1
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
3
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zheng X, Zhang X, Wang H, Li Q, Yuan K, Zhou N, Yu Y, Song N, Fu J, Min W. Gene silencing of indoleamine 2,3-dioxygenase 2 in melanoma cells induces apoptosis through the suppression of NAD+ and inhibits in vivo tumor growth. Oncotarget 2017; 7:32329-40. [PMID: 27058624 PMCID: PMC5078016 DOI: 10.18632/oncotarget.8617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/14/2016] [Indexed: 01/23/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells. The purpose of this study was to assess the impact of IDO2 gene silencing as a way to inhibit B16-BL6 cancer cells in a murine model. Here, for the first time, we show that knockdown of IDO2 using small interfering RNA (siRNA) inhibits cancer cell proliferation, arrests cell cycle in G1, induces greater cell apoptosis, and reduces cell migration in vitro. Knockdown of IDO2 decreased the generation of nicotinamide adenine dinucleotide (NAD+) while increasing the generation of reactive oxygen species (ROS). We further demonstrate that cell apoptosis, induced by IDO2 downregulation, can be weakened by addition of exogenous NAD+, suggesting a novel mechanism by which IDO2 promotes tumor growth through its metabolite product NAD+. In addition to in vitro findings, we also demonstrate that IDO2 silencing in tumor cells using short hairpin RNA (shRNA) delayed tumor formation and arrested tumor growth in vivo. In conclusion, this study demonstrates a new non-immune-associated mechanism of IDO2 in vitro and IDO2 expression in B16-BL6 cells contributes to cancer development and progression. Our research provides evidence of a novel target for gene silencing that has the potential to enhance cancer therapy.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi University of Technology, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xiufen Zheng
- Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Xusheng Zhang
- Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Hongmei Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Qin Li
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Keng Yuan
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjing Zhou
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanrong Yu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Na Song
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Jiamin Fu
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Department of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Schumacher A, Dauven D, Zenclussen AC. Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/J×DBA/2J abortion-prone model. Am J Reprod Immunol 2017; 77. [PMID: 28224721 DOI: 10.1111/aji.12626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Best known for its endocrine and immunologic properties, progesterone (P4) is a pivotal player for pregnancy success. However, the immunologic actions underlying P4 protection are not completely understood. Here, we investigated whether P4 application in a murine abortion-prone combination regulates regulatory T cells (Treg) and dendritic cells (DCs) and thereby affects pregnancy outcome. METHOD OF STUDY Progesterone or vehicle was applied to DBA/2J-mated CBA/J abortion-prone animals in early pregnancy. On gestation day 10, peripheral and local DC and Treg numbers were analyzed and pregnancy outcome was determined. RESULTS Progesterone application provoked a significant increase in the uterine Treg pool but did not alter the abortion rate. Moreover, no significant changes could be observed in peripheral Treg levels and DC numbers after P4 application. CONCLUSIONS Our findings suggest that P4-induced local Treg elevation is not sufficient to overcome fetal rejection in this specific model of disturbed fetal tolerance.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Dominique Dauven
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
He W, Chen L, Zheng L, Luo L, Gao L. Prolonged survival effects induced by immature dendritic cells and regulatory T cells in a rat liver transplantation model. Mol Immunol 2016; 79:92-97. [PMID: 27764710 DOI: 10.1016/j.molimm.2016.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dendritic cells (DCs) and regulatory T (Treg) cells are crucial for inducing immune tolerance. However, the suppressive function of infused Treg cells and immature DCs (imDCs) following solid organ transplantation remains unclear. METHODS ImDCs derived from DA-donor rats and Treg cells isolated from spleens of Lewis rats were prepared. A heterotopic liver transplantation model was established to examine the immune tolerance effects of infusion of Treg-imDCs, imDCs and Treg cells individually. Th1/Th2 cytokines and TRAL were detected by ELISA. The overall rejection grade was assessed and the rejection activity index (RAI) was calculated. TUNEL-positive lymphocytes were detected in the portal area in liver sections. RESULTS The infusion of Treg-imDCs was more effective than imDCs or Treg cells individually. Moreover, the expression of IL-10 and TGF-β1 was significantly up-regulated, and IL-12 expression was significantly down-regulated, especially in the Treg-imDCs group. The percentage of TUNEL-positive cells was significantly higher in the Treg cells and imDCs groups. The RAI values in Treg-imDCs group on days 3 and 7 were lower than control, imDCs and Treg cells groups individually (p<0.05). Both TBIL and ALT levels in the Treg-imDCs and imDCs groups were significantly lower than those of the control and Treg cells groups, and serum TRAL levels increased significantly 10days after transplantation in the imDC and Treg-imDC groups compared with the control and Treg cells groups (P<0.001). CONCLUSION These data demonstrated that infusion of Treg cells and/or imDCs induces alloantigen tolerance and prolongs liver allograft survival. The infusion of Treg-imDCs was more effective than imDCs or Treg cells individually. ImDCs synergize with Treg cells in inducing and maintaining the feedback loop between imDCs and Treg cells in vivo.
