1
|
Wang H, Liu D, Meng X, Sun W, Li C, Lu H, Zheng D, Wu L, Sun S, Wang Y. Bidirectional Two-Sample Mendelian Randomization Study of Immunoglobulin G N-Glycosylation and Senescence-Associated Secretory Phenotype. Int J Mol Sci 2024; 25:6337. [PMID: 38928043 PMCID: PMC11203829 DOI: 10.3390/ijms25126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Observational studies revealed changes in Immunoglobulin G (IgG) N-glycosylation during the aging process. However, it lacks causal insights and remains unclear in which direction causal relationships exist. The two-sample bidirectional Mendelian randomization (MR) design was adopted to explore causal associations between IgG N-glycans and the senescence-associated secretory phenotype (SASP). Inverse variance weighted (IVW) and Wald ratio methods were used as the main analyses, supplemented by sensitivity analyses. Forward MR analyses revealed causal associations between the glycan peak (GP) and SASP, including GP6 (odds ratio [OR] = 0.428, 95% confidence interval [CI] = 0.189-0.969) and GP17 (OR = 0.709, 95%CI = 0.504-0.995) with growth/differentiation factor 15 (GDF15), GP19 with an advanced glycosylation end-product-specific receptor (RAGE) (OR = 2.142, 95% CI = 1.384-3.316), and GP15 with matrix metalloproteinase 2 (MMP2) (OR = 1.136, 95% CI =1.008-1.282). The reverse MR indicated that genetic liability to RAGE was associated with increased levels of GP17 (OR = 1.125, 95% CI = 1.003-1.261) and GP24 (OR = 1.222, 95% CI = 1.046-1.428), while pulmonary and activation-regulated chemokines (PARC) exhibited causal associations with GP10 (OR = 1.269, 95% CI = 1.048-1.537) and GP15 (OR = 1.297, 95% CI = 1.072-1.570). The findings provided suggested evidence on the bidirectional causality between IgG N-glycans and SASP, which might reveal potential regulatory mechanisms.
Collapse
Affiliation(s)
- Haotian Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Di Liu
- Centre for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenxin Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Cancan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huimin Lu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Deqiang Zheng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shengzhi Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Youxin Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- Centre for Precision Medicine, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
2
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Krištić J, Lauc G, Pezer M. Immunoglobulin G glycans - Biomarkers and molecular effectors of aging. Clin Chim Acta 2022; 535:30-45. [PMID: 35970404 DOI: 10.1016/j.cca.2022.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin G (IgG) antibodies are post-translationally modified by the addition of complex carbohydrate molecules - glycans, which have profound effects on the IgG function, most significantly as modulators of its inflammatory capacity. Therefore, it is not surprising that the changes in IgG glycosylation pattern are associated with various physiological states and diseases, including aging and age-related diseases. Importantly, within the inflammaging concept, IgG glycans are considered not only biomarkers but one of the molecular effectors of the aging process. The exact mechanism by which they exert their function, however, remains unknown. In this review, we list and comment on, to our knowledge, all studies that examined changes in IgG glycosylation during aging in humans. We focus on the information obtained from studies on general population, but we also cover the insights obtained from studies of long-lived individuals and people with age-related diseases. We summarize the current knowledge on how levels of different IgG glycans change with age (i.e., the extent and direction of the change with age) and discuss the potential mechanisms and possible functional roles of changes in IgG glycopattern that accompany aging.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
4
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
5
|
Kaneko C, Kobayashi T, Ito S, Sugita N, Murasawa A, Ishikawa H, Tabeta K. Association among periodontitis severity, anti-agalactosyl immunoglobulin G titer, and the disease activity of rheumatoid arthritis. J Periodontal Res 2021; 56:702-709. [PMID: 33641208 DOI: 10.1111/jre.12867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the association between the periodontal and serological parameters and the disease activity of rheumatoid arthritis (RA) and between the anti-agalactosyl immunoglobulin G (IgG) titer and periodontitis severity. The objective was also to assess the effect of supragingival scaling on the serological parameters in patients with RA. BACKGROUND The periodontal and serological parameters in relation to the autoimmune inflammatory response have been linked to RA disease activity. However, the association of the anti-agalactosyl IgG titer with RA disease activity and periodontitis severity has not been elucidated. METHODS The periodontal, rheumatologic, and serological data were collected from 127 patients with RA in a retrospective cohort study. Of the 127 patients, 21 had been randomly assigned to receive oral hygiene instruction and supragingival scaling. The anti-agalactosyl IgG titer was determined by an electrochemiluminescence immunoassay. RESULTS The patients with a moderate to high RA disease activity showed significantly higher levels of probing depth (PD), clinical attachment level, anti-cyclic citrullinated peptide IgG, and anti-agalactosyl IgG titer and greater mean percentages of severe periodontitis than those with a low RA disease activity (p < .05 for all). Both univariate and multivariate analyses revealed a significantly positive correlation between the PD and RA disease activity (p = .009 and p = .001), between the anti-agalactosyl IgG titer and RA disease activity (p = .002 and p < .001), and between the anti-agalactosyl IgG titer and PD (p < .001 for both). Supragingival scaling significantly decreased the anti-agalactosyl IgG titer (p = 0.03). CONCLUSION The PD and anti-agalactosyl IgG titer are positively interrelated, both of which are correlated positively with RA disease activity and influenced by supragingival scaling in patients with RA.
Collapse
Affiliation(s)
- Chihiro Kaneko
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kobayashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Noriko Sugita
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Hajime Ishikawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
6
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Telbivudine on IgG-associated hypergammaglobulinemia and TGF-β1 hyperactivity in hepatitis B virus-related liver cirrhosis. PLoS One 2019; 14:e0225482. [PMID: 31770396 PMCID: PMC6879168 DOI: 10.1371/journal.pone.0225482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
As debate rumbles on about whether anti-hepatitis B virus (HBV) nucleos(t)ide analogue treatments modulate host immune system during end-stage liver diseases, we studied effects of two potent anti-HBV agents, telbivudine or entecavir, on humoral immune activities including cytokine secretion, immunoglobulin production, and IgG-Fc agalactosylation, which is known to induce proinflammatory responses, in liver cirrhosis. Serum IgG-Fc N-glycan structures in patients with HBV-related liver cirrhosis, who had received either telbivudine treatment or entecavir treatment for at least 48 weeks were analyzed using liquid chromatography tandem-mass spectrometry. Levels of cytokines and each immunoglobulin isotype were measured using enzyme-linked immunosorbent assays. Results showed that 48 weeks of entecavir treatment caused HBV DNA loss, alanine aminotransferase normalization, and an amelioration of hypergammaglobulinemia in cirrhotic patients; however, telbivudine treatment, though possessing similar efficacies on HBV suppression and an improvement in liver inflammation to entecavir treatment, did not mitigate IgG-related hypergammaglobulinemia. Levels of IgG and transforming growth factor (TGF)-β1 in sera of the cirrhotic patients before and during treatment were positively correlated. In vitro assays revealed that telbivudine treatment induced TGF-β1 expression in human macrophagic cells. Moreover, recombinant TGF-β1 treatment stimulated cell proliferation and IgG overproduction in human IgG-producing B cell lines. Finally, we found that telbivudine treatment enhanced the proportion of serum IgG-Fc agalactosylation in cirrhotic patients, which was associated with enhanced levels of TGF-β1 and IgG. In conclusion, telbivudine therapy was associated with TGF-β1 hyperactivity, IgG-related hypergammaglobulinemia, and IgG-Fc agalactosylation in HBV-related liver cirrhosis.
