1
|
Zhou J, Liu Y, Wu J. Association between immune cells, inflammatory cytokines, and sarcopenia: Insights from a Mendelian randomization analysis. Arch Gerontol Geriatr 2025; 128:105560. [PMID: 39213747 DOI: 10.1016/j.archger.2024.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Recent studies have suggested a possible link between sarcopenia, immune dysregulation, and chronic inflammation, although the specific immune components implicated remain unclear. This investigation employs Mendelian Randomization (MR) to explore the reciprocal relationship between immune cells, inflammatory markers, and sarcopenia. METHOD We performed two-sample and multivariate MR analyses using publicly accessible genome-wide association studies (GWAS) summary statistics. Our analyses included 731 immune cells, 41 inflammatory cytokines, and sarcopenia related traits (appendicular lean mass [ALM], low hand-grip strength [LHS], and walking pace [WP]), with additional sensitivity analyses conducted to confirm the findings. RESULTS After false discovery rate (FDR) correction, significant associations were found between ten immune traits and ALM, with the CD127 marker in the Treg panel showing consistent positive correlation across four sites. In contrast, NKT%lymphocyte negatively correlated with WP (OR = 0.99, P = 0.023). In terms of inflammatory cytokines, macrophage colony-stimulating factor (MCSF) (OR = 1.03, P = 0.024) and hepatocyte growth factor (HGF) (OR = 1.03, P = 0.002) demonstrated positive associations with ALM, while interleukin-16 (IL-16) (OR = 0.99, P = 0.006) was inversely related. The reverse Mendelian randomization analysis found no direct causal links between sarcopenia traits and immune or inflammatory markers. Sensitivity analyses underscored the findings' resilience to pleiotropy, and adjusting for inter-trait dynamics weakened these relationships in the multivariable MR analysis. CONCLUSION Our study reveals causal associations between specific immune phenotypes, inflammatory cytokines, and sarcopenia, providing insight into the development of sarcopenia and potential treatment strategies.
Collapse
Affiliation(s)
- Jinqiu Zhou
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Liu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Tamburri S, Zucchelli C, Matafora V, Zapparoli E, Jevtic Z, Farris F, Iannelli F, Musco G, Bachi A. SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex. Nucleic Acids Res 2024:gkae1215. [PMID: 39718989 DOI: 10.1093/nar/gkae1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
SP140, a lymphocytic-restricted protein, is an epigenetic reader working as a corepressor of genes implicated in inflammation and orchestrating macrophage transcriptional programs to maintain cellular identity. Reduced SP140 expression is associated both to autoimmune diseases and blood cancers. However, the molecular mechanisms that link SP140 altered protein levels to detrimental effects on the immune response and cellular growth, as well as the interactors through which SP140 promotes gene silencing, remain elusive. In this work, we have applied a multi-omics approach (i.e. interactomics, ChIP-seq and proteomics) in two Burkitt lymphoma cell lines to identify both interactors and target genes of endogenous SP140. We found that SP140 interacts with the PRC2 and NuRD complexes, and we showed that these interactions are functional as SP140 directs H3K27me3 deposition and NuRD binding on a set of target genes implicated in cellular growth and leukemia progression.
Collapse
Affiliation(s)
- Simone Tamburri
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Vittoria Matafora
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Zivojin Jevtic
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Francesco Farris
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Fabio Iannelli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| |
Collapse
|
3
|
Gao D, Yi XM, Feng L, Li S, Shu HB. MARCH8 Mediates K27-Linked Polyubiquitination of IL-7 Receptor α to Negatively Regulate IL-7-Triggered T Cell Homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1467-1478. [PMID: 39311660 DOI: 10.4049/jimmunol.2400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/09/2024] [Indexed: 11/06/2024]
Abstract
IL-7 is a cytokine produced by stromal cells, which binds to IL-7Rα and plays an important role for homeostasis of T lymphocytes. Excessive activities of IL-7-triggered signaling pathways causes autoimmune diseases. How IL-7-triggered signaling and immune effects are regulated is not fully understood. In this study, we show that the membrane-associated RING-CH (MARCH) E3 ligase family member MARCH8 mediates K27-linked polyubiquitination of IL-7Rα, leading to its lysosomal degradation. Site-directed mutagenesis suggests that MARCH8 meditates polyubiquitination of IL-7Rα at K265/K266, and mutation of these residues renders IL-7Rα resistance to MARCH8-mediated polyubiquitination and degradation. MARCH8 deficiency increases IL-7-triggered activation of the downstream transcription factor STAT5 and transcriptional induction of the effector genes in human T lymphoma cells. MARCH8 deficiency also promotes IL-7-triggered T cell proliferation and splenic memory CD8+ T cell differentiation in mice. Our findings suggest that MARCH8 negatively regulates IL-7-triggered signaling by mediating K27-linked polyubiquitination and lysosomal degradation of IL-7Rα, which reveals a negative regulatory mechanism of IL-7-triggered T cell homeostasis.
Collapse
Affiliation(s)
- Deng Gao
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; and Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Mei Yi
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; and Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Feng
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; and Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; and Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; and Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
4
|
Chandrashekara S. Pharmacokinetic review of janus kinase inhibitors and its clinical implications for the management of rheumatoid arthritis. Expert Opin Drug Metab Toxicol 2024:1-8. [PMID: 38916236 DOI: 10.1080/17425255.2024.2373092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION In the realm of autoimmune rheumatic diseases, understanding JAK inhibitors (JAKi) nuances is vital. Baricitinib, tofacitinib, upaacitinib, filgotinib, and peficitinib exhibit subtle yet impactful pharmacokinetic (PK) and pharmacodynamic (PD) variations. AREAS COVERED This narrative review critically assesses PK and PD distinctions among globally approved JAKi for rheumatoid arthritis, which primarily guide clinical decisions in autoimmune diseases, particularly rheumatoid arthritis. It explores the intricate JAK-STAT signaling pathway, offering insights into JAKs' roles in inflammation, hematopoiesis, and immune homeostasis. Emphasis on PK parameters, including absorption, distribution, metabolism, and excretion, along with CYP3A4 drug interactions, is highlighted. The review underscores integrating PK and PD properties, considering patient-specific factors like hepatic and renal clearance, for judicious JAKi selection in RA and related autoimmune conditions. The literature has been collected from all available databases based on the review question. EXPERT OPINION Integrating PK and PD properties with patient-specific factors is pivotal for judicious JAKi selection. Recognizing disparities in PK and PD across diseases, ethnicities, and environmental factors is crucial for personalized JAKi choices. This expert opinion underscores the significance of a second compartment analysis, elucidating the interplay between PK and PD and its impact on JAKi efficacy.