Collapse
Affiliation(s)
- Wubing He
- Fujian Provincial Hospital, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China; Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, China.
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Liuping Luo
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Lingyun Gao
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|
7
|
Takasato F, Morita R, Schichita T, Sekiya T, Morikawa Y, Kuroda T, Niimi M, Yoshimura A. Prevention of allogeneic cardiac graft rejection by transfer of ex vivo expanded antigen-specific regulatory T-cells. PLoS One 2014; 9:e87722. [PMID: 24498362 PMCID: PMC3912059 DOI: 10.1371/journal.pone.0087722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/30/2013] [Indexed: 01/09/2023] Open
Abstract
The rate of graft survival has dramatically increased using calcineurin inhibitors, however chronic graft rejection and risk of infection are difficult to manage. Induction of allograft-specific regulatory T-cells (Tregs) is considered an ideal way to achieve long-term tolerance for allografts. However, efficient in vitro methods for developing allograft-specific Tregs which is applicable to MHC full-mismatched cardiac transplant models have not been established. We compared antigen-nonspecific polyclonal-induced Tregs (iTregs) as well as antigen-specific iTregs and thymus-derived Tregs (nTregs) that were expanded via direct and indirect pathways. We found that iTregs induced via the indirect pathway had the greatest ability to prolong graft survival and suppress angiitis. Antigen-specific iTregs generated ex vivo via both direct and indirect pathways using dendritic cells from F1 mice also induced long-term engraftment without using MHC peptides. In antigen-specific Treg transferred models, activation of dendritic cells and allograft-specific CTL generation were suppressed. The present study demonstrated the potential of ex vivo antigen-specific Treg expansion for clinical cell-based therapeutic approaches to induce lifelong immunological tolerance for allogeneic cardiac transplants.
Collapse
Affiliation(s)
- Fumika Takasato
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Takashi Schichita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Yasuhide Morikawa
- Department of Pediatric Surgery, International University Medical Welfare Hospital, Nasushiobara, Tochigi, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Niimi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Wållberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol 2013; 34:583-91. [PMID: 24054837 DOI: 10.1016/j.it.2013.08.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
There are three prerequisites for development of the autoimmune disease type 1 diabetes (T1D). First, β cell-reactive T cells need to be activated; second, the response needs to be proinflammatory; and finally, immune regulation of autoreactive responses must fail. Here, we describe our current understanding of the cell types and immune mechanisms involved in each of these steps leading to T1D. Novel findings regarding β cell involvement in its own destruction, the importance of the microbiota for instruction of the immune system, and recent data from studies in T1D patients are discussed. In addition, we summarise therapeutic approaches to T1D, and how these relate to the immune mechanisms involved in disease development.
Collapse
Affiliation(s)
- Maja Wållberg
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB21QP, UK.
| | | |
Collapse
|
9
|
Immunosuppressive mechanisms of regulatory dendritic cells in cancer. CANCER MICROENVIRONMENT 2013; 6:159-67. [PMID: 23749739 DOI: 10.1007/s12307-013-0133-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Three major functional subsets of dendritic cells (DCs) have been described in the tumor microenvironment in patients with cancer and tumor-bearing animals: (i) conventional DCs with intact antigen-presenting capabilities, (ii) functionally defective DCs with decreased motility and low ability to uptake, process and present antigens or produce cytokines and (iii) regulatory DCs with high capacity to suppress T cell proliferation, induce differentiation of regulatory T cells or support immune tolerance. Phenotypic characteristics of regulatory DCs (regDCs), as well as the mechanisms of T cell inhibition, vary in different experimental conditions and environments, suggesting high level of their plasticity and probably different origin. Although new data demonstrate that regDCs may play an important role at early stages of tumor development, functional differences and clinical significance of emergence of different myeloid regulatory cells (MDSCs, regDCs, M2 macrophages, N2 neutrophils, mast cells) in cancer remain to be determined.