Collapse
|
8
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Schwedler C, Häupl T, Kalus U, Blanchard V, Burmester GR, Poddubnyy D, Hoppe B. Hypogalactosylation of immunoglobulin G in rheumatoid arthritis: relationship to HLA-DRB1 shared epitope, anticitrullinated protein antibodies, rheumatoid factor, and correlation with inflammatory activity. Arthritis Res Ther 2018. [PMID: 29540200 PMCID: PMC5853146 DOI: 10.1186/s13075-018-1540-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Galactosylation of immunoglobulin G (IgG) is reduced in rheumatoid arthritis (RA) and assumed to correlate with inflammation and altered humoral immunity. IgG hypogalactosylation also increases with age. To investigate dependencies in more detail, we compared IgG hypogalactosylation between patients with RA, patients with axial spondyloarthritis (axSpA), and healthy control subjects (HC), and we studied it in RA on the background of HLA-DRB1 shared epitope (SE), anticitrullinated protein antibodies (ACPA), and/or rheumatoid factor (RF) status. Methods Patients with RA (n = 178), patients with axSpA (n = 126), and HC (n = 119) were characterized clinically, and serum IgG galactosylation was determined by capillary electrophoresis. Markers of disease activity, genetic susceptibility, and serologic response included C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), DAS28, SE, HLA-B27, ACPA, and RF. Expression of glycosylation enzymes, including beta 1–4 galactosyltransferase (B4GALT3) activity, were estimated from transcriptome data for B-cell development (GSE19599) and differentiation to plasma cells (GSE12366). Results IgG hypogalactosylation was restricted to RA and associated with increasing CRP levels (p < 0.0001). In axSpA, IgG hypogalactosylation was comparable to HC and only marginally increased upon elevated CRP. Restriction to RA was maintained after correction for CRP and age. Treatment with sulfasalazine resulted in significantly reduced IgG hypogalactosylation (p = 0.003) even after adjusting for age, sex, and CRP (p = 0.009). SE-negative/ACPA-negative RA exhibited significantly less IgG hypogalactosylation than all other strata (vs SE-negative/ACPA-positive, p = 0.009; vs SE-positive/ACPA-negative, p = 0.04; vs SE-positive/ACPA-positive, p < 0.02); however, this indicated a trend only after Bonferroni correction for multiple testing. In SE-positive/ACPA-negative RA IgG hypogalactosylation was comparable to ACPA-positive subsets. The relationship between IgG hypogalactosylation and disease activity was significantly different between strata defined by SE (CRP, p = 0.0003, pBonferroni = 0.0036) and RF (CRP, p < 0.0001, pBonferroni < 0.0012), whereas ACPA strata revealed only a nonsignificant trend (p = 0.15). Gene expression data indicated that the key enzyme for galactosylation of immunoglobulins, B4GALT3, is expressed at lower levels in B cells than in plasma cells. Conclusions Increased IgG hypogalactosylation in RA but not in axSpA points to humoral immune response as a precondition. Reduced B4GALT3 expression in B cells compared with plasma cells supports relatedness to early B-cell triggering. The differential influence of RA treatment on IgG hypogalactosylation renders it a potential diagnostic target for further studies. Electronic supplementary material The online version of this article (10.1186/s13075-018-1540-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Schwedler
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.,German Rheumatism Research Centre, Charitéplatz 1, 10117, Berlin, Germany
| | - Berthold Hoppe
- Institute of Laboratory Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Institute of Laboratory Medicine, Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany.
| |
Collapse
|
10
|
Abstract
Glycosylation is one of the most frequent post-translational modification of proteins. Many membrane and secreted proteins are decorated by sugar chains mainly linked to asparagine (N-linked) or to serine or threonine (O-linked). The biosynthesis of the sugar chains is mainly controlled by the activity of their biosynthetic enzymes: the glycosyltransferases. Glycosylation plays multiple roles, including the fine regulation of the biological activity of glycoproteins. Inflammaging is a chronic low grade inflammatory status associated with aging, probably caused by the continuous exposure of the immune system to inflammatory stimuli of endogenous and exogenous origin. The aging-associated glycosylation changes often resemble those observed in inflammatory conditions. One of the most reproducible markers of calendar and biological aging is the presence of N-glycans lacking terminal galactose residues linked to Asn297 of IgG heavy chains (IgG-G0). Although the mechanism(s) generating IgG-G0 remain unclear, their presence in a variety of inflammatory conditions suggests a link with inflammaging. In addition, these aberrantly glycosylated IgG can exert a pro-inflammatory effect through different mechanisms, triggering a self-fueling inflammatory loop. A strong association with aging has been documented also for the plasmatic forms of glycosyltrasferases B4GALT1 and ST6GAL1, although their role in the extracellular glycosylation of antibodies does not appear likely. Siglecs, are a group of sialic acid binding mammalian lectins which mainly act as inhibitory receptors on the surface of immune cells. In general activity of Siglecs appears to be associated with long life, probably because of their ability to restrain aging-associated inflammation.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Catera M, Borelli V, Malagolini N, Chiricolo M, Venturi G, Reis CA, Osorio H, Abruzzo PM, Capri M, Monti D, Ostan R, Franceschi C, Dall'Olio F. Identification of novel plasma glycosylation-associated markers of aging. Oncotarget 2016; 7:7455-68. [PMID: 26840264 PMCID: PMC4884931 DOI: 10.18632/oncotarget.7059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The pro- or anti-inflammatory activities of immunoglobulins G (IgGs) are controlled by the structure of the glycan N-linked to Asn297 of their heavy chain. The age-associated low grade inflammation (inflammaging) is associated with increased plasmatic levels of agalactosylated IgGs terminating with N-acetylglucosamine (IgG-G0) whose biogenesis has not been fully explained. Although the biosynthesis of glycans is in general mediated by glycosyltransferases associated with internal cell membranes, the extracellular glycosylation of circulating glycoproteins mediated by plasmatic glycosyltransferases has been recently demonstrated. In this study we have investigated the relationship between plasmatic glycosyltransferases, IgG glycosylation and inflammatory and aging markers. In cohorts of individuals ranging from infancy to centenarians we determined the activity of plasmatic β4 galactosyltransferase(s) (B4GALTs) and of α2,6-sialyltransferase ST6GAL1, the glycosylation of IgG, the GlycoAge test (a glycosylation-based marker of aging) and the plasma level of inflammatory and liver damage markers. Our results show that: 1) plasmatic B4GALTs activity is a new marker of aging, showing a linear increase throughout the whole age range. 2) plasmatic ST6GAL1 was high only in children and in people above 80, showing a quadratic relationship with age. 3) Neither plasmatic glycosyltransferase correlated with markers of liver damage. 4) plasmatic ST6GAL1 showed a positive association with acute phase proteins in offspring of short lived parents, but not in centenarians or in their offspring. 5) Although the glycosylation of IgGs was not correlated with the level of the two plasmatic glycosyltransferases, it showed progressive age-associated changes consistent with a shift toward a pro-inflammatory glycotype.
