1
|
Balogh H, Anthony AK, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel anti-virulence compounds disrupt exotoxin expression in MRSA. Microbiol Spectr 2024; 12:e0146424. [PMID: 39431895 PMCID: PMC11619317 DOI: 10.1128/spectrum.01464-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus, but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant S. aureus (MRSA). To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in two hospital-acquired strains of MRSA, both with staphylococcal cassette chromosome mec (SCCmec) type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in strain 43300 but displayed differential activity in strain USA100. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA but that the directionality and/or magnitude of the difference are likely strain dependent.IMPORTANCEMethicillin-resistant S. aureus (MRSA) is a deadly human pathogen. In addition to evading antibiotics, these bacteria produce a wide range of toxins that negatively affect the host. Our work aims to identify and characterize novel compounds that can decrease the pathogenic effects of MRSA. Two lead compounds investigated in this study triggered changes in the production of multiple toxins. These changes were specific to the strain of MRSA investigated. Specifically, this work sheds light on novel compounds that decrease MRSA's ability to lyse host red blood cells. Importantly, it also highlights the importance of examining strain-specific differences in response to therapeutic interventions that could ultimately affect clinical outcomes.
Collapse
Affiliation(s)
- Halie Balogh
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Amaiya K. Anthony
- Department of Biology, High Point University, High Point, North Carolina, USA
| | - Robin Stempel
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Lauren Vossen
- Department of Biology, High Point University, High Point, North Carolina, USA
| | | | | | | | - Heather B. Miller
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| |
Collapse
|
2
|
Scully J, Mustafa AS, Hanif A, Tunio JH, Tunio SNJ. Immune Responses to Methicillin-Resistant Staphylococcus aureus Infections and Advances in the Development of Vaccines and Immunotherapies. Vaccines (Basel) 2024; 12:1106. [PMID: 39460273 PMCID: PMC11511289 DOI: 10.3390/vaccines12101106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Staphylococcus aureus (SA) is a major bacterial pathogen and causes a wide range of clinical infections in humans leading to severe outcomes including meningitis, endocarditis, and sepsis. This literature review examines studies on host immune responses after infections with SA and methicillin-resistant Staphylococcus aureus (MRSA) and their immune evasion mechanisms. Furthermore, information about vaccines and immunotherapies against SA and MRSA is reviewed. We found promising toxoid vaccine approaches, which deserve further research. We also found support for antitoxin therapies and immunomodulating therapies as high-potential research areas. Although many promising vaccines and immunotherapy candidates have been studied in animal models, more human clinical studies are needed to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- John Scully
- Department of Biomedical Sciences, University of Pikeville, Pikeville, KY 41501, USA;
| | - Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya 46300, Kuwait;
| | - Asma Hanif
- Department of Restorative Sciences, College of Dentistry, Kuwait University, Kuwait City 12037, Kuwait;
| | - Javed H. Tunio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | | |
Collapse
|
3
|
Ni W, Wei F, Sun C, Yao J, Zhang X, Zhang G. Inhibitory Effect of Jingfang Mixture on Staphylococcus aureus α-Hemolysin. Microb Pathog 2024:106840. [PMID: 39153577 DOI: 10.1016/j.micpath.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Staphylococcus aureus (S. aureus) is a kind of gram-positive bacteria, and its virulence factors can cause many kinds of infections. Traditional antibiotics can not only kill bacteria, but also easily lead to bacterial resistance. Jingfang Mixture (JFM) is commonly used in clinic to prevent and treat epidemic diseases and infectious diseases. The main purpose of this study is to explore the inhibitory effect of JFM on alpha-hemolysin (Hla) of S. aureus and to alleviate the damage caused by Hla. We found that JFM could inhibit the hemolytic activity, gene and protein level and neutralizing activity of Hla in a dose-dependent manner at the concentrations of 125, 250 and 500 μg/mL, without affecting the growth of bacteria. In addition, JFM reduced the damage of Hla to A549 cells and the release of lactate dehydrogenase (LDH). We also observed that in the S. aureus - induced pneumonia mouse model, JFM could significantly prolong the life of mice, reduce the bacterial load in the lungs, significantly improve the pathological state of the lungs and alleviate the damage caused by inflammatory factors, and the pathogenicity of gene deletion strain DU 1090 of S. aureus to pneumonia mice was also significantly reduced. In conclusion, this study proved that JFM is a potential drug against S. aureus infection, and this study provided a preliminary study for better guidance of clinical drug use.
