1
|
Tam WY, Cheung KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med (Berl) 2020; 98:1215-1234. [PMID: 32712726 DOI: 10.1007/s00109-020-01953-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.
Collapse
Affiliation(s)
- Wing Yip Tam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
2
|
BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. Oncotarget 2017; 8:56858-56867. [PMID: 28915637 PMCID: PMC5593608 DOI: 10.18632/oncotarget.18096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/04/2017] [Indexed: 01/22/2023] Open
Abstract
We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro. Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo. Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM.
Collapse
|
3
|
Qi CF, Shin DM, Li Z, Wang H, Feng J, Hartley JW, Fredrickson TN, Kovalchuk AL, Morse HC. Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice. J Pathol 2010; 221:106-16. [PMID: 20217872 PMCID: PMC3415987 DOI: 10.1002/path.2692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/02/2010] [Indexed: 01/09/2023]
Abstract
Anaplastic plasmacytomas (APCTs) from NFS.V(+) congenic mice and pristane-induced plasmacytic PCTs from BALB/c mice were previously shown to be histologically and molecularly distinct subsets of plasma cell neoplasms (PCNs). Here we extended these comparisons, contrasting primary APCTs and PCTs by gene expression profiling in relation to the expression profiles of normal naïve, germinal centre, and memory B cells and plasma cells. We also sequenced immunoglobulin genes from APCT and APCT-derived cell lines and defined surface phenotypes and chromosomal features of the cell lines by flow cytometry and by spectral karyotyping and fluorescence in situ hybridization. The results indicate that APCTs share many features with normal memory cells and the plasma cell-related neoplasms (PLs) of FASL-deficient mice, suggesting that APCTs and PLs are related and that both derive from memory B cells. Published in 2010 by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chen-Feng Qi
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | - Zhaoyang Li
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jianxum Feng
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Torgny N Fredrickson
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alexander L Kovalchuk
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Herbert C Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
4
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Qi CF, Zhou JX, Lee CH, Naghashfar Z, Xiang S, Kovalchuk AL, Fredrickson TN, Hartley JW, Roopenian DC, Davidson WF, Janz S, Morse HC. Anaplastic, plasmablastic, and plasmacytic plasmacytomas of mice: relationships to human plasma cell neoplasms and late-stage differentiation of normal B cells. Cancer Res 2007; 67:2439-47. [PMID: 17363561 DOI: 10.1158/0008-5472.can-06-1561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have compared histologic features and gene expression profiles of newly identified plasmacytomas from NFS.V(+) congenic mice with plasmacytomas of IL6 transgenic, Fasl mutant, and SJL-beta2M(-/-) mice. NFS.V(+) tumors comprised an overlapping morphologic spectrum of high-grade/anaplastic, intermediate-grade/plasmablastic, and low-grade/plasmacytic cases with similarities to subsets of human multiple myeloma and plasmacytoma. Microarray and immunohistochemical analyses of genes expressed by the most prevalent tumors, plasmablastic plasmacytomas, showed them to be most closely related to immunoblastic lymphomas, less so to plasmacytomas of Fasl mutant and SJL mice, and least to plasmacytic plasmacytomas of IL6 transgenic mice. Plasmablastic tumors seemed to develop in an inflammatory environment associated with gene signatures of T cells, natural killer cells, and macrophages not seen with plasmacytic plasmacytomas. Plasmablastic plasmacytomas from NFS.V(+) and SJL-beta2M(-/-) mice did not have structural alterations in Myc or T(12;15) translocations and did not express Myc at high levels, regular features of transgenic and pristane-induced plasmacytomas. These findings imply that, as for human multiple myeloma, Myc-independent routes of transformation contribute to the pathogenesis of these tumors. These findings suggest that plasma cell neoplasms of mice and humans exhibit similar degrees of complexity. Mouse plasmacytomas, previously considered to be homogeneous, may thus be as diverse as their human counterparts with respect to oncogenic mechanisms of plasma cell transformation. Selecting specific types of mouse plasmacytomas that relate most closely to subtypes of human multiple myeloma may provide new opportunities for preclinical testing of drugs for treatment of the human disease.
Collapse
Affiliation(s)
- Chen-Feng Qi
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, NIH, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Howard CB, Samuel J, Henderson SB, Stevens J, Thomas PE, Cuchens MA. Effects of pristane on cytochrome P450 isozyme expression in rat tissues. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 2:138-46. [PMID: 16708425 PMCID: PMC3814708 DOI: 10.3390/ijerph2005010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP) isozymes (CYP1A1, CYP1A2 and CYP2B), were employed to examine the effect(s) of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane) on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer’s Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.
Collapse
Affiliation(s)
- Carolyn B Howard
- Breast Cancer Research Laboratory, Department of Biology, and NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Felix K, Gerstmeier S, Kyriakopoulos A, Howard OMZ, Dong HF, Eckhaus M, Behne D, Bornkamm GW, Janz S. Selenium Deficiency Abrogates Inflammation-Dependent Plasma Cell Tumors in Mice. Cancer Res 2004; 64:2910-7. [PMID: 15087411 DOI: 10.1158/0008-5472.can-03-2672] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of the micronutrient, selenium, in human cancers associated with chronic inflammations and persistent infections is poorly understood. Peritoneal plasmacytomas (PCTs) in strain BALB/c (C), the premier experimental model of inflammation-dependent plasma cell transformation in mice, may afford an opportunity to gain additional insights into the significance of selenium in neoplastic development. Here, we report that selenium-depleted C mice (n = 32) maintained on a torula-based low-selenium diet (5-8 micro g of selenium/kg) were totally refractory to pristane induction of PCT. In contrast, 11 of 26 (42.3%) control mice maintained on a selenium adequate torula diet (300 micro g of selenium/kg) and 15 of 40 (37.5%) control mice fed standard Purina chow (440 micro g of selenium/kg) developed PCT by 275 days postpristane. Abrogation of PCT was caused in part by the striking inhibition of the formation of the inflammatory tissue in which PCT develop (pristane granuloma). This was associated with the reduced responsiveness of selenium-deficient inflammatory cells (monocytes and neutrophils) to chemoattractants, such as thioredoxin and chemokines. Selenium-deficient C mice exhibited little evidence of disturbed redox homeostasis and increased mutant frequency of a transgenic lacZ reporter gene in vivo. These findings implicate selenium, via the selenoproteins, in the promotion of inflammation-induced PCT and suggest that small drug inhibitors of selenoproteins might be useful for preventing human cancers linked with chronic inflammations and persistent infections.