Collapse
Affiliation(s)
- Mariangela Catera
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Vincenzo Borelli
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Nadia Malagolini
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Mariella Chiricolo
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Giulia Venturi
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, and Institute of Molecular Pathology and Immunology of The University of Porto IPATIMUP), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine of The University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Hugo Osorio
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, and Institute of Molecular Pathology and Immunology of The University of Porto IPATIMUP), Porto, Portugal.,Faculty of Medicine of The University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Provvidenza M Abruzzo
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Miriam Capri
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Daniela Monti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", University of Florence, Florence, Italy
| | - Rita Ostan
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Fabio Dall'Olio
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Gu J, Kondo A, Okamoto N, Wada Y. Oligosaccharide structures of immunoglobulin G from two patients with carbohydrate-deficient glycoprotein syndrome. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/bf00919332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Wang S, Cuesta-Seijo JA, Lafont D, Palcic MM, Vidal S. Design of glycosyltransferase inhibitors: pyridine as a pyrophosphate surrogate. Chemistry 2013; 19:15346-57. [PMID: 24108680 DOI: 10.1002/chem.201301871] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Indexed: 12/12/2022]
Abstract
A series of ten glycosyltransferase inhibitors has been designed and synthesized by using pyridine as a pyrophosphate surrogate. The series was prepared by conjugation of carbohydrate, pyridine, and nucleoside building blocks by using a combination of glycosylation, the Staudinger-Vilarrasa amide-bond formation, and azide-alkyne click chemistry. The compounds were evaluated as inhibitors of five metal-dependent galactosyltransferases. Crystallographic analyses of three inhibitors complexed in the active site of one of the enzymes confirmed that the pyridine moiety chelates the Mn(2+) ion causing a slight displacement (2 Å) from its original position. The carbohydrate head group occupies a different position than in the natural uridine diphosphate (UDP)-Gal substrate with little interaction with the enzyme.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2, Glycochimie, UMR 5246, CNRS and Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne (France), Fax: (+33) 472-448-109
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Collins ES, Galligan MC, Saldova R, Adamczyk B, Abrahams JL, Campbell MP, Ng CT, Veale DJ, Murphy TB, Rudd PM, Fitzgerald O. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology (Oxford) 2013; 52:1572-82. [PMID: 23681398 DOI: 10.1093/rheumatology/ket189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Glycosylation is the most common post-translational modification and is altered in disease. The typical glycosylation change in patients with inflammatory arthritis (IA) is a decrease in galactosylation levels on IgG. The aim of this study is to evaluate the effect of anti-TNF therapy on whole serum glycosylation from IA patients and determine whether these alterations in the glycome change upon treatment of the disease. METHODS Serum samples were collected from 54 IA patients before treatment and at 1 and 12 months after commencing anti-TNF therapy. N-linked glycans from whole serum samples were analysed using a high-throughput hydrophilic interaction liquid chromatography-based method. RESULTS Glycosylation on the serum proteins of IA patients changed significantly with anti-TNF treatment. We observed an increase in galactosylated glycans from IgG, also an increase in core-fucosylated biantennary galactosylated glycans and a decrease in sialylated triantennary glycans with and without outer arm fucose. This increase in galactosylated IgG glycans suggests a reversing of the N-glycome towards normal healthy profiles. These changes are strongly correlated with decreasing CRP, suggesting a link between glycosylation changes and decreases in inflammatory processes. CONCLUSION Glycosylation changes in the serum of IA patients on anti-TNF therapy are strongly associated with a decrease in inflammatory processes and reflect the effect of anti-TNF on the immune system.
Collapse
Affiliation(s)
- Emily S Collins
- Department of Rheumatology, Dublin Academic Medical Centre, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 2013; 12:685-98. [PMID: 22353383 DOI: 10.1016/j.arr.2012.02.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 01/31/2023]
Abstract
Glycosylation is a frequent co/post-translational modification of proteins which modulates a variety of biological functions. The analysis of N-glycome, i.e. the sugar chains N-linked to asparagine, identified new candidate biomarkers of aging such as N-glycans devoid of galactose residues on their branches, in a variety of human and experimental model systems, such as healthy old people, centenarians and their offspring and caloric restricted mice. These agalactosylated biantennary structures mainly decorate Asn297 of Fc portion of IgG (IgG-G0), and are present also in patients affected by progeroid syndromes and a variety of autoimmune/inflammatory diseases. IgG-G0 exert a pro-inflammatory effect through different mechanisms, including the lectin pathway of complement, binding to Fcγ receptors and formation of autoantibody aggregates. The age-related accumulation of IgG-G0 can contribute to inflammaging, the low-grade pro-inflammatory status that characterizes elderly, by creating a vicious loop in which inflammation is responsible for the production of aberrantly glycosylated IgG which, in turn, would activate the immune system, exacerbating inflammation. Moreover, recent data suggest that the N-glycomic shift observed in aging could be related not only to inflammation but also to alteration of important metabolic pathways. Thus, altered N-glycans are both powerful markers of aging and possible contributors to its pathogenesis.
Collapse
|
17
|
Tadokoro T, Ikekita M, Toda T, Ito H, Sato T, Nakatani R, Hamaguchi Y, Furukawa K. Involvement of Galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse BALB/3T3 cells. J Biol Chem 2010; 284:35556-63. [PMID: 19858221 DOI: 10.1074/jbc.m109.063339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Galactose residues on N-glycans have been implicated to be involved in growth regulation of cells. In the present study we compared the galactosylation of cell surface N-glycans of mouse Balb/3T3 cells between 30 and 100% densities and found the beta-1,4-galactosylation of N-glycans increases predominantly in a 100-kDa protein band on lectin blot analysis in combination with digestions by diplococcal beta-galactosidase and N-glycanase. When cells at 100% density were treated with jack bean beta-galactosidase, the incorporation of 5-bromodeoxyuridine into the cells was stimulated in a dose-dependent manner, suggesting the involvement of the galactose residues in growth regulation of cells. A galactose-binding protein was isolated from the plasma membranes of cells at 100% density by affinity chromatography using an asialo-transferrin-Sepharose column and found to be galectin-3 as revealed by mass spectrometric analysis. The addition of recombinant galectin-3 into cells at 50% density inhibited the incorporation of 5-bromodeoxyuridine in a dose-dependent manner, but the inhibition was prevented with haptenic sugar. An immunocytochemical study showed that galectin-3 is present at the surface of cells at 100% density but not at 30% density where it locates inside the cells. Several glycoproteins bind to a galectin-3-immobilized column, a major of which was identified as vascular cell adhesion molecule (VCAM)-1. Immunocytochemical studies showed that some galectin-3 and VCAM-1 co-localize at the surface of cells at 100% density, indicating that the binding of galectin-3 secreted from cells to VCAM-1 is one of the pathways involved in the growth regulation of Balb/3T3 cells.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Omtvedt LA, Royle L, Husby G, Sletten K, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM. Glycan analysis of monoclonal antibodies secreted in deposition disorders indicates that subsets of plasma cells differentially process IgG glycans. ACTA ACUST UNITED AC 2006; 54:3433-40. [PMID: 17075835 DOI: 10.1002/art.22171] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To compare the glycosylation of polyclonal serum IgG heavy chains in a patient with rheumatoid arthritis (RA) with that of monoclonal serum IgG heavy chains in the same patient during an episode of heavy-chain deposition disease (HCDD), to establish whether glycosylation processing is specific for subsets of B cells. METHODS Serum IgG was purified using a HiTrap protein G column. Immunoglobulins were run on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, and IgG glycans were isolated from gel bands and fluorescently labeled. Glycans were analyzed by normal-phase high-performance liquid chromatography and by liquid chromatography-electrospray ionization-mass spectrometry. RESULTS The glycosylation of serum immunoglobulins from a patient with seronegative RA and HCDD was analyzed. The predominant immunoglobulin was a truncated glycosylated gamma3 heavy chain, and a small amount of polyclonal IgG was also present. The glycan profile showed that the monoclonal gamma3 heavy chain contained fully galactosylated biantennary glycans with significantly less fucose but more sialic acid than in IgG3 from healthy controls. In contrast, the polyclonal IgG showed an RA-like profile, with a predominance of fucosylated biantennary glycans and low levels of galactosylation. The glycan profile of serum IgG obtained from the same patient during disease remission resembled a typical RA profile. CONCLUSION These data indicate that different types of B cells process a particular set of IgG glycoforms.
Collapse
Affiliation(s)
- Lone A Omtvedt
- Department of Molecular Biosciences, University of Oslo, Postboks 1041 Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kitamura N, Ikekita M, Sato T, Akimoto Y, Hatanaka Y, Kawakami H, Inomata M, Furukawa K. Mouse Na+/K+-ATPase beta1-subunit has a K+-dependent cell adhesion activity for beta-GlcNAc-terminating glycans. Proc Natl Acad Sci U S A 2005; 102:2796-801. [PMID: 15705719 PMCID: PMC549466 DOI: 10.1073/pnas.0409344102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Indexed: 11/18/2022] Open
Abstract
A 48-kDa beta-N-acetylglucosamine (GlcNAc)-binding protein was isolated from mouse brain by GlcNAc-agarose column chromatography. The N-terminal amino acid residues showed the protein to be a mouse Na(+)/K(+)-ATPase beta1-subunit. When the recombinant FLAG-beta1-subunit expressed in Sf-9 cells was applied to a GlcNAc-agarose column, only the glycosylated 38- and 40-kDa proteins bound to the column. In the absence of KCl, little of the proteins bound to a GlcNAc-agarose column, but the 38- and 40-kDa proteins bound in the presence of KCl at concentrations above 1 mM. Immunohistochemical study showed that the beta1-subunit and GlcNAc-terminating oligosaccharides are at the cell contact sites. Inclusion of anti-beta1-subunit antibody or chitobiose in cell aggregation assays using mouse neural cells resulted in inhibition of cell aggregation. These results indicate that the Na(+)/K(+)-ATPase beta1-subunit is a potassium-dependent lectin that binds to GlcNAc-terminating oligosaccharides: it may be involved in neural cell interactions.