Collapse
|
10
|
Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, Breckpot K, Escors D. Retroviral and lentiviral vectors for the induction of immunological tolerance. SCIENTIFICA 2012; 2012:694137. [PMID: 23526794 PMCID: PMC3605697 DOI: 10.6064/2012/694137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Retroviral and lentiviral vectors have proven to be particularly efficient systems to deliver genes of interest into target cells, either in vivo or in cell cultures. They have been used for some time for gene therapy and the development of gene vaccines. Recently retroviral and lentiviral vectors have been used to generate tolerogenic dendritic cells, key professional antigen presenting cells that regulate immune responses. Thus, three main approaches have been undertaken to induce immunological tolerance; delivery of potent immunosuppressive cytokines and other molecules, modification of intracellular signalling pathways in dendritic cells, and de-targeting transgene expression from dendritic cells using microRNA technology. In this review we briefly describe retroviral and lentiviral vector biology, and their application to induce immunological tolerance.
Collapse
Affiliation(s)
- Inès Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Roberta Laranga
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Antonella Padella
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Karine Breckpot
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- *David Escors:
| |
Collapse
|
11
|
Wang Y, Ma D, Jie Y, Wu Y, Pan Z. Sinomenine can prolong high-risk corneal graft survival in a rat model. Immunotherapy 2012; 4:581-6. [PMID: 22788126 DOI: 10.2217/imt.12.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS To study the role of sinomenine (SIN) in prolonging high-risk corneal graft survival in rats. METHODS All recipients were randomly assigned to SIN, cyclosporine A (CsA), SIN plus CsA and control groups. IL-2, IL-10, Fas-Fas ligand and CD4(+)CD25(+)FoxP3(+) T cells in peripheral blood were detected. In addition, rat corneal grafts' survival times were recorded. RESULTS Survival time was 15.88 ± 5.87 days in the SIN group, 17.67 ± 5.43 days in the CsA group and 20.75 ± 4.77 days in the drug combination group, which were longer survival times than those in the control group (p < 0.05). Compared with the SIN and CsA groups, levels of CD4(+)CD25(+)FoxP3(+) lymphocytes in the control group were decreased (p < 0.05) and were increased in the cotreated group (p < 0.05). IL-2 levels in the SIN-only and CsA-only groups were lower than those in the control group (p < 0.05) and higher than those in the cotreated group (p < 0.05); however, the results for IL-10 were different. The expressions of Fas and Fas ligand were least in the control group. CONCLUSION SIN could prolong allograft survival and might have potential clinical usage.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Liu X, Qu X, Chen Y, Liao L, Cheng K, Shao C, Zenke M, Keating A, Zhao RCH. Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1182-92. [PMID: 22753940 DOI: 10.4049/jimmunol.1102996] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Suppression of immune response by mesenchymal stem/stromal cells (MSCs) is well documented. However, their regulatory effects on immune cells, especially regulatory dendritic cells, are not fully understood. We have identified a novel Sca-1(+)Lin(-)CD117(-) MSC population isolated from mouse embryonic fibroblasts (MEF) that suppressed lymphocyte proliferation in vitro. Moreover, the Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced hematopoietic stem/progenitor cells to differentiate into novel regulatory dendritic cells (DCs) (Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs) when cocultured in the absence of exogenous cytokines. Small interfering RNA silencing showed that Sca-1(+)Lin(-)CD117(-) MEF-MSCs induced the generation of Sca-1(+)Lin(-)CD117(-) MEF-MSC-induced DCs via IL-10-activated SOCS3, whose expression was regulated by the JAK-STAT pathway. We observed a high degree of H3K4me3 modification mediated by MLL1 and a relatively low degree of H3K27me3 modification regulated by SUZ12 on the promoter of SOCS3 during SOCS3 activation. Importantly, infusion of Sca-1(+)CD117(-)Lin(-) MEF-MSCs suppressed the inflammatory response by increasing DCs with a regulatory phenotype. Thus, our results shed new light on the role of MSCs in modulating regulatory DC production and support the clinical application of MSCs to reduce the inflammatory response in numerous disease states.
