1
|
Staubitz-Vernazza JI, Müller C, Heymans A, Nedwed AS, Schindeldecker M, Hartmann M, Kloth M, Schad A, Roth W, Musholt TJ, Hartmann N. Gene Expression Profiles of AHNAK2, DCSTAMP, FN1, and TERT Correlate With Mutational Status and Recurrence in Papillary Thyroid Carcinoma. Genes Chromosomes Cancer 2024; 63:e23256. [PMID: 39193983 DOI: 10.1002/gcc.23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 08/29/2024] Open
Abstract
Papillary thyroid carcinoma (PTC), the most common malignancy of follicular cell derivation, is generally associated with good prognosis. Nevertheless, it is important to identify patients with aggressive PTCs and unfavorable outcome. Molecular markers such as BRAFV600E mutation and TERT promoter mutations have been proposed for risk stratification. While TERT promoter mutations have been frequently associated with aggressive PTCs, the association of BRAFV600E mutation with increased recurrence and mortality is less clear and has been controversially discussed. The aim of the present study was to analyze whether differentially expressed genes can predict BRAFV600E mutations as well as TERT promoter mutations in PTCs. RNA sequencing identified a large number of differentially expressed genes between BRAFV600E and BRAFwildtype PTCs. Of those, AHNAK2, DCSTAMP, and FN1 could be confirmed in a larger cohort (n = 91) to be significantly upregulated in BRAFV600E mutant PTCs using quantitative RT-PCR. Moreover, individual PTC expression values of DCSTAMP and FN1 were able to predict the BRAFV600E mutation status with high sensitivity and specificity. The expression of TERT was detected in all PTCs harboring TERT promoter mutations and in 19% of PTCs without TERT promoter mutations. Tumors with both TERT expression and TERT promoter mutations were particularly associated with aggressive clinicopathological features and a shorter recurrence-free survival. Altogether, it will be interesting to explore the biological function of AHNAK2, DCSTAMP, and FN1 in PTC in more detail. The analysis of their expression patterns could allow the characterization of PTC subtypes and thus enabling a more individualized surgical and medical treatment.
Collapse
Affiliation(s)
- Julia I Staubitz-Vernazza
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Celine Müller
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Antonia Heymans
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annekathrin Silvia Nedwed
- Institute for Medical Biometry, Epidemiology and Informatics, University Medical Centre Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hartmann
- Department of Medicine III, University Medical Centre Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arno Schad
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas J Musholt
- Section of Endocrine Surgery, Department of General, Visceral and Transplantation Surgery, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
3
|
Lee JJ, Hsu YC, Huang WC, Cheng SP. Upregulation of dendrocyte-expressed seven transmembrane protein is associated with unfavorable outcomes in differentiated thyroid cancer. Endocrine 2023; 81:513-520. [PMID: 37058220 DOI: 10.1007/s12020-023-03364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Dendritic cell infiltrates are increased in thyroid cancer but may have a defective ability to provoke effective immune responses. In this study, we aimed to identify potential thyroid cancer biomarkers linked to dendritic cell development and evaluate their prognostic relevance. METHODS Through a bioinformatics search, we identified the dendrocyte-expressed seven transmembrane protein (DCSTAMP) as a prognostic gene involved in dendritic cell differentiation for thyroid cancer. Immunohistochemical analyses of DCSTAMP expression were performed and correlated with clinical outcomes. RESULTS DCSTAMP was overexpressed in a variety of types of thyroid cancers, while normal thyroid tissue or benign thyroid lesions exhibited low or undetectable DCSTAMP immunoreactivity. The results of automated quantification were consistent with subjective semiquantitative scoring. Among 144 patients with differentiated thyroid cancer, high DCSTAMP expression was associated with papillary tumor type (p < 0.001), extrathyroidal extension (p = 0.007), lymph node metastasis (p < 0.001), and BRAF V600E mutation (p = 0.029). Patients with tumors showing high DCSTAMP expression had shorter overall (p = 0.027) and recurrence-free (p = 0.042) survival. CONCLUSION This study provides the first evidence of DCSTAMP overexpression in thyroid cancer. Apart from the prognostic implications, studies are needed to explore its potential immunomodulatory role in thyroid cancer.