Collapse
Affiliation(s)
- Noriaki Kitamura
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Alavi A, Pool AJ, Axford JS. New Insights into Rheumatoid Arthritis Associated Glycosylation Changes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:129-38. [PMID: 16400819 DOI: 10.1007/0-387-25515-x_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Azita Alavi
- Biochemistry and Immunology, Academic Unit for Musculoskeletal Disease, St Georges Hospital Med School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
21
|
Saevarsdottir S, Vikingsdottir T, Valdimarsson H. The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 2004; 60:23-9. [PMID: 15238070 DOI: 10.1111/j.0300-9475.2004.01437.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mannan-binding lectin (MBL) is a pattern recognition receptor in the innate immune system. It recognizes certain sugar residues arranged in a pattern that enables MBL to bind with sufficient strength. Such sugar patterns are common on the surface of many microorganisms, and MBL has therefore been considered to be an agent that can discriminate between self and nonself. There is, however, increasing evidence supporting that MBL, like many membrane-bound C-type lectin-like receptors, also helps to dispose of various outworn or abnormal body components. Most self-components are protected with sialic acid or galactose that disrupt the pattern of the sugars that MBL can bind, but MBL may be significantly involved in the elimination of self-components that have lost these protective terminal residues. The role of MBL in the clearance of invading pathogens has previously been thoroughly reviewed. Here, we review some findings that support the notion that MBL may contribute to noninflammatory removal of immune complexes and abnormal cells by the reticuloendothelial system. Defects in this clearance mechanism may cause an accumulation of potentially dangerous self-components, thereby increasing the likelihood of chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- S Saevarsdottir
- Department of Immunology, Landspitali-University Hospital, Hringbraut, 101 Reyjavik, Iceland
| | | | | |
Collapse
|
22
|
Mizuochi T, Pastore Y, Shikata K, Kuroki A, Kikuchi S, Fulpius T, Nakata M, Fossati-Jimack L, Reininger L, Matsushita M, Fujita T, Izui S. Role of galactosylation in the renal pathogenicity of murine immunoglobulin G3 monoclonal cryoglobulins. Blood 2001; 97:3537-43. [PMID: 11369648 DOI: 10.1182/blood.v97.11.3537] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryoglobulin activity associated with murine immunoglobulin G3 (IgG3) has been shown to play a significant role in the development of murine lupuslike glomerulonephritis. A fraction, but not all, IgG3 monoclonal antibodies are capable of inducing a severe acute lupuslike glomerulonephritis as a result of direct localization of IgG3 cryoglobulins, suggesting the importance of qualitative features of cryoglobulins in their nephritogenic activities. Here a remarkable difference is shown in the renal pathogenicity of 2 murine IgG3 monoclonal cryoglobulins, identical in the amino acid sequences of their heavy and light chains but different in galactosylation patterns of oligosaccharide side chains because of their synthesis in different myeloma cells. The antibody lacking the capacity to induce severe glomerulonephritis displayed an increased proportion of galactosylated heavy chains. Changes in conformation, as revealed by gel filtration analysis, reduced cryoglobulin activity, and accelerated clearance could account for the lack of the renal pathogenicity of the more galactosylated variant. This observation provides a direct demonstration for the role of IgG galactosylation in the pathogenic potential of cryoglobulins.
Collapse
Affiliation(s)
- T Mizuochi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pastore Y, Lajaunias F, Kuroki A, Moll T, Kikuchi S, Izui S. An experimental model of cryoglobulin-associated vasculitis in mice. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:315-29. [PMID: 11591105 DOI: 10.1007/s002810100075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Y Pastore
- Department of Pathology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J. Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol 2000; 37:1047-56. [PMID: 11399322 DOI: 10.1016/s0161-5890(01)00019-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was applied to studies of the molecular heterogeneity of desialylated human IgA1 hinge region glycopeptides released with two IgA1 proteases. Typically, the hinge region of an alpha1 chain contains three to five O-linked glycan chains. Variants of the hinge region peptides released from IgA1(Kni) myeloma protein carrying 0, 1, 2, or 3 GalNAc residues were observed in the mass spectra as well as the nonglycosylated peptide. Variable numbers of Gal residues indicated additional heterogeneity in O-glycosylation of IgA1. In the hinge region preparation from normal human serum IgA1, glycopeptides carrying 2, 3, 4, or 5 GalNAc residues with variable numbers of Gal residues were detected. In conclusion, our new approach using the site-specific cleavage with two IgA1 proteases allowed precise and sensitive MALDI-TOF mass spectrometric analysis of O-glycosylation heterogeneity in IgA1 hinge region.
Collapse
Affiliation(s)
- J Novak
- Department of Microbiology, 845 19th St. S., BBRB 734, University of Alabama at Birmingham, 35294, Birmingham, AL, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chintalacharuvu SR, Emancipator SN. Differential glycosylation of two glycoproteins synthesized by murine B cells in response to IL-4 plus IL-5. Cytokine 2000; 12:1182-8. [PMID: 10930294 DOI: 10.1006/cyto.2000.0699] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine whether selected cytokines, known to stimulate profoundly B-cell activation and differentiation, also have as yet unrecognized effects upon the glycosylation of secreted Ig and/or membrane-associated proteins. The glycosylation of both secreted IgM and membrane-bound MHC Class-I synthesized by CH12LX cells was detected by enzyme-lectin conjugates in immunoabsorption assays. Stimulation of B cells with IL-4 plus IL-5 significantly decreases the terminal glycosylation of secreted IgM, whereas LPS has a minor effect, despite the fact that both stimuli are equipotent for IgM secretion. Neither LPS nor IL-4 plus IL-5 affect MHC Class-I expression. However, IL-4 plus IL-5 substantially increases the terminal glycosylation of MHC Class-I produced from both mIgM(+)and mIgA(+)CH12LX cells. LPS has no or a modest effect on the terminal glycosylation of MHC Class-I produced from CH12LX cells. These results suggest that Th(2)-derived cytokines differentially influence the glycosylation of secreted and membrane-associated glycoproteins of B cells. In turn, this might elucidate the basis of aberrant glycosylation reported in conditions such as IgA nephropathy, cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- S R Chintalacharuvu
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
26
|
Kido M, Asano M, Iwakura Y, Ichinose M, Miki K, Furukawa K. Presence of A Higher Molecular Weight .BETA.-1,4-Galactosyltransferase in Mouse Liver. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Masahiro Kido
- Department of Biosignal Research,Tokyo Metropolitan Institute of Gerontology,Itabashi-ku,Tokyo 173-0015
- Department of Gastroenterology,Faculty of Medicine,University of Tokyo,Bunkyo-ku,Tokyo 113-8655
| | - Masahide Asano
- Center for Experimental Medicine,Institute of Medical Science,University of Tokyo,Minato-ku,Tokyo 108-0071
| | - Yoichiro Iwakura
- Center for Experimental Medicine,Institute of Medical Science,University of Tokyo,Minato-ku,Tokyo 108-0071
| | - Masao Ichinose
- Department of Gastroenterology,Faculty of Medicine,University of Tokyo,Bunkyo-ku,Tokyo 113-8655
| | - Kazumasa Miki
- First Department of Internal Medicine,Toho University School of Medicine,Ota-ku,Tokyo 143-8541
| | - Kiyoshi Furukawa
- Department of Biosignal Research,Tokyo Metropolitan Institute of Gerontology,Itabashi-ku,Tokyo 173-0015
| |
Collapse
|
27
|
Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:35-53. [PMID: 10580128 DOI: 10.1016/s0304-4165(99)00168-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymatic glycosylation of proteins and lipids is an abundant and important biological process. A great diversity of oligosaccharide structures and types of glycoconjugates is found in nature, and these are synthesized by a large number of glycosyltransferases. Glycosyltransferases have high donor and acceptor substrate specificities and are in general limited to catalysis of one unique glycosidic linkage. Emerging evidence indicates that formation of many glycosidic linkages is covered by large homologous glycosyltransferase gene families, and that the existence of multiple enzyme isoforms provides a degree of redundancy as well as a higher level of regulation of the glycoforms synthesized. Here, we discuss recent cloning strategies enabling the identification of these large glycosyltransferase gene families and exemplify the implication this has for our understanding of regulation of glycosylation by discussing two galactosyltransferase gene families.