Collapse
Affiliation(s)
- S Chandrashekara
- Department of Clinical Immunology and Rheumatology, ChanRe Rheumatology and Immunology Center and Research, Bengaluru, India
| |
Collapse
|
5
|
Park E, Park S, Lee SJ, Jeong D, Jin H, Moon H, Cha B, Kim D, Ma S, Seo W, Han SH, Lee YS, Kang S. Identification and Biological Evaluation of a Potent and Selective JAK1 Inhibitor for the Treatment of Pulmonary Fibrosis. J Med Chem 2023; 66:16342-16363. [PMID: 38031930 DOI: 10.1021/acs.jmedchem.3c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Janus kinase 1 (JAK1) plays a pivotal role in regulating inflammation and fibrosis via the JAK/STAT signaling pathway, making it a promising target for associated diseases. In this study, we explored the modification of an N-methyl 1H-pyrrolo[2,3-b]pyridine-5-carboxylate core, leading to the identification of 4-(((2S,4S)-1-(4-trifluoromethyl)-2-methylpiperidin-4-yl)amino)-N-methyl-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (36b) as a highly potent and selective JAK1 inhibitor. Compound 36b exhibited an impressive IC50 value of 0.044 nM for JAK1 and demonstrated remarkable selectivity of 382-fold, 210-fold, and 1325-fold specificity over JAK2, JAK3, and TYK2, respectively. The kinase panel assays further confirmed its specificity, and cell-based experiments established its efficacy in inhibiting JAK1-STAT phosphorylation in human L-132 or SK-MES-1 cells. Pharmacokinetic studies revealed that compound 36b boasts an oral bioavailability exceeding 36%. In a bleomycin-induced fibrosis mouse model, compound 36b significantly reduced STAT3 phosphorylation, resulting in improvement in body weight and reduced collagen deposition, all achieved without significant side effects.
Collapse
Affiliation(s)
- Eunsun Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seolhee Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Dayeon Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee Jin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heegyum Moon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Seonghee Ma
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Hee Han
- Central Research Laboratory, KOREA PHARMA Co. Ltd., Jeyakgongdan 3-gil, Hyangnam-eup, Hwaseong-si, Gyeonggi-do 16630, Republic of Korea
| | - Yun-Sil Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
7
|
Collotta D, Franchina MP, Carlucci V, Collino M. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front Pharmacol 2023; 14:1245535. [PMID: 37701031 PMCID: PMC10494544 DOI: 10.3389/fphar.2023.1245535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
With an epidemic spread, metabolic syndrome represents an increasingly emerging risk for the population globally, and is currently recognized as a pathological entity. It is represented by a cluster of different conditions including increased blood pressure, high blood sugar, excess body fat around the waist and abnormal cholesterol or triglyceride levels. These conditions lead directly to several disorders, including obesity, dyslipidemia, hyperglycaemia, insulin resistance, impaired glucose tolerance and hypertension causing an increase in cardiovascular risk and in particular atherosclerotic disease. Despite efforts to promote healthier lifestyles through exercise, reduced caloric intake, and improved dietary choices, the incidence and prevalence of metabolic syndrome continue to rise worldwide. Recent research has highlighted the involvement of signaling pathways in chronic inflammatory conditions like obesity and type 2 diabetes mellitus, revealing the significance of the JAK/STAT pathway in atherosclerotic events. This pathway serves as a rapid membrane-to-nucleus signaling module that regulates the expression of critical mediators. Consequently, JAK inhibitors (JAKi) have emerged as potential therapeutic options for metabolic diseases, offering a promising avenue for intervention. The aim of this review is to shed light on the emerging indications of JAK inhibitors in metabolic syndrome, emphasizing their potential role in attenuating associated inflammatory processes, improving insulin sensitivity, and addressing cross-talk with the insulin pathway, with the intention of contributing to efforts in the field of inflammation pharmacology.
Collapse
Affiliation(s)
- Debora Collotta
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Maria Paola Franchina
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Ojha AA, Srivastava A, Votapka LW, Amaro RE. Selectivity and Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian Milestoning with Voronoi Tessellations. J Chem Inf Model 2023; 63:2469-2482. [PMID: 37023323 PMCID: PMC10131228 DOI: 10.1021/acs.jcim.2c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Janus kinases (JAK), a group of proteins in the nonreceptor tyrosine kinase (NRTKs) family, play a crucial role in growth, survival, and angiogenesis. They are activated by cytokines through the Janus kinase-signal transducer and activator of a transcription (JAK-STAT) signaling pathway. JAK-STAT signaling pathways have significant roles in the regulation of cell division, apoptosis, and immunity. Identification of the V617F mutation in the Janus homology 2 (JH2) domain of JAK2 leading to myeloproliferative disorders has stimulated great interest in the drug discovery community to develop JAK2-specific inhibitors. However, such inhibitors should be selective toward JAK2 over other JAKs and display an extended residence time. Recently, novel JAK2/STAT5 axis inhibitors (N-(1H-pyrazol-3-yl)pyrimidin-2-amino derivatives) have displayed extended residence times (hours or longer) on target and adequate selectivity excluding JAK3. To facilitate a deeper understanding of the kinase-inhibitor interactions and advance the development of such inhibitors, we utilize a multiscale Markovian milestoning with Voronoi tessellations (MMVT) approach within the Simulation-Enabled Estimation of Kinetic Rates v.2 (SEEKR2) program to rank order these inhibitors based on their kinetic properties and further explain the selectivity of JAK2 inhibitors over JAK3. Our approach investigates the kinetic and thermodynamic properties of JAK-inhibitor complexes in a user-friendly, fast, efficient, and accurate manner compared to other brute force and hybrid-enhanced sampling approaches.
Collapse
Affiliation(s)
- Anupam Anand Ojha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ambuj Srivastava
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Lane William Votapka
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Nassar A, Zekri ARN, Elberry MH, Lymona AM, Lotfy MM, Abouelhoda M, Youssef ASED. Somatic Mutations Alter Interleukin Signaling Pathways in Grade II Invasive Breast Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:5890-5901. [PMID: 36547062 PMCID: PMC9777163 DOI: 10.3390/cimb44120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the impact of somatic mutations on various interleukin signaling pathways associated with grade II invasive breast cancer (BC) in Egyptian patients to broaden our understanding of their role in promoting carcinogenesis. Fifty-five grade II invasive BC patients were included in this study. Data for somatic mutations in 45 BC patients were already available from a previous study. Data for somatic mutations of 10 new BC patients were included in the current study. Somatic mutations were identified using targeted next-generation sequencing (NGS) to study their involvement in interleukin signaling pathways. For pathway analysis, we used ingenuity variant analysis (IVA) to identify the most significantly altered pathways. We identified somatic mutations in components of the interleukin-2, interleukin-6, and inter-leukin-7 signaling pathways, including mutations in JAK1, JAK2, JAK3, SOCS1, IL7R, MCL1, BCL2, MTOR, and IL6ST genes. Interestingly, six mutations which were likely to be novel deleterious were identified: two in the SCH1 gene, two in the IL2 gene, and one in each of the IL7R and JUN genes. According to IVA analysis, interleukin 2, interleukin 6, and interleukin 7 signaling pathways were the most altered in 34.5%, 29%, and 23.6% of our BC group, respectively. Our multigene panel sequencing analysis reveals that our BC patients have altered interleukin signaling pathways. So, these results highlight the prominent role of interleukins in the carcinogenesis process and suggest its potential role as promising candidates for personalized therapy in Egyptian patients.