Collapse
Affiliation(s)
- Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Fangjiao Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Jingchun Yao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| |
Collapse
|
4
|
Balogh H, Anthony A, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel Anti-virulence Compounds Disrupt Exotoxin Expression in MRSA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594412. [PMID: 38798408 PMCID: PMC11118326 DOI: 10.1101/2024.05.15.594412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus , but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in MRSA. To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in a laboratory strain and a clinically relevant hospital-acquired strain of MRSA, both with SCC mec type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in the laboratory strain, but displayed differential activity in a hospital-acquired strain. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA, but that the directionality and/or magnitude of the difference is likely strain-dependent.
Collapse
|
5
|
Mandelli AP, Magri G, Tortoli M, Torricelli S, Laera D, Bagnoli F, Finco O, Bensi G, Brazzoli M, Chiarot E. Vaccination with staphylococcal protein A protects mice against systemic complications of skin infection recurrences. Front Immunol 2024; 15:1355764. [PMID: 38529283 PMCID: PMC10961379 DOI: 10.3389/fimmu.2024.1355764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.
Collapse
Affiliation(s)
| | - Greta Magri
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | - Marco Tortoli
- Animal Resource Center, GlaxoSmithKline, Siena, Italy
| | | | | | - Fabio Bagnoli
- Infectious Disease Research Unit, GlaxoSmithKline, Upper Providence, PA, United States
| | - Oretta Finco
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | | | | | | |
Collapse
|
6
|
Jin L, Hu X, Tian Y, Fang M, Dong X, Jiang Y, Han Y, Li H, Sun Y. Detection of Staphylococcus aureus virulence gene pvl based on CRISPR strip. Front Immunol 2024; 15:1345532. [PMID: 38524136 PMCID: PMC10957627 DOI: 10.3389/fimmu.2024.1345532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is a prominent pathogen responsible for both hospital-acquired and community-acquired infections. Among its arsenal of virulence factors, Panton-Valentine Leucocidin (PVL) is closely associated with severe diseases such as profound skin infections and necrotizing pneumonia. Patients infected with pvl-positive S. aureus often exhibit more severe symptoms and carry a substantially higher mortality risk. Therefore, it is crucial to promptly and accurately detect pvl-positive S. aureus before initiating protective measures and providing effective antibacterial treatment. Methods In this study, we propose a precise identification and highly sensitive detection method for pvl-positive S. aureus based on recombinase-assisted amplification and the CRISPR-ERASE strip which we previously developed. Results The results revealed that this method achieved a detection limit of 1 copy/μL for pvl-positive plasmids within 1 hour. The method successfully identified all 25 pvl-positive and 51 pvl-negative strains among the tested 76 isolated S. aureus samples, demonstrating its concordance with qPCR. Discussion These results show that the CRISPR-ERASE detection method for pvl-positive S. aureus has the advantages of high sensitivity and specificity, this method combines the characteristics of recombinase-assisted amplification at room temperature and the advantages of ERASE test strip visualization, which can greatly reduce the dependence on professional laboratories. It is more suitable for on-site detection than PCR and qPCR, thereby providing important value for rapid on-site detection of pvl.