Collapse
Affiliation(s)
- M Amado
- Faculty of Health Sciences, School of Dentistry, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
28
|
Furukawa K, Sato T. Beta-1,4-galactosylation of N-glycans is a complex process. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:54-66. [PMID: 10580129 DOI: 10.1016/s0304-4165(99)00169-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most beta-1,4-galactosyltransferase (beta-1,4-GalT)-knockout mice die after birth. Although several defects were found transiently in these animals, the primary cause of death is obscure. Not only beta-1,4-linked galactose residues on N-glycans, but also beta-1, 4-GalT activities were found in some of the tissues. Recently, five human genes which encode beta-1,4-GalTs have been cloned, and the possible presence of such novel beta-1,4-GalTs in mice is considered to bring about survival of the mutant animal beyond birth. In order to understand the semi-lethal nature of this animal, it is inevitable to clarify how individual novel beta-1,4-GalTs are involved in the biosynthesis of glycoconjugates based on their acceptor-substrate specificities.
Collapse
Affiliation(s)
- K Furukawa
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| | | |
Collapse
|
29
|
Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A, Dwek RA. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A 1999; 96:13044-9. [PMID: 10557270 PMCID: PMC23897 DOI: 10.1073/pnas.96.23.13044] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion protein consists of an ensemble of glycosylated variants or glycoforms. The enzymes that direct oligosaccharide processing, and hence control the glycan profile for any given glycoprotein, are often exquisitely sensitive to other events taking place within the cell in which the glycoprotein is expressed. Alterations in the populations of sugars attached to proteins can reflect changes caused, for example, by developmental processes or by disease. Here we report that normal (PrP(C)) and pathogenic (PrP(Sc)) prion proteins (PrP) from Syrian hamsters contain the same set of at least 52 bi-, tri-, and tetraantennary N-linked oligosaccharides, although the relative proportions of individual glycans differ. This conservation of structure suggests that the conversion of PrP(C) into PrP(Sc) is not confined to a subset of PrPs that contain specific sugars. Compared with PrP(C), PrP(Sc) contains decreased levels of glycans with bisecting GlcNAc residues and increased levels of tri- and tetraantennary sugars. This change is consistent with a decrease in the activity of N-acetylglucosaminyltransferase III (GnTIII) toward PrP(C) in cells where PrP(Sc) is formed and argues that, in at least some cells forming PrP(Sc), the glycosylation machinery has been perturbed. The reduction in GnTIII activity is intriguing both with respect to the pathogenesis of the prion disease and the replication pathway for prions.
Collapse
Affiliation(s)
- P M Rudd
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Watson M, Rudd PM, Bland M, Dwek RA, Axford JS. Sugar printing rheumatic diseases: a potential method for disease differentiation using immunoglobulin G oligosaccharides. ARTHRITIS AND RHEUMATISM 1999; 42:1682-90. [PMID: 10446868 DOI: 10.1002/1529-0131(199908)42:8<1682::aid-anr17>3.0.co;2-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To look for oligosaccharide structural variants of IgG that may be unique to specific rheumatic diseases. METHODS Using normal-phase high-performance liquid chromatography technology, a comparison was made of the oligosaccharide pools released from serum IgG from patients with systemic lupus erythematosus (SLE) (n = 10), ankylosing spondylitis (AS) (n = 10), primary Sjögren's syndrome (n = 6), juvenile chronic arthritis (JCA) (n = 13), psoriatic arthritis (n = 9), rheumatoid arthritis (RA) (n = 5), and healthy control individuals (n = 19). RESULTS The oligosaccharide pools were resolved into 13 peaks and the relative proportions of the peaks in each disease group was significantly different from that in healthy controls (P < 0.0001-0.05). A characteristic serum IgG oligosaccharide profile, or sugar print, for each of the rheumatic diseases was found. The sugar prints exhibited a range of glycosylation patterns whereby all RA (P < 0.0001) and JCA (P < 0.006) patients had predominantly agalactosyl structures, while SLE (P < 0.03-0.0001) and AS (P < 0.025-0.0001) patients had predominantly digalactosyl structures. CONCLUSION The data suggest that each disease is associated with a specific mechanism that gives rise to alterations in the normal glycosylation pattern of IgG. Sugar printing of IgG is therefore a potential means for the differentiation of rheumatic diseases and may provide insight into disease pathogenesis.
Collapse
MESH Headings
- Adult
- Arthritis, Juvenile/blood
- Arthritis, Juvenile/immunology
- Arthritis, Psoriatic/blood
- Arthritis, Psoriatic/immunology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/immunology
- Chromatography, High Pressure Liquid/methods
- Female
- Genetic Variation
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/immunology
- Male
- Middle Aged
- Oligosaccharides/analysis
- Rheumatic Diseases/immunology
- Spondylitis, Ankylosing/blood
- Spondylitis, Ankylosing/immunology
Collapse
Affiliation(s)
- M Watson
- St. George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
31
|
Takayama S, Chung SJ, Igarashi Y, Ichikawa Y, Sepp A, Lechler RI, Wu J, Hayashi T, Siuzdak G, Wong CH. Selective inhibition of beta-1,4- and alpha-1,3-galactosyltransferases: donor sugar-nucleotide based approach. Bioorg Med Chem 1999; 7:401-9. [PMID: 10218835 DOI: 10.1016/s0968-0896(98)00249-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A combined rational and library approach was used to identify bisphosphonates (IC50 = 20 microM) and galactose type 1-N-iminosugar (IC50=45 microM) as novel motifs for selective inhibition of beta-1,4-galactosyltransferase (beta-1,4-GalT) and alpha-1,3-galactosyltransferase (alpha-1,3-GalT), respectively. Our results demonstrate that, though these two galactosyltransferases both utilize the same donor sugar-nucleotide (UDP-Gal), the difference in their mechanisms can be utilized to design donor sugar or nucleotide analogues with inhibitory activities selective for only one of the galactosyltransferases. Investigation of beta-1,4-GalT inhibition using UDP-2-deoxy-2-fluorogalactose (UDP-2-F-Gal), UDP, and bisphosphonates, also led to the observation of metal dependent inhibition of beta-1,4-GalT. These observations and the novel inhibitor motifs identified in this study pave the way for the design and identification of even more potent and selective galactosyltransferase inhibitors.
Collapse
Affiliation(s)
- S Takayama
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sato T, Furukawa K. Differences in N-acetyllactosamine synthesis between beta-1,4-galactosyltransferases I and V. Glycoconj J 1999; 16:73-6. [PMID: 10580653 DOI: 10.1023/a:1006957921382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Unlike classical beta-1,4-galactosyltransferase (beta-1,4-GalT I), beta-1,4-GalT V (formerly IV**) has little activity towards 1 mM N-acetylglucosamine [Sato et al. (1998) Proc Natl Acad Sci USA 95:472-477]. The human beta-1,4-GalTs I and V were expressed individually in Sf-9 cells by transfection of the full coding sequences, and their N-acetyllactosamine synthetase activities were determined towards different N-acetylglucosamine concentrations. Kinetic studies using the cell homogenates as an enzyme source revealed that beta-1,4-GalTs I and V possess Km values of 0.6 mM and 33 mM towards N-acetylglucosamine, and of 48 microM and 41 microM towards UDP-Gal, respectively. No significant inhibition of N-acetyllactosamine synthesis with alpha-lactalbumin was observed for beta-1,4-GalT V but the significant inhibition with alpha-lactalbumin was observed for beta-1,4-GalT I.