Collapse
Affiliation(s)
- Xingxia Liu
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qi H, Liu JP, Deng CY, Zhou HX, Deng SP, Li FR. A role for anti-CD45RB monoclonal antibody treatment upon dendritic cells. Immunol Res 2012; 52:250-7. [DOI: 10.1007/s12026-012-8336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Bhatt S, Fung JJ, Lu L, Qian S. Tolerance-inducing strategies in islet transplantation. Int J Endocrinol 2012; 2012:396524. [PMID: 22675353 PMCID: PMC3366204 DOI: 10.1155/2012/396524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/08/2012] [Indexed: 12/12/2022] Open
Abstract
Allogeneic islet transplantation is a promising approach for restoring normoglycemia in type 1 diabetic patients. Current use of immunosuppressive therapies for management of islet transplant recipients can be counterintuitive to islet function and can lead to complications in the long term. The induction of donor-specific tolerance eliminates the dependency on immunosuppression and allows recipients to retain responses to foreign antigens. The mechanisms by which tolerance is achieved involve the deletion of donor-reactive T cells, induction of T-cell anergy, immune deviation, and generation of regulatory T cells. This review will outline the various methods used for inducing donor-specific tolerance in islet transplantation and will highlight the previously unforeseen potential of tissue stromal cells in promoting islet engraftment.
Collapse
Affiliation(s)
- Sumantha Bhatt
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John J. Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- *Shiguang Qian:
| |
Collapse
|
15
|
Wang FS, Zhang JL, Shao ZG, Liu YF. Donor dendritic cell proliferation and migration in hepatic allografts by pretransplant intraportal infusion of recipient blood into donor rats. Transplant Proc 2011; 43:3946-54. [PMID: 22172877 DOI: 10.1016/j.transproceed.2011.08.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/14/2011] [Accepted: 08/29/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION We have reported that recipient blood transfusion pretransplant prolongs hepatic allograft survival in rats. This study further investigated the mechanisms of the phenomenon. MATERIALS AND METHODS Male LEW and ACI rats were used as liver transplant recipients and donors, respectively. Experimental animals were divided into control; treatment experimental; and intraportally transfused (1 mL recipient blood) at 7 days before transplantation. RESULTS Rat survival time was significantly longer among the experiment versus the control group. A large number of donor-source dendritic cells were detected among infiltrating cells in the liver and spleen in the experimental group. CONCLUSION We concluded that the prolonged survival of hepatic allograft in these rats was associated with donor dendritic cell proliferation and migration.
Collapse
Affiliation(s)
- F S Wang
- Department of General Surgery, the First Hospital of China Medical University, Shenyang, China.