Collapse
Affiliation(s)
- Li Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - XiaoFeng Hu
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Yuan Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - MengYa Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - YaXuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
7
|
Gras E, Vu TTT, Nguyen NTQ, Tran VG, Mao Y, Tran ND, Mai NH, Dong OX, Jung DH, Iorio NLPP, Povoa HCC, Pinheiro MG, Aguiar-Alves F, Weiss WJ, Zheng B, Cheng LI, Stover CK, Sellman BR, DiGiandomenico A, Gibault L, Valour F, Diep BA. Development and validation of a rabbit model of Pseudomonas aeruginosa non-ventilated pneumonia for preclinical drug development. Front Cell Infect Microbiol 2023; 13:1297281. [PMID: 38149013 PMCID: PMC10750358 DOI: 10.3389/fcimb.2023.1297281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background New drugs targeting antimicrobial resistant pathogens, including Pseudomonas aeruginosa, have been challenging to evaluate in clinical trials, particularly for the non-ventilated hospital-acquired pneumonia and ventilator-associated pneumonia indications. Development of new antibacterial drugs is facilitated by preclinical animal models that could predict clinical efficacy in patients with these infections. Methods We report here an FDA-funded study to develop a rabbit model of non-ventilated pneumonia with Pseudomonas aeruginosa by determining the extent to which the natural history of animal disease reproduced human pathophysiology and conducting validation studies to evaluate whether humanized dosing regimens of two antibiotics, meropenem and tobramycin, can halt or reverse disease progression. Results In a rabbit model of non-ventilated pneumonia, endobronchial challenge with live P. aeruginosa strain 6206, but not with UV-killed Pa6206, caused acute respiratory distress syndrome, as evidenced by acute lung inflammation, pulmonary edema, hemorrhage, severe hypoxemia, hyperlactatemia, neutropenia, thrombocytopenia, and hypoglycemia, which preceded respiratory failure and death. Pa6206 increased >100-fold in the lungs and then disseminated from there to infect distal organs, including spleen and kidneys. At 5 h post-infection, 67% of Pa6206-challenged rabbits had PaO2 <60 mmHg, corresponding to a clinical cut-off when oxygen therapy would be required. When administered at 5 h post-infection, humanized dosing regimens of tobramycin and meropenem reduced mortality to 17-33%, compared to 100% for saline-treated rabbits (P<0.001 by log-rank tests). For meropenem which exhibits time-dependent bactericidal activity, rabbits treated with a humanized meropenem dosing regimen of 80 mg/kg q2h for 24 h achieved 100% T>MIC, resulting in 75% microbiological clearance rate of Pa6206 from the lungs. For tobramycin which exhibits concentration-dependent killing, rabbits treated with a humanized tobramycin dosing regimen of 8 mg/kg q8h for 24 h achieved Cmax/MIC of 9.8 ± 1.4 at 60 min post-dose, resulting in 50% lung microbiological clearance rate. In contrast, rabbits treated with a single tobramycin dose of 2.5 mg/kg had Cmax/MIC of 7.8 ± 0.8 and 8% (1/12) microbiological clearance rate, indicating that this rabbit model can detect dose-response effects. Conclusion The rabbit model may be used to help predict clinical efficacy of new antibacterial drugs for the treatment of non-ventilated P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Emmanuelle Gras
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Université François Rabelais, Tours, France
| | - Trang T. T. Vu
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Nhu T. Q. Nguyen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Vuvi G. Tran
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yanjie Mao
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Nguyen D. Tran
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nam H. Mai
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Oliver X. Dong
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David H. Jung
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Natalia L. P. P. Iorio
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Helvecio C. C. Povoa
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcos Gabriel Pinheiro
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Fabio Aguiar-Alves
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Pathology Program, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - William J. Weiss
- Pre-Clinical Services at UNT Health Science Center, Fort Worth, TX, United States
| | - Bo Zheng
- Clinical Pharmacology & DMPK, AstraZeneca, Gaithersburg, MD, United States
| | - Lily I. Cheng
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, United States
| | - Charles K. Stover
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, United States
| | - Bret R. Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, United States
| | | | - Laure Gibault
- Pathology Department, George Pompidou European Hospital, Paris, France
| | - Florent Valour
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, University of Lyon, Lyon, France
- Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Chang J, Zhang Y, Zhang Z, Chen B, He S, Zhan Z, Zhong N, Tian X, Kang S, Arunachalam K, Shi C. Prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates in frozen flour and rice products in Shanghai, China. Curr Res Food Sci 2023; 7:100631. [PMID: 38021263 PMCID: PMC10660022 DOI: 10.1016/j.crfs.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococcus aureus is widely recognized as a highly hazardous pathogen that poses significant threats to food safety and public health. This study aimed to assess the prevalence, antimicrobial resistance, and genetic characteristics of S. aureus isolates recovered from 288 frozen flour and rice product samples in Shanghai, China, between September 2019 and May 2020. A total of 81 S. aureus isolates were obtained, representing 25 sequence types (STs), with ST7 being the most prevalent (17.28%, n = 14). The majority of S. aureus isolates (85.19%, n = 69) carried at least one enterotoxin gene, with the seg gene being the most frequently detected (51.85%, n = 42). Additionally, 12 isolates (14.81%) were identified as methicillin-resistant S. aureus (MRSA) through mecA gene detection. Notably, this study reported the presence of an ST398 MRSA isolate in frozen flour and rice products for the first time. All MRSA isolates displayed multidrug resistance, with the highest resistance observed against cefoxitin (100.00%), followed by penicillin (91.67%) and erythromycin (66.67%). Genomic analysis of the 12 MRSA isolates revealed the presence of twenty distinct acquired antimicrobial resistance genes (ARGs), eight chromosomal point mutations, and twenty-four unique virulence genes. Comparative genome analysis indicated close genetic relationships between these MRSA isolates and previously reported MRSA isolates from clinical infections, highlighting the potential transmission of MRSA through the food chain and its implications for public health. Significantly, the identification of three plasmids harboring ARGs, insertion sequences (ISs), the origin of transfer site (oriT), and the relaxase gene suggested the potential for horizontal transfer of ARGs via conjugative plasmids in S. aureus. In conclusion, this study revealed significant contamination of retail frozen flour and rice products with S. aureus, and provided essential data for ensuring food safety and protecting public health.
Collapse
Affiliation(s)
- Jiang Chang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Bo Chen
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Nan Zhong
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaorong Tian
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shimo Kang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
9
|
Grebe T, Rudolf V, Gouleu CS, Löffler B, Adegnika AA, Shittu AO, Deinhardt-Emmer S, Niemann S, Schaumburg F. Neutralization of the Staphylococcus aureus Panton-Valentine leukocidin by African and Caucasian sera. BMC Microbiol 2022; 22:219. [PMID: 36115948 PMCID: PMC9482280 DOI: 10.1186/s12866-022-02636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 05/31/2023] Open
Abstract
Abstract
Background
The prevalence of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin (PVL) gene is higher in Africa (≈50%) compared to Europe (< 5%). The study aimed to measure anti-PVL-antibodies in Africans and Germans in a multi-center study and to test whether detected antibodies can neutralize the cytotoxic effect of PVL on polymorphonuclear leukocytes (PMNs).
Methods
Sera from asymptomatic Africans (n = 22, Nigeria, Gabon) and Caucasians (n = 22, Germany) were used to quantify antibody titers against PVL and α-hemolysin (in arbitrary units [AU]) by ELISA. PMNs from one African and German donor were exposed to 5 nM recombinant PVL to measure the neutralizing effect of serial dilutions of pooled sera from African and Caucasian participants, or donor sera at 0.625 and 2.5% (v/v).
Results
Anti-PVL-antibodies were significantly higher in Africans than in Germans (1.9 vs. 0.7 AU, p < 0.0001). The pooled sera from the study participants neutralized the cytotoxic effect of PVL on African and German PMNs in a dose dependent manner. Also, neutralization of PVL on PMNs from the African and German donors had a stronger effect with African sera (half-maximal inhibitory concentration (IC50) = 0.27 and 0.47%, respectively) compared to Caucasian sera (IC50 = 3.51 and 3.59% respectively).
Conclusion
Africans have higher levels of neutralizing anti-PVL-antibodies. It remains unclear if or at what level these antibodies protect against PVL-related diseases.
Collapse
|
10
|
Diagnostic Value of Color Doppler Flow Imaging Combined with Serum CRP, PCT, and IL-6 Levels for Neonatal Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2113856. [PMID: 35990828 PMCID: PMC9385283 DOI: 10.1155/2022/2113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Objective To evaluate the diagnostic value of combined detection of color Doppler flow imaging (CDFI) and serum C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) levels for neonatal pneumonia. Methods In this prospective study, 30 newborns with pneumonia and 30 healthy newborns in our hospital from January 2019 to January 2020 were recruited. The healthy newborns were assigned to the control group, and the newborns with pneumonia were assigned to the experimental group. All subjects underwent CDFI and measurement of the levels of serum CRP, PCT, and IL-6. The serum indices and imaging results of the two groups were analyzed, and the specificity and sensitivity of different detection methods in the diagnosis of neonatal pneumonia were calculated and analyzed. Results The levels of serum CRP, PCT, and IL-6 in the experimental group were significantly higher than those in the control group (P < 0.001). Combined detection had a larger detection area, higher sensitivity, and a superior overall detection outcome than single detection (P < 0.05). The diagnostic results of combined detection and clinical diagnosis in 30 newborns with pneumonia were similar (P > 0.05). Conclusion The combined detection of CDFI and serum CRP, PCT, and IL-6 levels in the diagnosis of neonatal pneumonia shows a promising diagnostic outcome, so it is worthy of clinical application.