Collapse
Affiliation(s)
- T Sato
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Japan
| | | |
Collapse
|
33
|
Keusch J, Lydyard PM, Delves PJ. The effect on IgG glycosylation of altering beta1, 4-galactosyltransferase-1 activity in B cells. Glycobiology 1998; 8:1215-20. [PMID: 9858643 DOI: 10.1093/glycob/8.12.1215] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An absence of galactose on the N-linked oligosaccharides of immunoglobulin G (IgG) has been shown to affect the functional activity of the antibody molecule. In patients with rheumatoid arthritis there is an increased proportion of IgG which lacks galactose and correspondingly lower levels of beta1, 4-galactosyltransferase (beta4Gal-T) activity. The recent demonstration of several expressed beta4Gal-T genes in man raises the possibility that the enzyme responsible for the decreased IgG galactose is not the "classical" beta4Gal-T (beta4Gal-T1). To directly address the question of whether reduced beta4Gal-T1 would lead to reduced IgG galactose, the level of beta4Gal-T1 in a human IgG-secreting B cell line was specifically altered using stable transfection with sense (SpcDNA3-Gal-T1) or antisense (ASpcDNA3-Gal-T1) human beta4Gal-T1 cDNA. SpcDNA3-Gal-T1 B cell transfectants expressed up to a 2.5-fold higher level of beta4Gal-T enzyme activity for the exogenous neoglycoconjugate acceptor GlcNAc-pITC-BSA than did ASpcDNA3-Gal-T1 transfectants. Flow cytometric analysis with Ricinus communis agglutinin I (RCAI) revealed an overall greater number of Galbeta1,4GlcNAc structures in the fixed and permeabilized SpcDNA3-Gal-T1 B cell transfectants compared with the ASpcDNA3-Gal-T1 transfectants. Moreover, there was increased galactosylation of IgG secreted from the SpcDNA3-Gal-T1 transfectants relative to the ASpcDNA3-Gal-T1 B cell transfectants. Alteration of the level of the "classical" beta4Gal-T (beta4Gal-T1) in B cells therefore affects IgG glycosylation.
Collapse
Affiliation(s)
- J Keusch
- Department of Immunology, University College London, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK
| | | | | |
Collapse
|
34
|
Keusch J, Lydyard PM, Berger EG, Delves PJ. B lymphocyte galactosyltransferase protein levels in normal individuals and in patients with rheumatoid arthritis. Glycoconj J 1998; 15:1093-7. [PMID: 10386894 DOI: 10.1023/a:1006957711557] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have quantified the level of beta4-galactosyltransferase protein in human B lymphocytes using an ELISA-based assay. Between 1-10ng of beta4-galactosyltransferase was detected per mg total cellular protein, indicating that this enzyme constitutes <0.001% of B lymphocyte cellular protein. Akin to previous studies, individuals with rheumatoid arthritis exhibited reduced lymphocytic galactosyltransferase enzyme activity compared with normal controls when using ovalbumin as the acceptor substrate. The levels of enzyme protein present in B lymphocytes from patients with rheumatoid arthritis was, however, not reduced suggesting that the B lymphocyte galactosyltransferase catalytic activity may be regulated post-translationally.
Collapse
Affiliation(s)
- J Keusch
- Department of Immunology, University College London, UK
| | | | | | | |
Collapse
|
35
|
Shikata K, Yasuda T, Takeuchi F, Konishi T, Nakata M, Mizuochi T. Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj J 1998; 15:683-9. [PMID: 9881774 DOI: 10.1023/a:1006936431276] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to elucidate the relationship between glycosylation of IgG and aging, oligosaccharide structures of human IgG purified from sera of men and women aged 18 to 73 years were investigated. Oligosaccharides were liberated quantitatively from IgG by hydrazinolysis followed by N-acetylation and were tagged with p-aminobenzoic acid ethyl ester. The oligosaccharide structures were then analyzed by HPLC in conjunction with sequential exoglycosidase digestion. All IgG samples were shown to contain a series of biantennary complex type oligosaccharides which consisted of +/-Galbeta1-4GlcNAcbeta1-2Manalpha1-6(+/-GlcNAcbeta 1-4)(+/-Galbeta1-4GlcNAcbeta1-2Man(alpha)1-3)Man(beta)1-+ ++4GlcNAcbeta1-4(+/- Fucalpha1-6)GlcNAc and their mono- and disialo glycoforms in different ratios. In female IgG samples only, the incidence of non-galactosylated oligosaccharides with non-reducing terminal GlcNAc residues increased with aging (r>0.8), whereas that of digalactosylated oligosaccharides decreased (r<-0.8). A weaker correlation was observed between aging and the incidence of neutral and monosialo oligosaccharides in female IgG (r=0.461 and r= -0.538, respectively) and between aging and the incidence of oligosaccharides with a bisecting GlcNAc in both male and female IgG samples (r=0.566 and r=0.440, respectively). In addition, a significant change with aging in the galactosylation of IgG oligosaccharides was observed in females in their thirties, fifties, and sixties (p<0.02, p<0.01, and p<0.04, respectively). These findings may contribute to our understanding of autoimmune diseases such as rheumatoid arthritis in which glycosylation is involved.
Collapse
Affiliation(s)
- K Shikata
- Department of Applied Chemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Oligosaccharide structures play a key role in the antigenicity of a number of clinically important antigens such as blood group determinants. Interest in glycobiology has increased dramatically amongst immunologists during the last few years due to the fact that oligosaccharides also play a central role in adhesion and homing events during inflammatory processes (1), comprise powerful xenotransplantation antigens (2), and may provide targets for tumor immunotherapy (3). Additionally, alterations in glycosylation are now known to occur in a number of autoimmune diseases. This review will first discuss some general aspects of protein glycosylation and then explore some of the autoimmune diseases in which the role of glycosylation has been examined.
Collapse
Affiliation(s)
- P J Delves
- Department of Immunology, The Windeyer Institute of Medical Sciences, University College London Medical School, UK.
| |
Collapse
|
37
|
Affiliation(s)
- A Kobata
- Tokyo Metropolitan Institute of Gerontology, Japan.
| |
Collapse
|
38
|
Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 1998; 273:2260-72. [PMID: 9442070 DOI: 10.1074/jbc.273.4.2260] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human serum immunoglobulins IgG and IgA1 are produced in bone marrow and both interact with specific cellular receptors that mediate biological events. In contrast to IgA1, the glycosylation of IgG has been well characterized, and its interaction with various Fc receptors (Fc Rs) has been well studied. In this paper, we have analyzed the glycosylation of IgA1 and IgA1 Fab and Fc as well as three recombinant IgA1 molecules, including two N-glycosylation mutants. Amino acid sequencing data of the IgA1 Fc O-glycosylated hinge region indicated that O-glycans are located at Thr228, Ser230, and Ser232, while O-glycan sites at Thr225 and Thr236 are partially occupied. Over 90% of the N-glycans in IgA1 were sialylated, in contrast to IgG, where < 10% contain sialic acid. This paper contains the first report of Fab glycosylation in IgA1, and (in contrast to IgG Fab, which contains only N-linked glycans) both N- and O-linked oligosaccharides were identified. Analysis of the N-glycans attached to recombinant IgA1 indicated that the Cα 2 N-glycosylation site contained mostly biantennary glycans, while the tailpiece site, absent in IgG, contained mostly triantennary structures. Further analysis of these data suggested that processing at one Fc N-glycosylation site affects the other. Neutrophil Fcα R binding studies, using recombinant IgA1, indicated that neither the tailpiece region nor the N-glycans in the C alpha 2 domain contribute to IgA1-neutrophil Fcα R binding. This contrasts with IgG, where removal of the Fc N-glycans reduces binding to the Fcγ R. The primary sequence and disulfide bond pattern of IgA1, together with the crystal structures of IgG1 Fc and mouse IgA Fab and the glycan sequencing data, were used to generate a molecular model of IgA1. As a consequence of both the primary sequence and S-S bond pattern, the N-glycans in IgA1 Fc are not confined within the inter-α-chain space. The accessibility of the Cα 2 N-glycans provides an explanation for the increased sialylation and galactosylation of IgA1 Fc over that of IgG Fc N-glycans, which are confined in the space between the two Cγ 2 domains. This also suggests why in contrast to IgG Fc, the IgA1 N-glycans are not undergalactosylated in rheumatoid arthritis.