Collapse
Affiliation(s)
- Auhood Nassar
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
- Correspondence: (A.N.); (A.R.N.Z.); Tel.: +20-222-742-607 (A.N.)
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
- Correspondence: (A.N.); (A.R.N.Z.); Tel.: +20-222-742-607 (A.N.)
| | - Mostafa H. Elberry
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Ahmed M. Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Mai M. Lotfy
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | | | - Amira Salah El-Din Youssef
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
10
|
Recent advances in the development of transplanted colorectal cancer mouse models. Transl Res 2022; 249:128-143. [PMID: 35850446 DOI: 10.1016/j.trsl.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. Host, xenograft, and transplantation routes are the basis of transplant mouse models. As the effects of the tumor microenvironment and the systemic environment on cancer cells are gradually revealed, 3 key elements of transplanted CRC mouse models have been revolutionized. This has led to the development of humanized mice, patient-derived xenografts, and orthotopic transplants that reflect the human systemic environment, patient's tumor of origin, and tumor growth microenvironments in immunodeficient mice, respectively. These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
Collapse
|
11
|
Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14082021. [PMID: 35454927 PMCID: PMC9032060 DOI: 10.3390/cancers14082021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. Despite the enormous progress in ALL treatment, which is reflected by a high 5-year overall survival rate that reaches up to 96% in the most recent studies, there are still patients that cannot be saved. Treatment of ALL is based on conventional methods, including chemotherapy and radiotherapy. These methods carry with them the risk of very high toxicities. Severe complications related to conventional therapies decrease their effectiveness and can sometimes lead to death. Therefore, currently, numerous studies are being carried out on novel forms of treatment. In this work, classical methods of treatment have been summarized. Furthermore, novel treatment methods and the possibility of combining them with chemotherapy have been incorporated into the present work. Targeted treatment, CAR-T-cell therapy, and immunotherapy for ALL have been described. Treatment options for the relapse/chemoresistance ALL have been presented. Abstract Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. There has been enormous progress in ALL treatment in recent years, which is reflected by the increase in the 5-year OS from 57% in the 1970s to up to 96% in the most recent studies. ALL treatment is based primarily on conventional methods, which include chemotherapy and radiotherapy. Their main weakness is severe toxicity, which prompts dose reduction, decreases the effectiveness of the treatment, and, in some cases, can lead to death. Currently, numerous modifications in treatment regimens are applied in order to limit toxicities emerging from conventional approaches and improve outcomes. Hematological treatment of pediatric patients is reaching for more novel treatment options, such as targeted treatment, CAR-T-cells therapy, and immunotherapy. These methods are currently used in conjunction with chemotherapy. Nevertheless, the swift progress in their development and increasing efficacity can lead to applying those novel therapies as standalone therapeutic options for pediatric ALL.
Collapse
|
12
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
13
|
Milara J, Ballester B, de Diego A, Calbet M, Ramis I, Miralpeix M, Cortijo J. The pan-JAK inhibitor LAS194046 reduces neutrophil activation from severe asthma and COPD patients in vitro. Sci Rep 2022; 12:5132. [PMID: 35332239 PMCID: PMC8948298 DOI: 10.1038/s41598-022-09241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
Non-T2 severe asthma and chronic obstructive pulmonary disease (COPD) are airway chronic inflammatory disorders with a poor response to corticosteroids. LAS194046, a novel pan-Janus kinase (JAK) inhibitor, shows inhibitory effects on T2 allergic lung inflammation in rats. In this work we analyze the effects of LAS194046, fluticasone propionate and their combination in neutrophils from non-T2 severe asthma and COPD patients in vitro. Neutrophils from 23 healthy subjects, 23 COPD and 21 non-T2 severe asthma patients were incubated with LAS194046 (0.01 nM–1 µM), fluticasone propionate (0.1 nM–1 µM) or their combination and stimulated with lipopolysaccharide (LPS 1 µM). LAS194046 shows similar maximal % inhibition and potency inhibiting IL-8, MMP-9 and superoxide anion release in neutrophils from healthy, COPD and asthma. Fluticasone propionate suppresses mediator release only in neutrophils from healthy patients. The combination of LAS194046 with fluticasone propionate shows synergistic anti-inflammatory and anti-oxidant effects. The mechanisms involved in the synergistic effects of this combination include the increase of MKP1 expression, decrease of PI3Kδ, the induction of glucocorticoid response element and the decrease of ERK1/2, P38 and JAK2/STAT3 phosphorylation compared with monotherapies. In summary, LAS194046 shows anti-inflammatory effects in neutrophils from COPD and severe non-T2 asthma patients and induces synergistic anti-inflammatory effects when combined with fluticasone propionate.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain. .,Pharmacy Unit, Consorcio Hospital General Universitario, Avenida tres cruces s/n, 46014, Valencia, Spain. .,CIBERES, Health Institute Carlos III, Valencia, Spain.
| | - Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Alfredo de Diego
- Respiratory Unit, University and Polytechnic La Fe Hospital, Valencia, Spain
| | | | | | | | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain.,Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
14
|
Early Use of Low-Dose Ruxolitinib: A Promising Strategy for the Treatment of Acute and Chronic GVHD. Pharmaceuticals (Basel) 2022; 15:ph15030374. [PMID: 35337171 PMCID: PMC8955311 DOI: 10.3390/ph15030374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Janus kinases (JAK) are a family of tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) that transduce cytokine-mediated signals through the JAK–STAT metabolic pathway. These kinases act by regulating the transcription of specific genes capable of inducing biological responses in several immune cell subsets. Inhibition of Janus kinases interferes with the JAK–STAT signaling pathway. Besides being used in the treatment of cancer and inflammatory diseases, in recent years, they have also been used to treat inflammatory conditions, such as graft-versus-host disease (GVHD) and cytokine release syndrome as complications of allogeneic hematopoietic stem cell transplantation and cell therapy. Recently, the FDA approved the use of ruxolitinib, a JAK1/2 inhibitor, in the treatment of acute steroid-refractory GVHD (SR-aGVHD), highlighting the role of JAK inhibition in this immune deregulation. Ruxolitinib was initially used to treat myelofibrosis and true polycythemia in a high-dose treatment and caused hematological toxicity. Since a lower dosage often could not be effective, the use of ruxolitinib was suspended. Subsequently, ruxolitinib was evaluated in adult patients with SR-aGVHD and was found to achieve a rapid and effective response. In addition, its early low-dose use in pediatric patients affected by GVHD has proved effective, safe, and reasonably preventive. The review aims to describe the potential properties of ruxolitinib to identify new therapeutic strategies.