Collapse
|
11
|
Jing S, Ren X, Wang L, Kong X, Wang X, Chang X, Guo X, Shi Y, Guan J, Wang T, Wang B, Song W, Zhao Y. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence 2022; 13:578-588. [PMID: 35363605 PMCID: PMC8986306 DOI: 10.1080/21505594.2022.2051313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically due to the misuse of antibiotics, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P is a case in hydrolase that regulates the virulence level of S. aureus. Here, we found that nepetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Nepetin suppressed the virulence of S. aureus and effectively combated the lethal pneumonia caused by MRSA. The results of cellular thermal shift assay showed that nepetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value of 602 nM between them was determined using localized surface plasmon resonance. The binding mode of nepetin and ClpP was further investigated by molecular docking, and it was found that Ser-22 and Gln-47 of ClpP residues were found to be involved in the binding of nepetin to ClpP. In conclusion, we determined that nepetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for MRSA infection.
Collapse
Affiliation(s)
- Shisong Jing
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Ren
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xingye Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,College of integrated Chinese and Western medicine, College of rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Xiren Chang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Bi NN, Zhao S, Zhang JF, Cheng Y, Zuo CY, Yang GL, Yang K. Proteomics Investigations of Potential Protein Biomarkers in Sera of Rabbits Infected With Schistosoma japonicum. Front Cell Infect Microbiol 2022; 11:784279. [PMID: 35004354 PMCID: PMC8729878 DOI: 10.3389/fcimb.2021.784279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/05/2022] Open
Abstract
Schistosomiasis is a chronic parasitic disease that continues to be a pressing public health problem in many developing countries. The primary pathological damage from the disease is granuloma and fibrosis caused by egg aggregation, and early treatment can effectively prevent the occurrence of liver fibrosis. Therefore, it is very important to identify biomarkers that can be used for early diagnosis of Schistosoma japonicum infection. In this study, a label-free proteomics method was performed to observe the alteration of proteins before infection, 1 and 6 weeks after infection, and 5 and 7 weeks after treatment. A total of 10 proteins derived from S. japonicum and 242 host-derived proteins were identified and quantified as significantly changed. Temporal analysis was carried out to further analyze potential biomarkers with coherent changes during infection and treatment. The results revealed biological process changes in serum proteins compared to infection and treatment groups, which implicated receptor-mediated endocytosis, inflammatory response, and acute-phase response such as mannan-binding lectin serine peptidase 1, immunoglobulin, and collagen. These findings offer guidance for the in-depth analysis of potential biomarkers of schistosomiasis, host protein, and early diagnosis of S. japonicum and its pathogenesis. Data are available via ProteomeXchange with identifier PXD029635.