Collapse
Affiliation(s)
- T S Mattu
- Department of Biochemistry, Oxford University, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sato T, Furukawa K, Bakker H, Van den Eijnden DH, Van Die I. Molecular cloning of a human cDNA encoding beta-1,4-galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc beta-1,4-galactosyltransferase. Proc Natl Acad Sci U S A 1998; 95:472-7. [PMID: 9435216 PMCID: PMC18444 DOI: 10.1073/pnas.95.2.472] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A cDNA encoding a beta-1,4-galactosyltransferase named beta-1,4-GalT II was cloned from a cDNA library of the human breast tumor cell line, MRK-nu-1. Initially, a 860-bp PCR fragment was obtained from MRK-nu-1 mRNA by 3'-rapid amplification of cDNA ends by using two nested degenerate oligonucleotide primers based on a highly conserved amino acid sequence found in the catalytic domain of mammalian beta-1,4-galactosyltransferases and Lymnaea stagnalis beta-1,4-N-acetylglucosaminyltransferase (beta-1,4-GlcNAcT), both of which utilize the same sugar acceptor. This subsequently was used as a probe to isolate a 4.7-kb cDNA that contained an ORF of 1,164 bp predicting a polypeptide of 388 aa. Its deduced amino acid sequence shows an identity of 37% with that of the previously characterized human beta-1,4-galactosyltransferase (referred to as beta-1,4-GalT I) and of 28% with that of L. stagnalis beta-1,4-GlcNAcT. Study of the properties of the beta-1,4-GalT II fused to protein A expressed as a soluble form in COS-7 cells revealed that it is a genuine beta-1,4-GalT but has no lactose synthetase activity in the presence of alpha-lactalbumin. Northern blot analysis of 24 human tissues showed that they all express the beta-1,4-GalT II transcript, although the levels varied. These results indicate that human cells contain another beta-1,4-GalT.
Collapse
Affiliation(s)
- T Sato
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
40
|
Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E, Clausen H. A family of human beta4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:beta-n-acetylglucosamine beta1, 4-galactosyltransferases, beta4Gal-T2 and beta4Gal-T3. J Biol Chem 1997; 272:31979-91. [PMID: 9405390 DOI: 10.1074/jbc.272.51.31979] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BLAST analysis of expressed sequence tags (ESTs) using the coding sequence of the human UDP-galactose:beta-N-acetylglucosamine beta1, 4-galactosyltransferase, designated beta4Gal-T1, revealed a large number of ESTs with identical as well as similar sequences. ESTs with sequences similar to that of beta4Gal-T1 could be grouped into at least two non-identical sequence sets. Analysis of the predicted amino acid sequence of the novel ESTs with beta4Gal-T1 revealed conservation of short sequence motifs as well as cysteine residues previously shown to be important for the function of beta4Gal-T1. The likelihood that the identified ESTs represented novel galactosyltransferase genes was tested by cloning and sequencing of the full coding region of two distinct genes, followed by expression. Expression of soluble secreted constructs in the baculovirus system showed that these genes represented genuine UDP-galactose:beta-N-acetylglucosamine beta1, 4-galactosyltransferases, thus designated beta4Gal-T2 and beta4Gal-T3. Genomic cloning of the genes revealed that they have identical genomic organizations compared with beta4Gal-T1. The two novel genes were located on 1p32-33 and 1q23. The results demonstrate the existence of a family of homologous galactosyltransferases with related functions. The existence of multiple beta4-galactosyltransferases with the same or overlapping functions may be relevant for interpretation of biological functions previously assigned to beta4Gal-T1.
Collapse
Affiliation(s)
- R Almeida
- School of Dentistry, University of Copenhagen, Norre Allé 20, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
MESTECKY J, TOMANA M. Structural heterogeneity of glycans in IgA molecules: Implications for IgA nephropathy. Nephrology (Carlton) 1997. [DOI: 10.1111/j.1440-1797.1997.tb00280.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 1997; 52:509-16. [PMID: 9264010 DOI: 10.1038/ki.1997.361] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IgA1 proteins from sera of patients with IgA nephropathy (IgAN) are galactosylated to a lesser degree than those from healthy controls. The increased reactivity of intact or de-sialylated serum IgA1 with N-acetylgalactosamine (GalNAc)-specific lectins, Helix aspersa (HAA) and Caragana arborescens (CAA) and de-sialylated IgA1 with Helix pomatia (HPA) and Bauhinia purpurea (BPA) indicated that the Gal deficiency is in glycans located in the hinge region of IgA1 molecules. De-sialylated IgA from sera of 81 IgAN patients bound biotin-labeled lectin HAA more effectively than did de-sialylated IgA from 56 healthy controls (P < 0.0001). Similar results were observed for 67 IgAN patients and 52 controls with second lectin, CAA (P < 0.001). The binding patterns for 9 patients with mesangial proliferative glomerulonephritis of non-IgA origin were similar to those for controls. Incompletely galactosylated IgA1 capable of binding GalNAc-specific lectins was detected in complexes with IgG as demonstrated by ELISA, size-exclusion chromatography and sucrose gradient ultracentrifugation. The formation of IgA1-IgG complexes may affect the serum level of IgA1 by reducing the rate of its elimination and catabolic degradation by the liver.
Collapse
Affiliation(s)
- M Tomana
- Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | |
Collapse
|
43
|
Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y. Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 1997; 16:1850-7. [PMID: 9155011 PMCID: PMC1169788 DOI: 10.1093/emboj/16.8.1850] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Carbohydrate chains on a glycoprotein are important not only for protein conformation, transport and stability, but also for cell-cell and cell-matrix interactions. UDP-Gal:N-acetylglucosamine beta-1,4-galactosyltransferase (GalT) (EC 2.4.1.38) is the enzyme which transfers galactose (Gal) to the terminal N-acetylglucosamine (GlcNAc) of complex-type N-glycans in the Golgi apparatus. In addition, it has also been suggested that this enzyme is involved directly in cell-cell interactions during fertilization and early embryogenesis through a subpopulation of this enzyme distributed on the cell surface. In this study, GalT-deficient mice were produced by gene targeting in order to examine the pathological effects of the deficiency. GalT-deficient mice were born normally and were fertile, but they exhibited growth retardation and semi-lethality. Epithelial cell proliferation of the skin and small intestine was enhanced, and cell differentiation in intestinal villi was abnormal. These observations suggest that GalT plays critical roles in the regulation of proliferation and differentiation of epithelial cells after birth, although this enzyme is dispensable during embryonic development.
Collapse
Affiliation(s)
- M Asano
- Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Renau-Piqueras J, Guasch R, Azorín I, Seguí JM, Guerri C. Prenatal alcohol exposure affects galactosyltransferase activity and glycoconjugates in the Golgi apparatus of fetal rat hepatocytes. Hepatology 1997; 25:343-50. [PMID: 9021945 DOI: 10.1002/hep.510250215] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prenatal exposure to alcohol affects the morphological, structural, and functional features of the Golgi apparatus (GA), thus altering the glycosylation process in fetal hepatocytes. To elucidate the cellular mechanisms underlying these alterations, we have studied the effect of alcohol exposure in utero on the activity of liver galactosyltransferase, an enzyme involved in the glycosylation process, and on the hepatic glycoprotein sugar composition. For this, livers from 21-day-old fetuses obtained from control and ethanol-fed rats were used. Galactosyltransferase (GT) activity was determined in isolated GA cis and trans fractions. Colloidal gold-labeled lectin cytochemistry was used to analyze sugar residues in hepatocytes at the subcellular level. Finally, the integrity of the GA after alcohol treatment was assessed by electron microscopy and by evaluating the distribution of the Golgi beta-COP, a protein involved in vesicular trafficking. Prenatal alcohol exposure induces a significant increase in both liver weight and total protein content in the trans Golgi. Moreover, this treatment decreases the activity of galactosyltransferase, increases alpha-L-Fuc residues, and reduces the number of alpha-Man, GlcNAc(beta1,4,GlcNAc)1,2, GalNAc alpha1,3GalNAc, alpha-GalNAc, and a-Gal residues. Alcohol exposure also causes the Golgi cisternae to disappear in about 30% of the hepatocytes, and reduces 75% the number of anti-Golgi beta-COP protein binding sites. Our results suggest that the decrease in galactosyltransferase activity, the alterations in the oligosaccharide chain composition, and the reduction in the amount of Golgi beta-COP protein could be involved in the alterations in the glycosylation process, as well as in the accumulation of hepatic proteins observed after prenatal alcohol exposure. These alterations could contribute, therefore, to the alcohol-induced injury in the developing liver.