Collapse
|
15
|
Taldaev A, Rudnev VR, Nikolsky KS, Kulikova LI, Kaysheva AL. Molecular Modeling Insights into Upadacitinib Selectivity upon Binding to JAK Protein Family. Pharmaceuticals (Basel) 2021; 15:ph15010030. [PMID: 35056087 PMCID: PMC8778839 DOI: 10.3390/ph15010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic disease characterized by bone joint damage and incapacitation. The mechanism underlying RA pathogenesis is autoimmunity in the connective tissue. Cytokines play an important role in the human immune system for signal transduction and in the development of inflammatory responses. Janus kinases (JAK) participate in the JAK/STAT pathway, which mediates cytokine effects, in particular interleukin 6 and IFNγ. The discovery of small molecule inhibitors of the JAK protein family has led to a revolution in RA therapy. The novel JAK inhibitor upadacitinib (RinvoqTM) has a higher selectivity for JAK1 compared to JAK2 and JAK3 in vivo. Currently, details on the molecular recognition of JAK1 by upadacitinib are not available. We found that characteristics of hydrogen bond formation with the glycine loop and hinge in JAKs define the selectivity. Our molecular modeling study could provide insight into the drug action mechanism and pharmacophore model differences in JAK isoforms.
Collapse
Affiliation(s)
- Amir Taldaev
- Biobanking Group, V.N. Orekhovich Institute of Biomedical Chemistry, 109028 Moscow, Russia; (A.T.); (V.R.R.); (K.S.N.); (L.I.K.)
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir R. Rudnev
- Biobanking Group, V.N. Orekhovich Institute of Biomedical Chemistry, 109028 Moscow, Russia; (A.T.); (V.R.R.); (K.S.N.); (L.I.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S. Nikolsky
- Biobanking Group, V.N. Orekhovich Institute of Biomedical Chemistry, 109028 Moscow, Russia; (A.T.); (V.R.R.); (K.S.N.); (L.I.K.)
| | - Liudmila I. Kulikova
- Biobanking Group, V.N. Orekhovich Institute of Biomedical Chemistry, 109028 Moscow, Russia; (A.T.); (V.R.R.); (K.S.N.); (L.I.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna L. Kaysheva
- Biobanking Group, V.N. Orekhovich Institute of Biomedical Chemistry, 109028 Moscow, Russia; (A.T.); (V.R.R.); (K.S.N.); (L.I.K.)
- Correspondence:
| |
Collapse
|
16
|
Li Y, Xu Y, Yu Y. CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery. Molecules 2021; 26:molecules26237257. [PMID: 34885843 PMCID: PMC8658888 DOI: 10.3390/molecules26237257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular latent representations, derived from autoencoders (AEs), have been widely used for drug or material discovery over the past couple of years. In particular, a variety of machine learning methods based on latent representations have shown excellent performance on quantitative structure–activity relationship (QSAR) modeling. However, the sequence feature of them has not been considered in most cases. In addition, data scarcity is still the main obstacle for deep learning strategies, especially for bioactivity datasets. In this study, we propose the convolutional recurrent neural network and transfer learning (CRNNTL) method inspired by the applications of polyphonic sound detection and electrocardiogram classification. Our model takes advantage of both convolutional and recurrent neural networks for feature extraction, as well as the data augmentation method. According to QSAR modeling on 27 datasets, CRNNTL can outperform or compete with state-of-art methods in both drug and material properties. In addition, the performances on one isomers-based dataset indicate that its excellent performance results from the improved ability in global feature extraction when the ability of the local one is maintained. Then, the transfer learning results show that CRNNTL can overcome data scarcity when choosing relative source datasets. Finally, the high versatility of our model is shown by using different latent representations as inputs from other types of AEs.
Collapse
Affiliation(s)
- Yaqin Li
- West China Tianfu Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (Y.Y.)
| | - Yongjin Xu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden;
| | - Yi Yu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden;
- Correspondence: (Y.L.); (Y.Y.)
| |
Collapse
|
17
|
Dai Z, Chen J, Chang Y, Christiano AM. Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata. JCI Insight 2021; 6:142205. [PMID: 33830087 PMCID: PMC8119218 DOI: 10.1172/jci.insight.142205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) are key intracellular mediators in the signal transduction of many cytokines and growth factors. Common γ chain cytokines and interferon-γ that use the JAK/STAT pathway to induce biological responses have been implicated in the pathogenesis of alopecia areata (AA), a T cell-mediated autoimmune disease of the hair follicle. We previously showed that therapeutic targeting of JAK/STAT pathways using the first-generation JAK1/2 inhibitor, ruxolitinib, and the pan-JAK inhibitor, tofacitinib, was highly effective in the treatment of human AA, as well as prevention and reversal of AA in the C3H/HeJ mouse model. To better define the role of individual JAKs in the pathogenesis of AA, in this study, we tested and compared the efficacy of several next-generation JAK-selective inhibitors in the C3H/HeJ mouse model of AA, using both systemic and topical delivery. We found that JAK1-selective inhibitors as well as JAK3-selective inhibitors robustly induced hair regrowth and decreased AA-associated inflammation, whereas several JAK2-selective inhibitors failed to restore hair growth in treated C3H/HeJ mice with AA. Unlike JAK1, which is broadly expressed in many tissues, JAK3 expression is largely restricted to hematopoietic cells. Our study demonstrates inhibiting JAK3 signaling is sufficient to prevent and reverse disease in the preclinical model of AA.
Collapse
Affiliation(s)
| | | | | | - Angela M. Christiano
- Department of Dermatology and
- Department of Genetics and Development, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
18
|
Panaampon J, Sasamoto K, Kariya R, Okada S. Establishment of Nude Mice Lacking NK Cells and Their Application for Human Tumor Xenografts. Asian Pac J Cancer Prev 2021; 22:1069-1074. [PMID: 33906298 PMCID: PMC8325116 DOI: 10.31557/apjcp.2021.22.4.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Nude mice are used as a recipient for human tumor cell xenografts. However, the success rate of xenotransplantation is unsatisfactory due to high natural killer (NK) activity. To overcome this limitation, we established nude mice with no NK cells, and compared the transplantation efficiency with that in nude mice. Methods: BALB/c Nude Jak3-/- (Nude-J) mice were established by crossing BALB/c Nude mice and BALB/c Jak-3-/- mice. Hematopoietic malignant cell lines (BCBL-1 and Z138) were implanted subcutaneously to compare the tumorigenicity in Nude-J mice with Nude Rag-2/Jak3 double deficient (Nude RJ) mice and nude mice. Results: Nude-J mice showed complete loss of NK and T lymphocytes, whereas B lymphocytes remained. Both BCBL-1 and Z138 human lymphoid malignant cell lines formed almost the same sizes of subcutaneous tumors in Nude-J and Nude RJ mice, whereas they formed no or only small tumors in nude mice. Splenocytes from Nude-J mice showed no cytotoxic activity in vitro. Conclusion: Nude-J mice can be a valuable tool for human tumor cell transplantation studies.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Sasamoto
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis 2021; 80:865-875. [PMID: 33741556 PMCID: PMC8237188 DOI: 10.1136/annrheumdis-2020-219012] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/16/2023]
Abstract
Objective Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. Methods In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. Results JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. Conclusion Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.