Collapse
Affiliation(s)
- Nian-Nian Bi
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Song Zhao
- National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Feng Zhang
- National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Ying Cheng
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chen-Yang Zuo
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Gang-Long Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yang
- School of Public Health, Nanjing Medical University, Nanjing, China.,National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
13
|
Yin N, Yang X, Wang L, Zhang C, Guan J, Tao Y, Guo X, Zhao Y, Song W, Wang B, Tang Y. Kaempferol inhibits the expression of α-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog 2021; 162:105336. [PMID: 34856361 DOI: 10.1016/j.micpath.2021.105336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium that induces a variety of diseases in humans and animals. The significant pathogenicity of S. aureus is due to its expression of several virulence factors. Alpha-hemolysin (Hla) has attracted attention as a virulence factor in staphylococcal pathogenesis and has been the predominant focus of intense research. In this study, we found that kaempferol, a flavonoid compound, inhibited hemolysis at a low concentration (32 μg/mL) and exerted no effect on bacterial growth. Western blot and RT-qPCR assays further demonstrated that kaempferol downregulated the expression of Hla in S. aureus. We observed that kaempferol alleviated the damage from S. aureus Hla in A549 cells. More importantly, kaempferol showed a potent protective effect on mice pneumonia induced by MRSA, as evidenced by a significant improvement in the survival of mice, a reduction in the number of colonized colonies in lung tissue and a decrease in the pathological damage to lung tissues. In summary, the results demonstrate the protective effect of kaempferol on MRSA-induced lethal pneumonia in mice and indicate that kaempferol could be developed as a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Ning Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 271016, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xuerui Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
14
|
Feng J, Sun D, Wang L, Li X, Guan J, Wei L, Yue D, Wang X, Zhao Y, Yang H, Song W, Wang B. Biochanin A as an α-hemolysin inhibitor for combating methicillin-resistant Staphylococcus aureus infection. World J Microbiol Biotechnol 2021; 38:6. [PMID: 34837116 DOI: 10.1007/s11274-021-03182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. In S. aureus, α-hemolysin is an important virulence factor as it contributes to the capacity of the bacteria to infect the host. Here, we showed that biochanin A (bioA), an isoflavone present in red clover, cabbage and alfalfa, effectively inhibited hemolytic activity at a dose as low as 32 μg/mL. Further, western blot and RT-qPCR data showed that bioA reduced the production and expression of MRSA hemolysin in a dose-dependent manner. In addition, when different concentrations of bioA were added to a coculture system of A549 cells and S. aureus, it could significantly decrease cell injury. Importantly, the in vivo study showed that bioA could protect mice from pneumonia caused by a lethal dose of MRSA, as evidenced by improving their survival and reducing the number of bacterial colonies in lung tissues, the secretion of hemolysin into alveolar lavage fluid and the degree of pulmonary edema. In conclusion, biochanin A protected the host from MRSA infection by inhibiting the expression of the hemolysin of MRSA, which may provide experimental evidence for its development to a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Jiaxuan Feng
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xueting Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Donghui Yue
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haimiao Yang
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
15
|
Clinical and radiological variants of lung damage in the infection caused by staphylococcus aureus. КЛИНИЧЕСКАЯ ПРАКТИКА 2021. [DOI: 10.17816/clinpract71642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the high level of modern technologies in the field of laboratory methods and imaging of the respiratory system, the problem of early and accurate differential diagnosis of inflammatory lung diseases remains important in practical medicine. It leads to improved treatment results and a reduction in the number of complications (pleural empyema, fistulas, mediastinitis, sepsis, etc.), and in some cases allows suspecting the presence of a primary purulent source in the body, such as that in the case of septic pulmonary embolism. The review covers the Staphylococcus aureus specifics as a pathogen of lung diseases, relevant epidemiology, pathogenesis, clinical features and imaging diagnostics of various types of inflammatory changes in the lungs with a focus on destruction.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the most common invasive bacterial pathogen infecting children in the U.S. and many parts of the world. This major human pathogen continues to evolve, and recognition of recent trends in epidemiology, therapeutics and future horizons is of high importance. RECENT FINDINGS Over the past decade, a relative rise of methicillin-susceptible S. aureus (MSSA) has occurred, such that methicillin-resistant S. aureus (MRSA) no longer dominates the landscape of invasive disease. Antimicrobial resistance continues to develop, however, and novel therapeutics or preventive modalities are urgently needed. Unfortunately, several recent vaccine attempts proved unsuccessful in humans. SUMMARY Recent scientific breakthroughs highlight the opportunity for novel interventions against S. aureus by interfering with virulence rather than by traditional antimicrobial mechanisms. A S. aureus vaccine remains elusive; the reasons for this are multifactorial, and lessons learned from prior unsuccessful attempts may create a path toward an effective preventive. Finally, new diagnostic modalities have the potential to greatly enhance clinical care for invasive S. aureus disease in children.
