1
|
Su Y, Zhang Y, Zhang D, Xu J. Exploring the relationship between sarcopenia and 11 respiratory diseases: a comprehensive mendelian randomization analysis. Aging Clin Exp Res 2024; 36:205. [PMID: 39395132 PMCID: PMC11470909 DOI: 10.1007/s40520-024-02855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Sarcopenia (SP) is an aging-related loss of muscle mass and function, affecting the respiratory system. However, the causality of the association between sarcopenia on lung diseases remains elusive. METHODS The bidirectional univariate Mendelian randomization (UVMR), multivariate MR (MVMR) analysis, and mediation MR were utilized to systematically investigate the genetic causal relationship of SP and 11 respiratory diseases. Independent genomic variants related to sarcopenia or respiratory diseases were identified as instrumental variables (IVs), and the summary level data of genome-wide associated studies (GWAS) were obtained from the UK biobank and FinnGen. MVMR analysis was conducted to explore the mediation effects of body mass index (BMI), Alcohol Use Disorders Identification Test (AUDIT), smoking, education attainment (EA), physical activity, and Type 2 Diabetes Mellitus (T2DM). RESULTS Forward UVMR analysis based on the primary method revealed that pneumoconiosis was associated with a higher risk of appendicular lean mass (ALM) (OR = 1.01, p = 0.03), and BMI (10.65%), smoking (10.65%), and physical activity (17.70%) had a mediating role in the effect of pneumoconiosis on ALM. In reverse MR analysis, we found that genetically predicted ALM was significantly associated with an increased risk of pulmonary embolism (PE) (OR = 1.24, p = 7.21E-05). Chronic obstructive pulmonary disease (COPD) (OR = 0.98, p = 0.002) and sarcoidosis (OR = 1.01, p = 0.004) were identified to increase the loss of left-hand grip strength (HGS). Conversely, the increase in left- HGS presented a protective effect on chronic bronchitis (CB) (OR = 0.35, p = 0.03), (OR = 0.80, p = 0.02), and asthma (OR = 0.78, p = 0.04). Similarly, the loss of the right-HGS elevated the risk of low respiratory tract infection (LRTI) (OR = 0.97, p = 0.02) and bronchiectasis (OR = 1.01, p = 0.03), which is also an independent protective factor for LRTI and asthma. In the aspects of low HGS, the risk of LRTI was increased after MVMR analysis, and the risk of sarcoidosis and pneumoconiosis was elevated in the reverse analysis. Lastly, asthma was found to be related to the loss of the usual walking pace, and the reverse MR analysis suggested a causal relationship between the usual walking pace and LRTI (OR = 0.32, p = 2.79 × 10-5), asthma (OR = 0.24, p = 2.09 × 10-6), COPD (OR = 0.22, p = 6.64 × 10-4), and PE(OR = 0.35, p = 0.03). CONCLUSIONS This data-driven MR analysis revealed SP was bidirectional causally associated with lung diseases, providing genetic evidence for further mechanistic and clinical studies to understand the crosstalk between SP and lung diseases.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, No. 507 Zhengmin Road, Shanghai, 200433, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434000, China
| | - Di Zhang
- Chengdu University of Traditional Chinese Medicine, Sichuan Province, Chengdu, 610075, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, No. 507 Zhengmin Road, Shanghai, 200433, China.
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Vassileff N, Spiers JG, Bamford SE, Lowe RGT, Datta KK, Pigram PJ, Hill AF. Microglial activation induces nitric oxide signalling and alters protein S-nitrosylation patterns in extracellular vesicles. J Extracell Vesicles 2024; 13:e12455. [PMID: 38887871 PMCID: PMC11183937 DOI: 10.1002/jev2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralia
| | - Sarah E. Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| |
Collapse
|
3
|
Yoshimura H, Takeda Y, Shirai Y, Yamamoto M, Nakatsubo D, Amiya S, Enomoto T, Hara R, Adachi Y, Edahiro R, Yaga M, Masuhiro K, Koba T, Itoh-Takahashi M, Nakayama M, Takata S, Hosono Y, Obata S, Nishide M, Hata A, Yanagawa M, Namba S, Iwata M, Hamano M, Hirata H, Koyama S, Iwahori K, Nagatomo I, Suga Y, Miyake K, Shiroyama T, Fukushima K, Futami S, Naito Y, Kawasaki T, Mizuguchi K, Kawashima Y, Yamanishi Y, Adachi J, Nogami-Itoh M, Ueki S, Kumanogoh A. Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology. J Allergy Clin Immunol 2024; 153:1268-1281. [PMID: 38551536 DOI: 10.1016/j.jaci.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 05/07/2024]
Abstract
BACKGROUND Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.