Collapse
Affiliation(s)
- Paqui G Traves
- Inflammation Biology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | | | - René Galien
- Translational Research, Galapagos SASU, Romainville, France
| | - Amy Meng
- Clinical Pharmacology, Gilead Sciences, Foster City, California, USA
| | - Julie A Di Paolo
- External Innovation, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
20
|
Effect of Interleukin-7 on In Vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Developmental Potential after Parthenogenetic Activation. Animals (Basel) 2021; 11:ani11030741. [PMID: 33800509 PMCID: PMC8001781 DOI: 10.3390/ani11030741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Oocyte-secreted factors play an essential role in oogenesis and fertility through bidirectional crosstalk between oocytes and somatic cells. Interleukin-7, known as an oocyte-secreted factor, has recently been shown to improve oocyte developmental competence through interaction with cumulus cells around the oocytes. This study aimed to investigate the effects of interleukin-7 on porcine cumulus-oocyte complexes during in vitro maturation. Our results showed that supplementation with interleukin-7 during in vitro maturation exerted beneficial effects on porcine oocyte meiotic maturation by upregulating antioxidant-related genes and enhanced the subsequent developmental potential of porcine embryos after parthenogenetic activation. Abstract Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.
Collapse
|
21
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
22
|
JAK1/2 inhibition impairs the development and function of inflammatory dendritic epidermal cells in atopic dermatitis. J Allergy Clin Immunol 2020; 147:2202-2212.e8. [PMID: 33338537 DOI: 10.1016/j.jaci.2020.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors are a new class of therapeutic compounds for dermatological diseases. In atopic dermatitis (AD), data of clinical phase III trials show rapid improvement of pruritus and significant reduction of inflammation within the first weeks with a favorable safety profile. However, their mode of action in AD is not fully understood. OBJECTIVES In our study, we investigate the effect of different JAK inhibitors on cell differentiation, phenotype, and function of inflammatory dendritic epidermal cells (IDECs). METHODS We analyzed the JAK expression in IDEC from ex vivo skin and in vitro generated IDECs using flow cytometry and PCR. Further, we studied in vitro the effect of different JAK inhibitors on IDEC cell differentiation, phenotype, and maturation. RESULTS IDECs express JAK1 and JAK2 ex vivo and in vitro. We found that JAK1 and JAK2 were upregulated during the differentiation from monocytes to IDECs. Conversely, JAK2 inhibition by ruxolitinib (JAK1/2 inhibitor) or BMS-911543 (JAK2 inhibitor) abrogated the differentiation from monocytes into IDECs. Differentiated IDECs can redifferentiate into a more monocyte-like phenotype in the presence of ruxolitinib or BMS-911543. Furthermore, we showed that concomitant inhibition of JAK1/2 rather than blocking JAK1 or JAK2 alone, impaired maturation and the release of proinflammatory cytokines on lipopolysaccharide stimulation. CONCLUSIONS Our results suggest that inhibition of JAK1/2 impairs IDEC differentiation and function. We provide new insight into the mode of action of JAK inhibitors in AD and highlight the role of JAK1/2 inhibitors for the treatment of patients with AD.
Collapse
|
23
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
24
|
Kim B, Yi EH, Jee J, Jeong AJ, Sandoval C, Park I, Baeg GH, Ye S. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. J Cell Mol Med 2020; 24:7427-7438. [PMID: 32558259 PMCID: PMC7339168 DOI: 10.1111/jcmm.15362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Gain- or loss-of-function mutations in Janus kinase 3 (JAK3) contribute to the pathogenesis of various haematopoietic malignancies and immune disorders, suggesting that aberrant JAK3 signalling is an attractive therapeutic target to treat these disorders. In this study, we performed structure-based computational database screening using the 3D structure of the JAK3 kinase domain and the National Cancer Institute diversity set and identified tubulosine as a novel JAK3 inhibitor. Tubulosine directly blocked the catalytic activity of JAK3 by selective interacting with the JAK3 kinase domain. Consistently, tubulosine potently inhibited persistently activated and interleukin-2-dependent JAK3, and JAK3-mediated downstream targets. Importantly, it did not affect the activity of other JAK family members, particularly prolactin-induced JAK2/signal transducer and activator of transcription 5 and interferon alpha-induced JAK1-TYK2/STAT1. Tubulosine specifically decreased survival and proliferation of cancer cells, in which persistently active JAK3 is expressed, by inducing apoptotic and necrotic/autophagic cell death without affecting other oncogenic signalling. Collectively, tubulosine is a potential small-molecule compound that selectively inhibits JAK3 activity, suggesting that it may serve as a promising therapeutic candidate for treating disorders caused by aberrant activation of JAK3 signalling.
Collapse
Affiliation(s)
- Byung‐Hak Kim
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Eun Hee Yi
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jun‐Goo Jee
- Research Institute of Pharmaceutical ResearchesCollege of PharmacyKyungpook National UniversityDaeguRepublic of Korea
| | - Ae Jin Jeong
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | | | - In‐Chul Park
- Division of Basic Radiation BioscienceKorea Institute of Radiological and Medical SciencesSeoulKorea
| | - Gyeong Hun Baeg
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- School of Life and Health SciencesChinese University of Hong KongShenzhenChina
| | - Sang‐Kyu Ye
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
25
|
Lin CM, Cooles FA, Isaacs JD. Basic Mechanisms of JAK Inhibition. Mediterr J Rheumatol 2020; 31:100-104. [PMID: 32676567 PMCID: PMC7361186 DOI: 10.31138/mjr.31.1.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chung Ma Lin
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Faye Ah Cooles
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
27
|
Karpov P, Godin G, Tetko IV. Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J Cheminform 2020; 12:17. [PMID: 33431004 PMCID: PMC7079452 DOI: 10.1186/s13321-020-00423-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
We present SMILES-embeddings derived from the internal encoder state of a Transformer [1] model trained to canonize SMILES as a Seq2Seq problem. Using a CharNN [2] architecture upon the embeddings results in higher quality interpretable QSAR/QSPR models on diverse benchmark datasets including regression and classification tasks. The proposed Transformer-CNN method uses SMILES augmentation for training and inference, and thus the prognosis is based on an internal consensus. That both the augmentation and transfer learning are based on embeddings allows the method to provide good results for small datasets. We discuss the reasons for such effectiveness and draft future directions for the development of the method. The source code and the embeddings needed to train a QSAR model are available on https://github.com/bigchem/transformer-cnn. The repository also has a standalone program for QSAR prognosis which calculates individual atoms contributions, thus interpreting the model’s result. OCHEM [3] environment (https://ochem.eu) hosts the on-line implementation of the method proposed.
