmission is the main route of cryptosporidiosis transmission in Ontario. Nonetheless, the observation of C. hominis in about a quarter of cases suggests that anthroponotic transmission is also an important contributor to cryptosporidiosis pathogenesis in Ontario.
Collapse
Affiliation(s)
- Rebecca A. Guy
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Christine A. Yanta
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Pia K. Muchaal
- Centre for Food-borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada, 370 Woodlawn Road West, Guelph, ON N1H 7M7 Canada
| | - Marisa A. Rankin
- Parasite Biology Unit/Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4 Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, 20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue, Québec H9X 3R5 Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, M5G 1M1 Canada
| | - Andrea K. Boggild
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, M5G 1M1 Canada
- Tropical Disease Unit, Toronto General Hospital, Toronto, M5G 2C4 Canada
- Faculty of Medicine, University of Toronto, Toronto, M5S 1A8 Canada
| |
Collapse
|
13
|
Innes EA, Chalmers RM, Wells B, Pawlowic MC. A One Health Approach to Tackle Cryptosporidiosis. Trends Parasitol 2020; 36:290-303. [PMID: 31983609 PMCID: PMC7106497 DOI: 10.1016/j.pt.2019.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Cryptosporidiosis is a significant diarrhoeal disease in both people and animals across the world and is caused by several species of the protozoan parasite Cryptosporidium. Recent research has highlighted the longer-term consequences of the disease for malnourished children, involving growth stunting and cognitive deficits, and significant growth and production losses for livestock. There are no vaccines currently available to prevent the disease and few treatment options in either humans or animals, which has been a significant limiting factor in disease control to date. A One Health approach to tackle zoonotic cryptosporidiosis looking at new advances in veterinary, public, and environmental health research may offer several advantages and new options to help control the disease.
Collapse
Affiliation(s)
- Elisabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK.
| | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK; Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Beth Wells
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK
| | - Mattie C Pawlowic
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
14
|
Morris A, Robinson G, Swain MT, Chalmers RM. Direct Sequencing of Cryptosporidium in Stool Samples for Public Health. Front Public Health 2019; 7:360. [PMID: 31921734 PMCID: PMC6917613 DOI: 10.3389/fpubh.2019.00360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Cryptosporidium is an important cause of diarrheal disease (cryptosporidiosis) in humans and animals, with significant morbidity and mortality especially in severely immunocompromised people and in young children in low-resource settings. Due to the sexual life cycle of the parasite, transmission is complex. There are no restrictions on sexual recombination between sub-populations, meaning that large-scale genetic recombination may occur within a host, potentially confounding epidemiological analysis. To clarify the relationships between infections in different hosts, it is first necessary to correctly identify species and genotypes, but these differentiations are not made by standard diagnostic tests and more sophisticated molecular methods have been developed. For instance, multilocus genotyping has been utilized to differentiate isolates within the major human pathogens, Cryptosporidium parvum and Cryptosporidium hominis. This has allowed mixed populations with multiple alleles to be identified: recombination events are considered to be the driving force of increased variation and the emergence of new subtypes. As yet, whole genome sequencing (WGS) is having limited impact on public health investigations, due in part to insufficient numbers of oocysts and purity of DNA derived from clinical samples. Moreover, because public health agencies have not prioritized parasites, validation has not been performed on user-friendly data analysis pipelines suitable for public health practitioners. Nonetheless, since the first whole genome assembly in 2004 there are now numerous genomes of human and animal-derived cryptosporidia publically available, spanning nine species. It has also been demonstrated that WGS from very low numbers of oocysts is possible, through the use of amplification procedures. These data and approaches are providing new insights into host-adapted infectivity, the presence and frequency of multiple sub-populations of Cryptosporidium spp. within single clinical samples, and transmission of infection. Analyses show that although whole genome sequences do indeed contain many alleles, they are invariably dominated by a single highly abundant allele. These insights are helping to better understand population structures within hosts, which will be important to develop novel prevention strategies in the fight against cryptosporidiosis.
Collapse
Affiliation(s)
- Arthur Morris
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
15
|
Monge S, Pijnacker R, van Pelt W, Franz E, Kortbeek LM, Mangen MJJ. Accounting for long-term manifestations of Cryptosporidium spp infection in burden of disease and cost-of-illness estimations, the Netherlands (2013-2017). PLoS One 2019; 14:e0213752. [PMID: 30861047 PMCID: PMC6413911 DOI: 10.1371/journal.pone.0213752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background Burden of disease (BoD) estimations are increasingly used to prioritize public health interventions. Previous Cryptosporidium BoD models accounted only for acute episodes, while there is increasing evidence of long-term manifestations. Our objective was to update Cryptosporidium BoD and cost-of-illness (COI) models and to estimate BoD and COI for the Netherlands in years 2013–2017. Methods We performed a scoping literature review and drew an outcome tree including long-term manifestations for which sufficient evidence was found, such as recurrent diarrhea and joint pain. We chose the Disability-Adjusted Life Year (DALY) metric to synthesize years of life lost due mortality (YLLs) and years lived with disability due to non-fatal outcomes (YLDs). For the costs, we adopted a societal perspective accounting for direct healthcare costs, patient costs and productivity losses. Uncertainty was managed using Latin Hypercube sampling (30,000 iterations). Results In the Netherlands in 2017, we estimated 50,000 Cryptosporidium cases (95% uncertainty interval (UI): 15,000–102,000), 7,000 GP visits, 300 hospitalizations and 3 deaths, resulting in 137 DALYs (95%UI: 54–255) and €19.2 million COI (95%UI: €7.2 million– €36.2 million). Estimates were highest for 2016 (218 DALYs and €31.1 million in COI), and lowest in 2013 (100 DALYs and €13.8 million in COI). Most of the BoD was attributable to YLD (≈80% of DALYs). The most important cost was productivity losses (≈90% of total COI). Long-term manifestations, including recurring diarrhea and joint pain, accounted for 9% of the total DALYs and 7% of the total COI. Conclusion Current evidence supports the inclusion of long-term manifestations in Cryptosporidium models, which contribute close to 10% of the total DALYs and costs. This may be an underestimation, as we were conservative in our assumptions. Cryptosporidium should be considered a priority organism with respect to public health surveillance, even in industrialized countries with high hygiene standards.
Collapse
Affiliation(s)
- Susana Monge
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
- * E-mail:
| | - Roan Pijnacker
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wilfrid van Pelt
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Laetitia M. Kortbeek
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marie-Josée J. Mangen
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|