Collapse
Affiliation(s)
- J Renau-Piqueras
- Cell Biology and Pathology, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | |
Collapse
|
45
|
Abstract
Glycoproteins generally exist as populations of glycosylated variants (glycoforms) of a single polypeptide. Although the same glycosylation machinery is available to all proteins that enter the secretory pathway in a given cell, most glycoproteins emerge with characteristic glycosylation patterns and heterogeneous populations of glycans at each glycosylation site. The factors that control the composition of the glycoform populations and the role that heterogeneity plays in the function of glycoproteins are important questions for glycobiology. A full understanding of the implications of glycosylation for the structure and function of a protein can only be reached when a glycoprotein is viewed as a single entity. Individual glycoproteins, by virtue of their unique structures, can selectively control their own glycosylation by modulating interactions with the glycosylating enzymes in the cell. Examples include protein-specific glycosylation within the immunoglobulins and immunoglobulin superfamily and site-specific processing in ribonuclease, Thy-1, IgG, tissue plasminogen activator, and influenza A hemagglutinin. General roles for the range of sugars on glycoproteins such as the leukocyte antigens include orientating the molecules on the cell surface. A major role for specific sugars is in recognition by lectins, including chaperones involved in protein folding. In addition, the recognition of identical motifs in different glycans allows a heterogeneous population of glycoforms to participate in specific biological interactions.
Collapse
Affiliation(s)
- P M Rudd
- Department of Biochemistry, University of Oxford, U.K
| | | |
Collapse
|
46
|
Jeddi PA, Bodman-Smith KB, Lund T, Lydyard PM, Mengle-Gaw L, Isenberg DA, Youinou P, Delves PJ. Agalactosyl IgG and beta-1,4-galactosyltransferase gene expression in rheumatoid arthritis patients and in the arthritis-prone MRL lpr/lpr mouse. Immunol Suppl 1996; 87:654-9. [PMID: 8675223 PMCID: PMC1384147 DOI: 10.1046/j.1365-2567.1996.474593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reduced galactosylation of immunoglobulin G (IgG) is well documented in rheumatoid arthritis (RA), but the reason for this defect is still unknown. There is some evidence supporting a defect in the biosynthetic pathway, and a reduction in the level of beta-1,4-galactosyltransferase (beta-1,4-GalTase) enzyme activity. Since glycosyltransferases are, in general, regulated at the level of transcription, we have measured the level of beta-1,4-GalTase gene expression in B cells from patients with RA and normal control individuals. We found no significant difference in mRNA levels for the transferase in these two groups (P > 0.7). MRL/Mp-lpr/lpr (MRL-lpr) mice develop a spontaneous arthritis with increased levels of agalactosyl IgG (G0). In spite of a significant reduction in the level of beta-1,4-GalTase mRNA in total spleen lymphocytes from MRL-lpr mice compared with the congenic MRL/Mp-(+/+) (MRL-(+/+) mice and with CBA/Ca mice, we found comparable levels of the beta-1,4-GalTase mRNA in purified B cells from both spleen and lymph nodes of the three strains. Amongst the lymphoid compartments examined, the spleen and peripheral blood were found to be the major contributors of G0 in MRL-lpr mice. These data indicate that in neither human RA, nor in an animal model of this disease, is reduced IgG galactosylation caused by impaired expression of the beta-1,4-GalTase gene in B lymphocytes. Furthermore, splenic B cells, which have normal levels of beta-1,4-GalTase mRNA, appear to be a major source of G0 in MRL-lpr mice.
Collapse
Affiliation(s)
- P A Jeddi
- Department of Immunology, University College London Medical School, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Raymond A. Dwek
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
48
|
Youings A, Chang SC, Dwek RA, Scragg IG. Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem J 1996; 314 ( Pt 2):621-30. [PMID: 8670078 PMCID: PMC1217093 DOI: 10.1042/bj3140621] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alterations in the glycosylation of human IgG have been shown to occur in rheumatoid arthritis (RA). However, the precise nature and location of these changes have not been fully established. Therefore we carried out a detailed analysis of the oligosaccharides chemically released from intact human serum IgG and fragments of the molecule. Serum samples were from three healthy ('normal') individuals, and from four patients with RA. Site-specific glycolsylation of the glycoprotein was shown to occur, which extended to sites even within the Fab fragment. These were differences in galactosylation, sialylation and the presence of a bisecting N-acetylglucosomide. Disease related alterations were also shown to be site-specific. In particular, an increase in the proportion of agalactosylated oligosaccharides occurred on the Fc fragment in RA (P=0.057), but, in contrast to previous reports there was an increase on the light chain in the proportion of fully galactosylated, bisected and core fucosylated oligosaccharides (from 13% of total in normal to between 18 and 35% in RA, P=0.057)). There was also an Fab-specific increase in oligosaccharides bearing a bisecting N-acetylglucosamine and a core fucose (P=0.075) The site-specific glycosylation changes described in this paper reveal the complexity of the regulatory mechanism, perhaps reflecting the many levels at which regulation can occur.
Collapse
Affiliation(s)
- A Youings
- Glycobiology Institute, Department of Biochemistry, University of Oxford, U.K
| | | | | | | |
Collapse
|
49
|
Endo T, Furukawa K. Chapter 5 Rheumatoid arthritis and serum IgG. NEW COMPREHENSIVE BIOCHEMISTRY 1996. [DOI: 10.1016/s0167-7306(08)60291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Akimoto Y, Obinata A, Endo H, Furukawa K, Aoki D, Nozawa S, Hirano H. Immunocytochemical localization of the protein reactive to human beta-1, 4-galactosyltransferase antibodies during chick embryonic skin differentiation. Anat Rec (Hoboken) 1995; 243:109-19. [PMID: 8540625 DOI: 10.1002/ar.1092430113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND beta-1, 4-Galactosyltransferase (GalTase) transfers galactose from UDP-galactose to terminal N-acetylglucosamine in glycoconjugates and is located both in the Golgi apparatus and in the plasma membrane. The cell surface GalTase is thought to be involved in cell-to-cell recognition and cell-to-extracellular matrix interaction. METHODS By the use of specific monoclonal antibodies against human GalTase, changes in cell surface localization of the protein reactive to the antibodies in chick embryonic skin during its differentiation in vivo and in vitro were detected immunohistochemically at both light- and electron microscopic levels. The distribution of glycoconjugates having terminal N-acetylglucosamine residues was detected by staining with succinylated wheat germ agglutinin (s-WGA). RESULTS Under the light microscope, intense immunostaining was observed in the keratinized epidermis, particularly in the intermediate layer. Marked changes in the localization of the staining were observed in vitamin A-induced mucus-secreting skin, in which keratinization was suppressed. The localization of the immunostaining was in parallel with that of glycoconjugates having terminal N-acetylglucosamine residues. Immunoelectron microscopically the immunostaining was located on the cell surface and in the intercellular space of the desmosomes in the intermediate cells of the keratinized epidermis. However, the staining was not present on the cell surface but was detected on the limiting membrane of the mucous granules, in the mucous metaplastic epidermis. In contrast, the staining was always found in the Golgi apparatus in all of the cells. CONCLUSIONS These results suggest that the protein reactive to human GalTase antibody may be involved in chick epidermal differentiation.
Collapse
Affiliation(s)
- Y Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|