| | | | | | | |
Collapse
|
16
|
Ibarra JM, Quinones MP, Estrada CA, Jimenez F, Martinez HG, Ahuja SS. CD8α⁺ dendritic cells improve collagen-induced arthritis in CC chemokine receptor (CCR)-2 deficient mice. Immunobiology 2011; 216:971-8. [PMID: 21531476 PMCID: PMC3426926 DOI: 10.1016/j.imbio.2011.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/23/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Dendritic cells (DCs) have long been recognized as potential therapeutic targets of rheumatoid arthritis (RA). Increasing evidence has showed that DCs are capable of suppressing autoimmunity by expanding FoxP3⁺ regulatory T cells (T(reg)), which in turn exert immunosuppression by increasing TGFβ-1. In the SKG mice, activated DC prime autoreactive T cells causing autoantibody production and an inflammatory arthritic response. Recently, we reported that CC-chemokine receptor-2 deficient (Ccr2⁻/⁻) mice had impaired DCs migration and reduced CD8α⁺ DCs in the C57Bl/6J mice strain and that these mice were more susceptible to collagen antibody-induced arthritis (CAIA), compared to wild type mice. To examine the mechanism by which DCs contribute to the increased susceptibility of arthritis in Ccr2⁻/⁻ mice, we tested the hypothesis that CD8α⁺ DCs are protective (tolerogenic) against autoimmune arthritis by examining the role of CD8α⁺ DCs in Ccr2⁻/⁻ and SKG mice. METHODS To examine the mechanism by which DCs defects lead to the development of arthritis, we used two murine models of experimental arthritis: collagen-induced arthritis (CIA) in DBA1/J mice and zymosan-induced arthritis in SKG mice. DBA1/J mice received recombinant fms-like tyrosine kinase 3 ligand (Flt3L) injections to expand endogenous DCs populations or adoptive transfers of CD8α⁺ DCs. RESULTS Flt3L-mediated expansion of endogenous CD8α⁺ DCs resulted in heightened susceptibility of CIA. In contrast, supplementation with exogenous CD8α⁺ DCs ameliorated arthritis in Ccr2⁻/⁻ mice and enhanced TGFβ1 production by T cells. Furthermore, SKG mice with genetic inactivation of CCR2 did not affect the numbers of DCs nor improve the arthritis phenotype. CONCLUSION CD8α⁺ DCs were tolerogenic to the development of arthritis. CD8α⁺ DCs deficiency heightened the sensitivity to arthritis in Ccr2⁻/⁻ mice. Ccr2 deficiency did not alter the arthritic phenotype in SKG mice suggesting the arthritis in Ccr2⁻/⁻ mice was T cell-independent.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/therapy
- CD8 Antigens/immunology
- Collagen Type II/administration & dosage
- Collagen Type II/adverse effects
- Collagen Type II/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Disease Models, Animal
- Immune Tolerance/drug effects
- Immunoglobulins/analysis
- Immunoglobulins/biosynthesis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Receptors, CCR2/deficiency
- Receptors, CCR2/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- fms-Like Tyrosine Kinase 3/administration & dosage
- fms-Like Tyrosine Kinase 3/immunology
Collapse
Affiliation(s)
- Jessica M. Ibarra
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
| | - Marlon P. Quinones
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Carlos A. Estrada
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Fabio Jimenez
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Hernan G. Martinez
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| | - Seema S. Ahuja
- Department of Medicine, University of Texas Health Science Center at San Antonio; San Antonio, TX, 78229-3900, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, Veterans Administration Center for Research on AIDS and HIV-1 Infection San Antonio,TX
| |
Collapse
|
17
|
Gong YB, Huang YF, Li Y, Han GC, Li YR, Wang DJ, Du GP, Yu JF, Song J. Experimental study of the mechanism of tolerance induction in dexamethasone-treated dendritic cells. Med Sci Monit 2011; 17:BR125-31. [PMID: 21525800 PMCID: PMC3539585 DOI: 10.12659/msm.881758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate the mechanisms underlying tolerance induction of dexamethasone (Dex)-treated dendritic cells (DCs). Material/Methods Well-grown DC2.4 cells were randomly assigned to receive control, 50 μg/L, 100 μg/L, or 200 μg/L of dexamethasone and then were cultured for 6 days. The expressions of CD80, CD86, galectin-9, and PD-L1 on the surface of DC2.4 cells were analyzed with flow cytometry and the level of IL-12 secreted by DC2.4 cells was determined by ELISA. The stimulating activity of DC2.4 cells on allogeneic T cells was assessed with mixed lymphocyte reaction. Dexamethasone-treated DC2.4 cells were co-cultured with allogeneic splenic lymphocytes and the Foxp3 expression in naive T lymphocytes was determined with flow cytometry. Results Compared with the control group, the expressions of CD80, CD86, galectin-9, and PD-L1 on the surface of DC2.4 cells exposed to different doses of dexamethasone showed no significant changes; however, dexamethasone treatment significantly reduced IL-12 secretion and inhibited DC2.4’s stimulation on the proliferation of allogeneic T lymphocytes. Moreover, dexamethasone-treated DC2.4 cells effectively promoted FOXP3 expression in naive T lymphocytes. Conclusions DC2.4 is a stable cell line with high expressions of CD80, CD86, and PD-L1. Dexamethasone does not significantly change the cell phenotype of DC2.4 cells, but inhibits the secretion of IL-12 cytokine and attenuates DC2.4’s stimulation of the proliferation of allogeneic T cells. Dexamethasone-treated DC2.4 cells also effectively promote FOXP3 expression in naive T lymphocytes.