Collapse
Affiliation(s)
- Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München-Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,BIGCHEM GmbH, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Guillaume Godin
- Firmenich International SA, Digital Lab, Geneva, Lausanne, Switzerland
| | - Igor V Tetko
- Institute of Structural Biology, Helmholtz Zentrum München-Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,BIGCHEM GmbH, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
28
|
Tillman H, Janke LJ, Funk A, Vogel P, Rehg JE. Morphologic and Immunohistochemical Characterization of Spontaneous Lymphoma/Leukemia in NSG Mice. Vet Pathol 2019; 57:160-171. [PMID: 31736441 DOI: 10.1177/0300985819882631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ strain (NOD scid gamma, NSG) is a severely immunodeficient inbred laboratory mouse used for preclinical studies because it is amenable to engraftment with human cells. Combining scid and Il2rgnull mutations results in severe immunodeficiency by impairing the maturation, survival, and functionality of interleukin 2-dependent immune cells, including T, B, and natural killer lymphocytes. While NSG mice are reportedly resistant to developing spontaneous lymphomas/leukemias, there are reports of hematopoietic cancers developing. In this study, we characterized the immunophenotype of spontaneous lymphoma/leukemia in 12 NSG mice (20 to 38 weeks old). The mice had a combination of grossly enlarged thymus, spleen, or lymph nodes and variable histologic involvement of the bone marrow and other tissues. All 12 lymphomas were diffusely CD3, TDT, and CD4 positive, and 11 of 12 were also positive for CD8, which together was consistent with precursor T-cell lymphoblastic lymphoma/leukemia (pre-T-LBL). A subset of NSG tissues from all mice and neoplastic lymphocytes from 8 of 12 cases had strong immunoreactivity for retroviral p30 core protein, suggesting an association with a viral infection. These data highlight that NSG mice may develop T-cell lymphoma at low frequency, necessitating the recognition of this spontaneously arising disease when interpreting studies.
Collapse
Affiliation(s)
- Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy Funk
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
29
|
Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019; 8:E889. [PMID: 31412684 PMCID: PMC6721637 DOI: 10.3390/cells8080889] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor-immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients' clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan.
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
30
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
31
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
32
|
Calbet M, Ramis I, Calama E, Carreño C, Paris S, Maldonado M, Orellana A, Calaf E, Pauta M, De Alba J, Bach J, Miralpeix M. Novel Inhaled Pan-JAK Inhibitor, LAS194046, Reduces Allergen-Induced Airway Inflammation, Late Asthmatic Response, and pSTAT Activation in Brown Norway Rats. J Pharmacol Exp Ther 2019; 370:137-147. [PMID: 31085698 DOI: 10.1124/jpet.119.256263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
The Janus-activated kinase (JAK) family together with signal transducer and activator of transcription (STAT) signaling pathway has a key role in regulating the expression and function of many inflammatory cytokines. This has led to the discovery of JAK inhibitors for the treatment of inflammatory diseases, some of them already in the market. Considering the adverse effects associated with JAK inhibition by oral route, we wanted to explore whether JAK inhibition by inhaled route is enough to inhibit airway inflammation. The aim of this study was to characterize the enzymatic and cellular potency and the selectivity of LAS194046, a novel JAK inhibitor, compared with the reference compounds ruxolitinib and tofacitinib. The efficacy of this new JAK inhibitor is described in a model of ovalbumin (OVA)-induced airway inflammation in Brown Norway rats by inhaled administration. As potential markers of target engagement, we assessed the effect of LAS194046 on the STAT activation state. LAS194046 is a selective inhaled pan-JAK inhibitor that reduces allergen-induced airway inflammation, late asthmatic response, and phosphor-STAT activation in the rat OVA model. Our results show that topical inhibition of JAK in the lung, without relevant systemic exposure, is sufficient to reduce lung inflammation and improve lung function in a rat asthma model. In summary, JAK-STAT pathway inhibition by inhaled route constitutes a promising therapeutic option for lung inflammatory diseases.
Collapse
Affiliation(s)
- Marta Calbet
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Elena Calama
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Stephane Paris
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | | | - Elena Calaf
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Montse Pauta
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Jorge De Alba
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Jordi Bach
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | |
Collapse
|
33
|
Fernández-Clotet A, Castro-Poceiro J, Panés J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol 2018; 14:881-892. [DOI: 10.1080/1744666x.2018.1532291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Agnès Fernández-Clotet
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomètiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Castro-Poceiro
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomètiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Gastroenterology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julián Panés
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomètiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Gastroenterology, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, Camp HS, Padley RJ, George JS, Hyland D, Rosebraugh M, Wishart N, Olson L, Long AJ. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol 2018; 2:23. [PMID: 30886973 PMCID: PMC6390583 DOI: 10.1186/s41927-018-0031-x] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Anti-cytokine therapies such as adalimumab, tocilizumab, and the small molecule JAK inhibitor tofacitinib have proven that cytokines and their subsequent downstream signaling processes are important in the pathogenesis of rheumatoid arthritis. Tofacitinib, a pan-JAK inhibitor, is the first approved JAK inhibitor for the treatment of RA and has been shown to be effective in managing disease. However, in phase 2 dose-ranging studies tofacitinib was associated with dose-limiting tolerability and safety issues such as anemia. Upadacitinib (ABT-494) is a selective JAK1 inhibitor that was engineered to address the hypothesis that greater JAK1 selectivity over other JAK family members will translate into a more favorable benefit:risk profile. Upadacitinib selectively targets JAK1 dependent disease drivers such as IL-6 and IFNγ, while reducing effects on reticulocytes and natural killer (NK) cells, which potentially contributed to the tolerability issues of tofacitinib. Methods Structure-based hypotheses were used to design the JAK1 selective inhibitor upadacitinib. JAK family selectivity was defined with in vitro assays including biochemical assessments, engineered cell lines, and cytokine stimulation. In vivo selectivity was defined by the efficacy of upadacitinib and tofacitinib in a rat adjuvant induced arthritis model, activity on reticulocyte deployment, and effect on circulating NK cells. The translation of the preclinical JAK1 selectivity was assessed in healthy volunteers using ex vivo stimulation with JAK-dependent cytokines. Results Here, we show the structural basis for the JAK1 selectivity of upadacitinib, along with the in vitro JAK family selectivity profile and subsequent in vivo physiological consequences. Upadacitinib is ~ 60 fold selective for JAK1 over JAK2, and > 100 fold selective over JAK3 in cellular assays. While both upadacitinib and tofacitinib demonstrated efficacy in a rat model of arthritis, the increased selectivity of upadacitinib for JAK1 resulted in a reduced effect on reticulocyte deployment and NK cell depletion relative to efficacy. Ex vivo pharmacodynamic data obtained from Phase I healthy volunteers confirmed the JAK1 selectivity of upadactinib in a clinical setting. Conclusions The data presented here highlight the JAK1 selectivity of upadacinitinib and supports its use as an effective therapy for the treatment of RA with the potential for an improved benefit:risk profile. Electronic supplementary material The online version of this article (10.1186/s41927-018-0031-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie M Parmentier
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Jeff Voss
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Candace Graff
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Annette Schwartz
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Maria Argiriadi
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Michael Friedman
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Heidi S Camp
- 2Immunology Clinical Development, AbbVie, 1 North Waukegan Rd, North Chicago, IL 60064 USA
| | - Robert J Padley
- 2Immunology Clinical Development, AbbVie, 1 North Waukegan Rd, North Chicago, IL 60064 USA
| | - Jonathan S George
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Deborah Hyland
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Matthew Rosebraugh
- 3Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL USA
| | - Neil Wishart
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Lisa Olson
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| | - Andrew J Long
- 1Immunology Discovery Research, AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605 USA
| |
Collapse
|
35
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 710] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
36
|
Chung TW, Choi HJ, Park MJ, Choi HJ, Lee SO, Kim KJ, Kim CH, Hong C, Kim KH, Joo M, Ha KT. The function of cancer-shed gangliosides in macrophage phenotype: involvement with angiogenesis. Oncotarget 2018; 8:4436-4448. [PMID: 28032600 PMCID: PMC5354844 DOI: 10.18632/oncotarget.13878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor-derived gangliosides in the tumor microenvironment are involved in the malignant progression of cancer. However, the molecular mechanisms underlying the effects of gangliosides shed from tumors on macrophage phenotype remain unknown. Here, we showed that ganglioside GM1 highly induced the activity and expression of arginase-1 (Arg-1), a major M2 macrophage marker, compared to various gangliosides in bone marrow-derived macrophages (BMDM), peritoneal macrophages and Raw264.7 macrophage cells. We found that GM1 bound to macrophage mannose receptor (MMR/CD206) and common gamma chain (γc). In addition, GM1 increased Arg-1 expression through CD206 and γc-mediated activation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription- 6 (STAT-6). Interestingly, GM1-stimulated macrophages secreted monocyte chemoattractant protein-1 (MCP-1/CCL2) through a CD206/γc/STAT6-mediated signaling pathway and induced angiogenesis. Moreover, the angiogenic effect of GM1-treated macrophages was diminished by RS102895, an MCP-1 receptor (CCR2) antagonist. From these results we suggest that tumor-shed ganglioside is a secretory factor regulating the phenotype of macrophages and consequently enhancing angiogenesis.