Collapse
Affiliation(s)
- Hanako Yoshimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Nakatsubo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takatoshi Enomoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miho Itoh-Takahashi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - So Takata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Obata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akinori Hata
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoko Namba
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan; Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Nogami-Itoh
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, University Graduate School of Medicine, Hondo, Akita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Kraaijvanger R, Janssen Bonás M, Grutters JC, Paspali I, Veltkamp M, de Kleijn DPV, van Moorsel CHM. Decreased serpin C1 in extracellular vesicles predicts response to methotrexate treatment in patients with pulmonary sarcoidosis. Respir Res 2024; 25:166. [PMID: 38627696 PMCID: PMC11020913 DOI: 10.1186/s12931-024-02809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Sarcoidosis is a systemic granulomatous disease of unknown etiology primarily affecting the lungs. Treatment is needed when disease symptoms worsen and organ function deteriorates. In pulmonary sarcoidosis, prednisone and methotrexate (MTX) are the most common anti-inflammatory therapies. However, there is large inter-patient variability in response to treatment, and predictive response markers are currently lacking. OBJECTIVE In this study, we investigated the predictive potential of biomarkers in extracellular vesicles (EVs) isolated from biobanked serum of patients with pulmonary sarcoidosis stored prior to start of therapy. METHODS Protein concentrations of a four-protein test panel of inflammatory proteins were measured in a discovery (n = 16) and replication (n = 129) cohort of patients with sarcoidosis and 47 healthy controls. Response to therapy was defined as an improvement of the absolute score of > 5% forced vital capacity (FVC) and/or > 10% diffusion lung of carbon monoxide (DLCO) after 24 weeks compared to baseline (before treatment). RESULTS Serum protein levels differed between EV fractions and serum, and between sarcoidosis cases and controls. Serpin C1 concentrations in the low density lipid particle EV fraction were lower at baseline in the group of patients with a good response to MTX treatment in both the discovery cohort (p = 0.059) and in the replication cohort (p = 0.032). EV Serpin C1 showed to be a significant predictor for response to treatment with MTX (OR 0.4; p = 0.032). CONCLUSION This study shows that proteins isolated from EVs harbor a distinct signal and have potential as new predictive therapy response biomarkers in sarcoidosis.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
| | - Montse Janssen Bonás
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Ioanna Paspali
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | | | - Coline H M van Moorsel
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands.
| |
Collapse
|
5
|
Della Zoppa M, Bertuccio FR, Campo I, Tousa F, Crescenzi M, Lettieri S, Mariani F, Corsico AG, Piloni D, Stella GM. Phenotypes and Serum Biomarkers in Sarcoidosis. Diagnostics (Basel) 2024; 14:709. [PMID: 38611622 PMCID: PMC11011731 DOI: 10.3390/diagnostics14070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcoidosis is a multisystem disease, which is diagnosed on a compatible clinical presentation, non-necrotizing granulomatous inflammation in one or more tissue samples, and exclusion of alternative causes of granulomatous disease. Considering its heterogeneity, numerous aspects of the disease remain to be elucidated. In this context, the identification and integration of biomarkers may hold significance in clinical practice, aiding in appropriate selection of patients for targeted clinical trials. This work aims to discuss and analyze how validated biomarkers are currently integrated in disease category definitions. Future studies are mandatory to unravel the diverse contributions of genetics, socioeconomic status, environmental exposures, and other sociodemographic variables to disease severity and phenotypic presentation. Furthermore, the implementation of transcriptomics, multidisciplinary approaches, and consideration of patients' perspectives, reporting innovative insights, could be pivotal for a better understanding of disease pathogenesis and the optimization of clinical assistance.
Collapse
Affiliation(s)
- Matteo Della Zoppa
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Francesco Rocco Bertuccio
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
| | - Fady Tousa
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Mariachiara Crescenzi
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Sara Lettieri
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Francesca Mariani
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
| | - Angelo Guido Corsico
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| | - Davide Piloni
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
| | - Giulia Maria Stella
- Pneumology Unit, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, 27100 Pavia, Italy; (M.D.Z.); (F.R.B.); (F.T.); (M.C.); (S.L.); (F.M.); (A.G.C.); (D.P.); (G.M.S.)