Collapse
Affiliation(s)
- Yu-bo Gong
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Adoptive transfer of DNT cells induces long-term cardiac allograft survival and augments recipient CD4(+)Foxp3(+) Treg cell accumulation. Transpl Immunol 2010; 24:119-26. [PMID: 21073952 DOI: 10.1016/j.trim.2010.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 01/26/2023]
Abstract
Regulatory T (Treg) cells play an important role in the regulation of immune responses but whether Treg will induce tolerance in transplant recipients in the clinic remains unknown. Our previous studies have shown that TCRαβ(+)CD3(+)CD4⁻CD8⁻NK1.1⁻ (double negative, DN) T cells suppress T cell responses and prolong allograft survival in a single locus MHC-mismatched mouse model. In this study, we investigated the role of DNT cells in a more robust, fully MHC-mismatched BALB/c to C57BL/6 transplantation model, which may be more clinically relevant. Adoptive transfer of DNT cells in combination with short-term rapamycin treatment (days 1-9) induced long-term heart allograft survival (101±31 vs. 39±13 days rapamycin alone, p<0.01). Furthermore adoptive transfer DNT cells augmented CD4+Foxp3+ Treg cells accumulation in transplant recipients while depletion of CD4(+) Treg cells by anti-CD25 inhibited the effect of DNT cells on long-term graft survival (48±12 days vs. 101±31 days, p<0.001). In conclusion, DNT cells combined with short-term immunosuppression can prolong allograft survival, which may be through the accumulation of CD4(+)Foxp3(+) Treg cells in the recipient. Our result suggests that allograft tolerance may require the co-existence of different type Treg cell phenotypes which are affected by current immunosuppression.
Collapse
|
19
|
Abstract
Although well-recognized for their sentinel role and, when activated, their immunostimulatory function, bone marrow-derived dendritic cells (DC) possess inherent tolerogenic (tol) ability. Under quiescent conditions, these cells maintain central and peripheral self tolerance. When appropriately conditioned, in vitro or in vivo, they inhibit innate and adaptive immunity to foreign antigens, including memory T-cell responses. This suppressive function is mediated by various mechanisms, including the expansion and induction of antigen-specific regulatory T cells. Extensive experience in rodent models and recent work in nonhuman primates, indicate the potential of pharmacologically-modified, tol DC (tolDC) to regulate alloimmunity in vivo and to promote lasting, alloantigen-specific T-cell unresponsiveness and transplant survival. While there are many questions yet to be addressed concerning the functional biology of tolDC in humans, these cells offer considerable potential as natural, safe and antigen-specific regulators for long-term control of the outcome of organ and hematopoietic cell transplantation. This minireview surveys recent findings that enhance understanding of the functional biology and therapeutic application of tolDC, with special reference to transplantation.
Collapse
Affiliation(s)
- A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
20
|
Niinisalo P, Oksala N, Levula M, Pelto-Huikko M, Järvinen O, Salenius JP, Kytömäki L, Soini JT, Kähönen M, Laaksonen R, Hurme M, Lehtimäki T. Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann Med 2010; 42:55-63. [PMID: 19941414 DOI: 10.3109/07853890903321559] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to characterize the expression of indoleamine 2,3-dioxygenase (IDO) or IDO-induced tryptophan degradation-dependent pathways, which may lead to suppression of T cells and possible protection against atherosclerosis. METHODS AND RESULTS Expression of IDO and IDO-related pathway components was analyzed in advanced human atherosclerotic plaques (n = 24) and in non-atherosclerotic arteries (n = 6). Up-regulation of IDO and genes related to the IDO pathway was found to be pronounced in atherosclerotic plaques. Immunohistochemistry demonstrated IDO protein in the atheromatous core and co-distribution with monocyte-macrophages (CD68-positive cells). In gene-set enrichment analysis, the IDO pathway revealed a significant (false discovery rate (FDR) = 0.07) regulatory T cell, fork-head box protein 3 (FoxP3)-initiated CD28-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-inducible T cell co-stimulator (ICOS)-driven pathway leading to activation of IDO expression in antigen-presenting cells (APCs). Expression of these IDO pathway genes varied between 2.1- and 16.8-fold as compared to control tissues (P < 0.05 for all). CONCLUSIONS IDO and the IDO-related pathway are important mediators of the immunoinflammatory responses in advanced atherosclerosis offering new viable therapeutic targets for the development of antiatherogenic immunosuppressive therapies.