Collapse
Affiliation(s)
- Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Ju Park
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jin Choi
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Kyun-Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Myungsoo Joo
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging and Yangsan, Gyeongsangnam-do, Republic of Korea.,School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
37
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
|
39
|
Le Saout C, Luckey MA, Villarino AV, Smith M, Hasley RB, Myers TG, Imamichi H, Park JH, O'Shea JJ, Lane HC, Catalfamo M. IL-7-dependent STAT1 activation limits homeostatic CD4+ T cell expansion. JCI Insight 2017; 2:96228. [PMID: 29202461 DOI: 10.1172/jci.insight.96228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
IL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expression resulting in an IL-7-dependent STAT1 and STAT5 activation. Consequently, the IL-7-induced transcriptome is altered with enrichment of IFN-stimulated genes (ISGs). Moreover, STAT1 overexpression was associated with reduced survival in CD4+ T cells undergoing lymphopenia-induced proliferation (LIP). We propose a model in which T cells undergoing LIP upregulate STAT1 protein, "switching on" an alternate IL-7-dependent program. This mechanism could be a physiological process to regulate the expansion and size of the CD4+ T cell pool. During HIV infection, the virus could exploit this pathway, leading to the homeostatic dysregulation of the T cell pools observed in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | | | | | | | | | - Marta Catalfamo
- CMRS/Laboratory of Immunoregulation, NIAID.,Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
40
|
DeMars KM, Pacheco SC, Yang C, Siwarski DM, Candelario-Jalil E. Selective Inhibition of Janus Kinase 3 Has No Impact on Infarct Size or Neurobehavioral Outcomes in Permanent Ischemic Stroke in Mice. Front Neurol 2017; 8:363. [PMID: 28790974 PMCID: PMC5524742 DOI: 10.3389/fneur.2017.00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
Janus kinase 3 (JAK3) is associated with the common gamma chain of several interleukin (IL) receptors essential to inflammatory signaling. To study the potential role of JAK3 in stroke-induced neuroinflammation, we subjected mice to permanent middle cerebral artery occlusion and investigated the effects of JAK3 inhibition with decernotinib (VX-509) on infarct size, behavior, and levels of several inflammatory mediators. Results from our double immunofluorescence staining showed JAK3 expression on neurons, endothelial cells, and microglia/macrophages in the ischemic mouse brain (n = 3). We found for the first time that total and phosphorylated/activated JAK3 are dramatically increased after stroke in the ipsilateral hemisphere (**P < 0.01; n = 5–13/group) in addition to increased IL-21 expression after stroke (**P < 0.01; n = 5–7/group). However, inhibition of JAK3 confirmed by reduced phosphorylation of its activation loop at tyrosine residues 980/981 does not reduce infarct volume measured at 48 h after stroke (n = 6–10/group) nor does it alter behavioral outcomes sensitive to neurological deficits or stroke-induced neuroinflammatory response (n = 9–10/group). These results do not support a detrimental role for JAK3 in acute neuroinflammation following permanent focal cerebral ischemia. The functional role of increased JAK3 activation after stroke remains to be further investigated.
Collapse
Affiliation(s)
- Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sean C Pacheco
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - David M Siwarski
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Thiant S, Moutuou MM, Laflamme P, Sidi Boumedine R, Leboeuf DM, Busque L, Roy J, Guimond M. Imatinib mesylate inhibits STAT5 phosphorylation in response to IL-7 and promotes T cell lymphopenia in chronic myelogenous leukemia patients. Blood Cancer J 2017; 7:e551. [PMID: 28387753 PMCID: PMC5436073 DOI: 10.1038/bcj.2017.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Imatinib mesylate (IM) therapy has been shown to induce lower T cell counts in chronic myelogenous leukemia (CML) patients and an interference of IM with T cell receptor (TCR) signaling has been invoked to explain this observation. However, IL-7 and TCR signaling are both essential for lymphocyte survival. This study was undertaken to determine whether IM interferes with IL-7 or TCR signaling to explain lower T cell counts in patients. At diagnosis, CML patients have typically lower CD4+ counts in their blood, yet CD8+ counts are normal or even increased in some. Following the initiation of IM treatment, CD4+ counts were further diminished and CD8+ T lymphocytes were dramatically decreased. In vitro studies confirmed IM interference with TCR signaling through the inhibition of ERK phosphorylation and we showed a similar effect on IL-7 signaling and STAT5 phosphorylation (STAT5-p). Importantly however, using an in vivo mouse model, we demonstrated that IM impaired T cell survival through the inhibition of IL-7 and STAT5-p but not TCR signaling which remained unaffected during IM therapy. Thus, off-target inhibitory effects of IM on IL-7 and STAT5-p explain how T cell lymphopenia occurs in patients treated with IM.