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
| |
Collapse
|
6
|
Tomoto M, Mineharu Y, Sato N, Tamada Y, Nogami-Itoh M, Kuroda M, Adachi J, Takeda Y, Mizuguchi K, Kumanogoh A, Natsume-Kitatani Y, Okuno Y. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information. Sci Rep 2024; 14:1315. [PMID: 38225283 PMCID: PMC10789725 DOI: 10.1038/s41598-023-50905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-β signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.
Collapse
Affiliation(s)
- Mei Tomoto
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan
| | - Mari Nogami-Itoh
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
| | - Masataka Kuroda
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Yayoi Natsume-Kitatani
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan.
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan.
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15, Kuramoto-Cho, Tokushima City, Tokushima, 770-8503, Japan.
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Biomedical Computational Intelligence Unit, HPC- and AI-Driven Drug Development Platform Division, RIKEN Center for Computational Science, 7-1-26, Minatojima-Minami-Machi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
7
|
Ji HL, Xi NMS, Mohan C, Yan X, Jain KG, Zang QS, Gahtan V, Zhao R. Biomarkers and molecular endotypes of sarcoidosis: lessons from omics and non-omics studies. Front Immunol 2024; 14:1342429. [PMID: 38250062 PMCID: PMC10797773 DOI: 10.3389/fimmu.2023.1342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Nan Mile S. Xi
- Department of Mathematics and Statistics at Loyola University Chicago, Chicago, IL, United States
| | - Chandra Mohan
- Biomedical Engineering & Medicine, University of Houston, Houston, TX, United States
| | - Xiting Yan
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, United States
| | - Krishan G. Jain
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Qun Sophia Zang
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Vivian Gahtan
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Runzhen Zhao
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| |
Collapse
|
8
|
Nojima Y, Aoki M, Re S, Hirano H, Abe Y, Narumi R, Muraoka S, Shoji H, Honda K, Tomonaga T, Mizuguchi K, Boku N, Adachi J. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Comput Struct Biotechnol J 2023; 21:2172-2187. [PMID: 37013003 PMCID: PMC10066531 DOI: 10.1016/j.csbj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.
Collapse
Affiliation(s)
- Yosui Nojima
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560–8531, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Suyong Re
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya 464–8681, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104–0045, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Proteobiologics Co., Ltd., Osaka 567–0085, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Institute for Protein Research, Osaka University, Osaka 565–0871, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108–8639, Japan
- Correspondence to: Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, 4–6-1 Minato-ku, Shiroganedai, Tokyo 108–8639, Japan.
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Correspondence to: Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7–6-8 Saito-asagi, Ibaraki, Osaka 567–0085, Japan.
| |
Collapse
|
9
|
Kawasaki T, Takeda Y, Edahiro R, Shirai Y, Nogami-Itoh M, Matsuki T, Kida H, Enomoto T, Hara R, Noda Y, Adachi Y, Niitsu T, Amiya S, Yamaguchi Y, Murakami T, Kato Y, Morita T, Yoshimura H, Yamamoto M, Nakatsubo D, Miyake K, Shiroyama T, Hirata H, Adachi J, Okada Y, Kumanogoh A. Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19. Inflamm Regen 2022; 42:53. [PMID: 36451245 PMCID: PMC9709739 DOI: 10.1186/s41232-022-00243-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan
| | - Yoshito Takeda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Ryuya Edahiro
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mari Nogami-Itoh
- grid.482562.fLaboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Takanori Matsuki
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Hiroshi Kida
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Takatoshi Enomoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Reina Hara
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yoshimi Noda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuichi Adachi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Niitsu
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Saori Amiya
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuta Yamaguchi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Teruaki Murakami
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yasuhiro Kato
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayoshi Morita
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Hanako Yoshimura
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Makoto Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Daisuke Nakatsubo
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Kotaro Miyake
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Shiroyama
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Haruhiko Hirata
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Jun Adachi
- grid.482562.fLaboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka, 567-0085 Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka Japan ,grid.136593.b0000 0004 0373 3971Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan ,grid.480536.c0000 0004 5373 4593Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|