Collapse
Affiliation(s)
- Petri Niinisalo
- Department of Clinical Chemistry, University of Tampere, Medical School, and Tampere University Hospital, Centre for Laboratory Medicine, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is an intracellular hemeprotein enzyme which catalyses the essential amino acid tryptophan. Accumulating evidence has demonstrated that tryptophan depletion and its toxic metabolites expression in tissue microenvironment can suppress local allogeneic T cell proliferation and activation. Ever since the discovery that IDO was involved in the maintenance of fetal-maternal tolerance, numerous studies have confirmed that IDO is a potent regulator of immune cell function. Importantly, IDO+dendritic cells (DCs) might interact with regulatory T cells (Tregs) to form an immunomodulatory network to promote immune tolerance induction. Moreover, it has been reported that overexpression of IDO in transplanted organs can prolong allograft survival, suggesting a possible peripheral tolerogenic pathway with important implications in transplantation. However, the underlying mechanism for the beneficial effects of IDO in transplantation remains unclear. In this review, we attempt to summarize our current understandings about IDO as a mediator of immunity in transplantation and provide an overview of IDO as a new paradigm in transplantation.
Collapse
|
22
|
Harnessing dendritic cells for the induction of transplantation tolerance. Curr Opin Organ Transplant 2009; 14:344-50. [DOI: 10.1097/mot.0b013e32832c6a1d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Response: Stimulatory or tolerogenic role of CD40-activated B cells depends on the strength of the activation to T cells. Blood 2009. [DOI: 10.1182/blood-2009-04-213470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Anti-CD45RB monoclonal antibody induces immunologic toleration by suppressing dendritic cells. Transpl Immunol 2009; 21:136-9. [DOI: 10.1016/j.trim.2009.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/07/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022]
|
25
|
Blanco B, Pérez-Simón JA, Sánchez-Abarca LI, Caballero-Velazquez T, Gutierrez-Cossío S, Hernández-Campo P, Díez-Campelo M, Herrero-Sanchez C, Rodriguez-Serrano C, Santamaría C, Sánchez-Guijo FM, Del Cañizo C, San Miguel JF. Treatment with bortezomib of human CD4+ T cells preserves natural regulatory T cells and allows the emergence of a distinct suppressor T-cell population. Haematologica 2009; 94:975-83. [PMID: 19508976 DOI: 10.3324/haematol.2008.005017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In vitro depletion of alloreactive T cells using the proteasome inhibitor bortezomib is a promising approach to prevent graft-versus-host disease after allogeneic stem cell transplantation. We have previously described the ability of bortezomib to selectively eliminate alloreactive T cells in a mixed leukocyte culture, preserving non-activated T cells. Due to the role of regulatory T cells in the control of graft versus host disease, in the current manuscript we have analyzed the effect of bortezomib in regulatory T cells. DESIGN AND METHODS Conventional or regulatory CD4(+) T cells were isolated with immunomagnetic microbeads based on the expression of CD4 and CD25. The effect of bortezomib on T-cell viability was analyzed by flow cytometry using 7-amino-actinomycin D staining. To investigate the possibility of obtaining an enriched regulatory T-cell population in vitro with the use of bortezomib, CD4(+) T cells were cultured during four weeks in the presence of anti-CD3 and anti-CD28 antibodies, IL-2 and bortezomib. The phenotype of these long-term cultured cells was studied, analyzing the expression of CD25, CD127 and FOXP3 by flow cytometry, and mRNA levels were determined by RT-PCR. Their suppressive capacity was assessed in co-culture experiments, analyzing proliferation and IFN-gamma and CD40L expression of stimulated responder T cells by flow cytometry. RESULTS We observed that naturally occurring CD4(+)CD25(+) regulatory T cells are resistant to the pro-apoptotic effect of bortezomib. Furthermore, we found that long-term culture of CD4(+) T cells in the presence of bortezomib promotes the emergence of a regulatory T-cell population that significantly inhibits proliferation, IFN-gamma production and CD40L expression among stimulated effector T cells. CONCLUSIONS These results reinforce the proposal of using bortezomib in the prevention of graft versus host disease and, moreover, in the generation of regulatory T-cell populations, that could be used in the treatment of multiple T-cell mediated diseases.