Collapse
Affiliation(s)
- James E. Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
| |
Collapse
|
17
|
Le Masters T, Johnson S, Jeraldo PR, Greenwood-Quaintance KE, Cunningham SA, Abdel MP, Chia N, Patel R. Comparative Transcriptomic Analysis of Staphylococcus aureus Associated with Periprosthetic Joint Infection under in Vivo and in Vitro Conditions. J Mol Diagn 2021; 23:986-999. [PMID: 34098085 PMCID: PMC8351120 DOI: 10.1016/j.jmoldx.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transcriptomic analysis can provide insight as to how Staphylococcus aureus adapts to the environmental niche of periprosthetic joint infection (PJI), a challenging clinical infection. Here, in vivo RNA expression of eight S. aureus PJIs was compared with expression of the corresponding isolates in planktonic culture using a total RNA-sequencing approach. Expression varied among isolates, with a common trend showing increased expression of several ica-independent biofilm formation genes, including sdr, fnb, ebpS, and aaa; genes encoding enzymes and toxins, including coa, nuc, hlb, and hlgA/B/C; and genes facilitating acquisition of iron via the iron-binding molecule siderophore B (snb) and heme consumption protein (isd) pathways in PJI. Several antimicrobial resistance determinants were detected; although their presence correlated with phenotypic susceptibility of the associated isolates, no difference in expression between in vivo and in vitro conditions was identified.
Collapse
Affiliation(s)
- Thao Le Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stephen Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Karauzum H, Venkatasubramaniam A, Adhikari RP, Kort T, Holtsberg FW, Mukherjee I, Mednikov M, Ortines R, Nguyen NTQ, Doan TMN, Diep BA, Lee JC, Aman MJ. IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Front Immunol 2021; 12:624310. [PMID: 33777005 PMCID: PMC7987673 DOI: 10.3389/fimmu.2021.624310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.
Collapse
Affiliation(s)
| | | | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Mark Mednikov
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Roger Ortines
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Nhu T. Q. Nguyen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Thien M. N. Doan
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| |
Collapse
|
19
|
Venkatasubramaniam A, Liao G, Cho E, Adhikari RP, Kort T, Holtsberg FW, Elsass KE, Kobs DJ, Rudge TL, Kauffman KD, Lora NE, Barber DL, Aman MJ, Karauzum H. Safety and Immunogenicity of a 4-Component Toxoid-Based Staphylococcus aureus Vaccine in Rhesus Macaques. Front Immunol 2021; 12:621754. [PMID: 33717122 PMCID: PMC7947289 DOI: 10.3389/fimmu.2021.621754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.
Collapse
Affiliation(s)
| | - Grant Liao
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Eunice Cho
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Dean J. Kobs
- Batelle - West Jefferson, West Jefferson, OH, United States
| | | | - Keith D. Kauffman
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nickiana E. Lora
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | | |
Collapse
|
20
|
Rungelrath V, DeLeo FR. Staphylococcus aureus, Antibiotic Resistance, and the Interaction with Human Neutrophils. Antioxid Redox Signal 2021; 34:452-470. [PMID: 32460514 PMCID: PMC8020508 DOI: 10.1089/ars.2020.8127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance:Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The high burden of S. aureus among human and animal hosts, which includes asymptomatic carriage and infection, is coupled with a notorious ability of the microbe to become resistant to antibiotics. Notably, S. aureus has the ability to produce molecules that promote evasion of host defense, including the ability to avoid killing by neutrophils. Recent Advances: Significant progress has been made to better understand S. aureus-host interactions. These discoveries include elucidation of the role played by numerous S. aureus virulence molecules during infection. Based on putative functions, a number of these virulence molecules, including S. aureus alpha-hemolysin and protein A, have been identified as therapeutic targets. Although it has not been possible to develop a vaccine that can prevent S. aureus infections, monoclonal antibodies specific for S. aureus virulence molecules have the potential to moderate the severity of disease. Critical Issues: Therapeutic options for treatment of methicillin-resistant S. aureus (MRSA) are limited, and the microbe typically develops resistance to new antibiotics. New prophylactics and/or therapeutics are needed. Future Directions: Research that promotes an enhanced understanding of S. aureus-host interaction is an important step toward developing new therapeutic approaches directed to moderate disease severity and facilitate treatment of infection. This research effort includes studies that enhance our view of the interaction of S. aureus with human neutrophils. Antioxid. Redox Signal. 34, 452-470.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
21
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
22
|
Forbes JD. Clinically Important Toxins in Bacterial Infection: Utility of Laboratory Detection. CLINICAL MICROBIOLOGY NEWSLETTER 2020; 42:163-170. [PMID: 33046946 PMCID: PMC7541054 DOI: 10.1016/j.clinmicnews.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elaboration of proteins that damage host cells is fundamental to the pathogenesis of many bacterial pathogens. The clinical significance of many bacterial toxins is well recognized, and routine detection is necessary to confirm definitive diagnosis for some types of infectious diseases. Determining the clinical significance of a toxin involves many factors, including the toxin's prevalence, virulence, and role in disease pathogenesis. While essential from a diagnostic perspective, toxin detection has the potential to be important for patient management decision making, as well as infection prevention and control measures. This review focuses on the history, epidemiology, pathogenesis, clinical presentation, and management of infections associated with well-defined, clinically important toxins (such as Shiga toxin-producing Escherichia coli), as well as those that are less well defined (such as Staphylococcus aureus' Panton-Valentine leukocidin) where detection may yield clinically important information.