Collapse
Affiliation(s)
- S Thiant
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - M M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - P Laflamme
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - R Sidi Boumedine
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - D M Leboeuf
- Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - L Busque
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - J Roy
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - M Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Calama E, Ramis I, Domènech A, Carreño C, De Alba J, Prats N, Miralpeix M. Tofacitinib ameliorates inflammation in a rat model of airway neutrophilia induced by inhaled LPS. Pulm Pharmacol Ther 2017; 43:60-67. [DOI: 10.1016/j.pupt.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023]
|
43
|
Shatrova AN, Mityushova EV, Vassilieva IO, Aksenov ND, Zenin VV, Nikolsky NN, Marakhova II. Time-Dependent Regulation of IL-2R α-Chain (CD25) Expression by TCR Signal Strength and IL-2-Induced STAT5 Signaling in Activated Human Blood T Lymphocytes. PLoS One 2016; 11:e0167215. [PMID: 27936140 PMCID: PMC5172478 DOI: 10.1371/journal.pone.0167215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
The expression of the IL-2R α-chain (IL-2Rα) is regulated at the transcriptional
level via TCR- and IL-2R-signaling. The question is how to precede in time the
activation signals to induce the IL-2Rα expression in native primary T cells. By
comparing the effects of selective drugs on the dynamics of CD25 expression
during the mitogen stimulation of human peripheral blood lymphocytes, we
identified distinct Src- and JAK-dependent stages of IL-2Rα upregulation. PP2, a
selective inhibitor of TCR-associated Src kinase, prevents CD25 expression at
initial stages of T cell activation, prior to the cell growth. This early IL-2Rα
upregulation underlies the T cell competence and the IL-2 responsiveness. We
found that the activated with “weak” mitogen, the population of blood
lymphocytes has some pool of competent CD25+ cells bearing a high affinity
IL-2R. A distinct pattern of IL-2R signaling in resting and competent T
lymphocytes has been shown. Based on the inhibitory effect of WHI-P131, a
selective drug of JAK3 kinase activity, we concluded that in quiescent primary T
lymphocytes, the constitutive STAT3 and the IL-2-induced prolonged STAT5
activity (assayed by tyrosine phosphorylation) is mostly JAK3-independent. In
competent T cells, in the presence of IL-2 JAK3/STAT5 pathway is switched to
maintain the higher and sustained IL-2Rα expression as well as cell growth and
proliferation. We believe that understanding the temporal coordination of
antigen- and cytokine-evoked signals in primary T cells may be useful for
improving immunotherapeutic strategies.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Elena V. Mityushova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina O. Vassilieva
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay D. Aksenov
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Valery V. Zenin
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Nikolay N. Nikolsky
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
| | - Irina I. Marakhova
- Department of Intracellular Signaling and Transport,
Institute of Cytology, Russian Academy of Sciences, St-Petersburg,
Russia
- * E-mail:
| |
Collapse
|
44
|
Goto H, Kariya R, Matsuda K, Kudo E, Katano H, Okada S. A potential role of the NOD genetic background in mouse peritoneal macrophages for the development of primary effusion lymphoma. Leuk Res 2016; 42:37-42. [PMID: 26859781 DOI: 10.1016/j.leukres.2016.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/04/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Abstract
Severe immunodeficient mice have become invaluable tools in human stem cell and tumor research. In this study, we compared the phagocytic activity of peritoneal macrophages against primary effusion lymphoma (PEL) among Rag-2/Jak3 double-deficient (Rag-2(-/-)Jak3(-/-)) mice with NOD and non-NOD (Balb/c and C57/BL6). We also evaluated lymphomatous effusion and infiltration in a PEL xenograft mouse model using these severe immunodeficient mice. In the phagocytic assay, peritoneal macrophages in the NOD background phagocytosed CFSE-labeled BCBL-1, a PEL cell line, less efficiently than those in the non-NOD background. BCBL-1 cells were successfully engrafted into both the NOD background and non-NOD background; however, the volume of ascites of the NOD background was significantly higher than that of the non-NOD background. Moreover, the organ invasion of PEL cells was suppressed in non-NOD background mice. Thus, the NOD genetic background is considered to contribute to more lymphomatous effusion and the infiltration of PEL cells than a non-NOD background. Our results showed that the NOD background allowed more lymphomatous effusion and infiltration than other backgrounds and peritoneal macrophages played a critical role in preventing the growth and infiltration of PEL cells.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan.
| |
Collapse
|
45
|
Waickman AT, Park JY, Park JH. The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 2016; 73:253-69. [PMID: 26468051 PMCID: PMC6315299 DOI: 10.1007/s00018-015-2062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rβ to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Poulsen A, William AD, Dymock BW. Designed Macrocyclic Kinase Inhibitors. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cancer continues to present as an increasing and serious global unmet medical need in today's aging population.1 Macrocyclic kinase inhibitors have reached advanced clinical testing and are making an impact in oncologic conditions including myelofibrosis, lymphomas and leukemias. Rheumatoid arthritis (RA) is also beginning to be impacted with the first macrocycle having entered Phase I clinical evaluation in healthy volunteers. Increasing reports of innovative macrocycles in preclinical research are appearing in the literature. Desirable, selective, multi-kinase inhibitory profiles against specific kinases known to be abrogated in cancer, RA, and other diseases have been achieved in a first generation series of clinical stage compact small molecule macrocyclic kinase inhibitors. Herein we discuss their design, synthesis, structure activity relationships and assessment of the latest clinical data in a range of oncologic conditions. Macrocyclic kinase inhibitors have the potential to offer new hope to patients and their families.
Collapse
Affiliation(s)
- Anders Poulsen
- Experimental Therapeutics Centre, A*STAR 11 Biopolis Way, #03-10/11 The Helios 138667 Singapore
| | - Anthony D. William
- Institute of Chemical and Engineering Sciences, A*STAR 11 Biopolis Way, The Helios #03-08 138667 Singapore
| | - Brian W. Dymock
- Department of Pharmacy, National University of Singapore 18 Science Drive 4 117543 Singapore
| |
Collapse
|
47
|
Genetic deletion of Mst1 alters T cell function and protects against autoimmunity. PLoS One 2014; 9:e98151. [PMID: 24852423 PMCID: PMC4031148 DOI: 10.1371/journal.pone.0098151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.
Collapse
|
48
|
Zand MS. Tofacitinab in renal transplantation. Transplant Rev (Orlando) 2014; 27:85-9. [PMID: 23849222 DOI: 10.1016/j.trre.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 12/24/2022]
Abstract
Tofacitinib (tositinib, CP-690,550) is a small molecule inhibitor of Janus associated kinases, primarily JAK3 and JAK2, which inhibits cytokine signaling through the IL-2Rγ chain. In this article, we review the mechanism of action of tofacitinib, and pre-clinical and clinical data regarding its use in solid organ transplantation thus far. It is hoped that tofacitinib may form the basis for calcineurin-free immunosuppression, improving renal function while eliminating calcineurin inhibitor renal toxicity. Current studies suggest that tofacitinib is an effective immunosuppressive agent for renal transplantation, but it's use in current protocols carries an increased risk of CMV, BK, and EBV viral infection, anemia and leukopenia, and post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Martin S Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Box 675, Rochester, NY 14642, USA.
| |
Collapse
|
49
|
Stepkowski SM, Kirken RA. Unique advantage of Janus kinase 3 as a target for selective and nontoxic immunosupression. Expert Rev Clin Immunol 2014; 1:307-10. [DOI: 10.1586/1744666x.1.3.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Pedersen J, Coskun M, Soendergaard C, Salem M, Nielsen OH. Inflammatory pathways of importance for management of inflammatory bowel disease. World J Gastroenterol 2014; 20:64-77. [PMID: 24415859 PMCID: PMC3886034 DOI: 10.3748/wjg.v20.i1.64] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn’s disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.
Collapse
|