Collapse
Affiliation(s)
- Belén Blanco
- Servicio de Hematología y CIC Salamanca, Hospital Universitario de Salamanca and Centro de Investigación del Cáncer Salamanca, Centro en Red de Medicina Regenerativa y Terapia celular de Castilla y León, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma. J Allergy Clin Immunol 2008; 123:239-48. [PMID: 19058839 DOI: 10.1016/j.jaci.2008.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-degrading enzyme in dendritic cells (DCs), mediates an immunosuppressive effect on activated T lymphocytes. However, little is known about the effect of Der p 1 on IDO in human DCs. OBJECTIVE The aim was to investigate the effect of Der p 1 on the expression and activity of IDO in monocyte-derived DCs from house dust mite (HDM)-sensitive patients with asthma. METHODS Using real-time RT-PCR and HPLC, the expression and activity of IDO were assessed in TNF-alpha-induced mature DCs from HDM-sensitive and nonatopic patients with asthma in response to Der p 1 exposure ex vivo. We also monitored the alteration of IDO activity in Der p 1-pulsed DCs after the coincubation with autologous T cells. RESULTS With a reliance on its protease activity, Der p 1 suppressed functional IDO in DCs from HDM-sensitive patients with asthma but enhanced IDO activity in DCs from nonatopic patients with asthma. This suppression was maintained by the reciprocally induced IL-4 from the coculturing autologous HDM-sensitive T cells. Conversely, the upregulation of IDO activity in Der p 1-pulsed DCs was maintained by IFN-gamma released from autologous nonatopic T cells and the regulatory T-cell subset. Der p 1 pulsation to sensitive DCs failed to raise regulatory T cells but raised progenitor fractions from cloned HDM-sensitive CD4(+) cells through direct contact and soluble mediators. CONCLUSION House dust mite-sensitive DCs exposed to Der p 1 downregulated IDO activity and tipped the T(H)1/T(H)2 cytokine balance toward IL-4, resulting in sustainable IDO suppression.
Collapse
|
27
|
Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603-30. [PMID: 18664617 PMCID: PMC2819735 DOI: 10.1210/er.2008-0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although type 1 diabetes cannot be prevented or reversed, replacement of insulin production by transplantation of the pancreas or pancreatic islets represents a definitive solution. At present, transplantation can restore euglycemia, but this restoration is short-lived, requires islets from multiple donors, and necessitates lifelong immunosuppression. An emerging paradigm in transplantation and autoimmunity indicates that systemic inflammation contributes to tissue injury while disrupting immune tolerance. We identify multiple barriers to successful islet transplantation, each of which either contributes to the inflammatory state or is augmented by it. To optimize islet transplantation for diabetes reversal, we suggest that targeting these interacting barriers and the accompanying inflammation may represent an improved approach to achieve successful clinical islet transplantation by enhancing islet survival, regeneration or neogenesis potential, and tolerance induction. Overall, we consider the proinflammatory effects of important technical, immunological, and metabolic barriers including: 1) islet isolation and transplantation, including selection of implantation site; 2) recurrent autoimmunity, alloimmune rejection, and unique features of the autoimmune-prone immune system; and 3) the deranged metabolism of the islet transplant recipient. Consideration of these themes reveals that each is interrelated to and exacerbated by the other and that this connection is mediated by a systemic inflammatory state. This inflammatory state may form the central barrier to successful islet transplantation. Overall, there remains substantial promise in islet transplantation with several avenues of ongoing promising research. This review focuses on interactions between the technical, immunological, and metabolic barriers that must be overcome to optimize the success of this important therapeutic approach.
Collapse
Affiliation(s)
- Xiaolun Huang
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|