Collapse
Affiliation(s)
- Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Vaccination with VLPs Presenting a Linear Neutralizing Domain of S. aureus Hla Elicits Protective Immunity. Toxins (Basel) 2020; 12:toxins12070450. [PMID: 32664481 PMCID: PMC7404987 DOI: 10.3390/toxins12070450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
The pore-forming cytotoxin α-hemolysin, or Hla, is a critical Staphylococcus aureus virulence factor that promotes infection by causing tissue damage, excessive inflammation, and lysis of both innate and adaptive immune cells, among other cellular targets. In this study, we asked whether a virus-like particle (VLP)-based vaccine targeting Hla could attenuate S. aureus Hla-mediated pathogenesis. VLPs are versatile vaccine platforms that can be used to display target antigens in a multivalent array, typically resulting in the induction of high titer, long-lasting antibody responses. In the present study, we describe the first VLP-based vaccines that target Hla. Vaccination with either of two VLPs displaying a 21 amino-acid linear neutralizing domain (LND) of Hla protected both male and female mice from subcutaneous Hla challenge, evident by reduction in lesion size and neutrophil influx to the site of intoxication. Antibodies elicited by VLP-LND vaccination bound both the LND peptide and the native toxin, effectively neutralizing Hla and preventing toxin-mediated lysis of target cells. We anticipate these novel and promising vaccines being part of a multi-component S. aureus vaccine to reduce severity of S. aureus infection.
Collapse
|
24
|
Tromp AT, van Strijp JAG. Studying Staphylococcal Leukocidins: A Challenging Endeavor. Front Microbiol 2020; 11:611. [PMID: 32351474 PMCID: PMC7174503 DOI: 10.3389/fmicb.2020.00611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a well-known colonizer of the human skin and nose, but also a human pathogen that causes a wide spectrum of diseases. It is well established that S. aureus secretes an arsenal of virulence factors that have evolved to circumvent the human immune system. A major group of S. aureus virulence factors is the bi-component β-barrel pore-forming toxins, also known as leukocidins. These pore-forming toxins target specific cells of the innate and adaptive immune system by interacting with specific receptors expressed on the cell membrane. Even though still heavily debated, clinical and epidemiological studies suggest the involvement of one of the bi-component toxin, Panton-Valentine Leukocidin (PVL), as an important factor contributing to the epidemic spread and increased virulence of CA-MRSA strains. However, the host- and cell-specificity of PVL and other leukocidins, and the lack of adequate in vivo models, fuels the controversy and impairs the appropriate assessment of their role in S. aureus pathophysiology. Currently, the mechanisms of pore-formation and the contribution of PVL and other leukocidins to S. aureus pathophysiology are incompletely understood. This review summarizes our current understanding of leukocidin pore-formation, knowledge gaps, and highlights recent findings identifying novel host-factors involved in the toxin-host interface. As a result, this review furthers emphasizes the complexity behind S. aureus leukocidin cytotoxicity and the challenges associated in the quest to study and understand these major virulence factors.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|