Collapse
Affiliation(s)
- Klaus Felix
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute and Veterinary Resources Program, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miething C, Grundler R, Fend F, Hoepfl J, Mugler C, von Schilling C, Morris SW, Peschel C, Duyster J. The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 2003; 22:4642-7. [PMID: 12879008 DOI: 10.1038/sj.onc.1206575] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A t(2;5) (p23;q35) chromosomal translocation can be found in a high percentage of anaplastic large-cell lymphomas (ALCL). This genetic abnormality leads to the expression of the NPM-ALK fusion protein, which encodes a constitutively active tyrosine kinase that plays a causative role in lymphomagenesis. Employing a modified infection/transplantation protocol utilizing an MSCV-based vector, we were able to reproducibly induce two phenotypically different lymphoma-like diseases dependent on the retroviral titers used. The first phenotype presented as a polyclonal histiocytic malignancy of myeloid/macrophage origin with a short latency period of 3-4 weeks. Clinically, the diseased mice showed rapidly progressive wasting, lymphadenopathy and pancytopenia. Mice displaying the second phenotype developed monoclonal B-lymphoid tumors with a longer latency of approximately 12-16 weeks, primarily involving the spleen and the bone marrow, with less extensive lymph node but also histologically evident extranodal organ infiltration by large immature plasmoblastic cells. The described retroviral mouse model will be useful to analyse the role of NPM-ALK in lymphomagenesis in vivo and may contribute to the development of new treatment options for NPM-ALK induced malignancies.
Collapse
Affiliation(s)
- Cornelius Miething
- Department of Internal Medicine III, Technical University of Munich, Trogerstr. 32, D-81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Felix K, Rockwood LD, Janz S. Transgenic shuttle vector assays for determining genetic differences in oxidative B cell mutagenesis in vivo. Methods Enzymol 2002; 353:434-48. [PMID: 12078516 DOI: 10.1016/s0076-6879(02)53067-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Klaus Felix
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
10
|
Kovalchuk AL, Kim JS, Park SS, Coleman AE, Ward JM, Morse HC, Kishimoto T, Potter M, Janz S. IL-6 transgenic mouse model for extraosseous plasmacytoma. Proc Natl Acad Sci U S A 2002; 99:1509-14. [PMID: 11805288 PMCID: PMC122221 DOI: 10.1073/pnas.022643999] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2001] [Indexed: 11/18/2022] Open
Abstract
Plasma cell neoplasms in humans comprise plasma cell myeloma, otherwise known as multiple myeloma, Ig deposition and heavy chain diseases, and plasmacytoma (PCT). A subset of PCT, designated extramedullary PCT, is distinguished from multiple myeloma and solitary PCT of bone by its distribution among various tissue sites but not the bone marrow. Extramedullary (extraosseus) PCT are rare spontaneous neoplasms of mice but are readily induced in a susceptible strain, BALB/c, by treatment with pristane. The tumors develop in peritoneal granulomas and are characterized by Myc-activating T(12;15) chromosomal translocations and, most frequently, by secretion of IgA. A uniting feature of human and mouse plasma cell neoplasms is the critical role played by IL-6, a B cell growth, differentiation, and survival factor. To directly test the contribution of IL-6 to PCT development, we generated BALB/c mice carrying a widely expressed IL-6 transgene. All mice exhibited lymphoproliferation and plasmacytosis. By 18 months of age, over half developed readily transplantable PCT in lymph nodes, Peyer's patches, and sometimes spleen. These neoplasms also had T(12;15) translocations, but remarkably, none expressed IgA. Unexpectedly, approximately 30% of the mice developed follicular and diffuse large cell B cell lymphomas that often coexisted with PCT. These findings provide a unique model of extramedullary PCT for studies on pathogenesis and treatment and suggest a previously unappreciated role for IL-6 in the genesis of germinal center-derived lymphomas.
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5(+) B cells. Finally, focusing on CD5(+) cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline V(H)-V(L) combinations.
Collapse
Affiliation(s)
- R R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, Pennsylvania 19111, USA.
| | | |
Collapse
|
12
|
Richards HB, Reap EA, Shaw M, Satoh M, Yoshida H, Reeves WH. B cell subsets in pristane-induced autoimmunity. Curr Top Microbiol Immunol 2001; 252:201-7. [PMID: 11125477 DOI: 10.1007/978-3-642-57284-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- H B Richards
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Results from immunoglobulin-transgenic mice and BCR-mutant mice have been widely interpreted in recent years as supporting a simple 'activation' model for the origin of CD5+/B-1 B cells. However cell transfer experiments over 10 years ago and recent work investigating pre-BCR signaling suggest striking differences between B cell development in fetal liver and adult bone marrow, lending support for a 'lineage' model that we favor. Recent progress has been made relating to the development and function of the CD5+/B-1 B cell subpopulation in mice; the data can be viewed in the context of the generation of this subpopulation by a distinctive fetal B cell developmental process.
Collapse
Affiliation(s)
- K Hayakawa
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|