Collapse
Affiliation(s)
- Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Garcia-Hernandez MDLL, Rangel-Moreno J, Garcia-Castaneda M, Kenney HM, Paine A, Thullen M, Anandarajah AP, Schwarz EM, Dirksen RT, Ritchlin CT. Dendritic cell-specific transmembrane protein is required for synovitis and bone resorption in inflammatory arthritis. Front Immunol 2022; 13:1026574. [PMID: 36420272 PMCID: PMC9677122 DOI: 10.3389/fimmu.2022.1026574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) is essential for the formation of fully functional multinucleated osteoclasts. DC-STAMP deficient mice, under physiological conditions, exhibit osteopetrosis and develop systemic autoimmunity with age. However, the function of DC-STAMP in inflammation is currently unknown. We examined whether genetic ablation of DC-STAMP attenuates synovitis and bone erosion in TNF transgenic (Tg) and K/BxN serum-induced murine rheumatoid arthritis. Methods We evaluated arthritis onset in Tg(hTNF) mice lacking DC-STAMP and 50:50 chimeric mice by visual examination, measurement of ankle width, micro-CT-scan analysis and quantitation of the area occupied by osteoclasts in bone sections. To further investigate the cellular and molecular events modulated by DC-STAMP, we measured serum cytokines, determined changes in cytokine mRNA expression by monocytes activated with IL4 or LPS/IFNγ and enumerated immune cells in inflamed mouse joints. Results Synovitis, bone loss and matrix destruction are markedly reduced in Dcstamp-/-;Tg(hTNF) mice. These mice had significantly lower CCL2 and murine TNF serum levels and exhibited impaired monocyte joint migration compared to Tg(hTNF) mice. The reduced arthritic severity in Dcstamp deficient mice was associated with compromised monocyte chemotaxis, cytokine production, and M2 polarization. Conclusion These results reveal that DC-STAMP modulates both bone resorption and inflammation and may serve as an activity biomarker and therapeutic target in inflammatory arthritis and metabolic bone disease.
Collapse
Affiliation(s)
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Maricela Garcia-Castaneda
- Department of Pharmacology and Physiology (SMD), University of Rochester Medical Center, Rochester, NY, United States
| | - H. Mark Kenney
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Ananta Paine
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Michael Thullen
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Allen P. Anandarajah
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology (SMD), University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Liang Q, Zhang L, Wang W, Zhao J, Li Q, Pan H, Gao Z, Fang L, Shi J. High Expression of DC-STAMP Gene Predicts Adverse Outcomes in AML. Front Genet 2022; 13:876689. [PMID: 35571050 PMCID: PMC9091727 DOI: 10.3389/fgene.2022.876689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy with poor prognosis. We explored the RNA sequence data and clinical information of AML patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database to search for the core molecule for prognosis. The DC-STAMP expression was significantly higher in AML patients, which was linked to old age, unfavorable cytogenetic risk, and death (all p < 0.05). Furthermore, it was revealed that high DC-STAMP expression was an independent unfavorable factor for overall survival (OS) by univariate analysis [hazard ratio (HR): 2.683; 95% confidence interval (CI): 1.723–4.178; p < 0.001] and multivariate analysis (HR: 1.733; 95% CI: 1.079–2.781; p = 0.023). The concordance index (C-index 0.734, 95% CI: 0.706–0.762), calibration curves, and decision curve analysis showed the certain predictive accuracy of a nomogram model based on multivariate analysis for OS. In addition, we found that the differentially expressed gene (DEG) enrichment pathways of high- and low-DC-STAMP expression group enrichment pathways were focused on channel activity and platelet alpha granule by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), while gene set enrichment analysis (GSEA) pathways were mainly involved in mTORC1 signaling and TNF-α signaling via the NF-kB pathway. Moreover, a protein–protein interaction (PPI) network demonstrated that DC-STAMP interacted with two hub genes (PPBP and PF4), which were highly regulated and associated with poor survival. Finally, high DC-STAMP expression showed a significantly positive correlation with four immune cell [NK CD56 (dim) cells, macrophages, cytotoxic cells, and CD8 (+) T cells] infiltration and high level of immune checkpoint genes (PDCD1, CD274, CTLA-4, and TIGIT). Therefore, our results suggest that high expression of DC-STAMP predicts adverse outcomes for AML patients.
Collapse
Affiliation(s)
- Qian Liang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lele Zhang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenjun Wang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyu Zhao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoli Li
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hong Pan
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Gao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Liwei Fang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Shi
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
6
|
Noda T, Blaha A, Fujihara Y, Gert KR, Emori C, Deneke VE, Oura S, Panser K, Lu Y, Berent S, Kodani M, Cabrera-Quio LE, Pauli A, Ikawa M. Sperm membrane proteins DCST1 and DCST2 are required for sperm-egg interaction in mice and fish. Commun Biol 2022; 5:332. [PMID: 35393517 PMCID: PMC8989947 DOI: 10.1038/s42003-022-03289-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
The process of sperm-egg fusion is critical for successful fertilization, yet the underlying mechanisms that regulate these steps have remained unclear in vertebrates. Here, we show that both mouse and zebrafish DCST1 and DCST2 are necessary in sperm to fertilize the egg, similar to their orthologs SPE-42 and SPE-49 in C. elegans and Sneaky in D. melanogaster. Mouse Dcst1 and Dcst2 single knockout (KO) sperm are able to undergo the acrosome reaction and show normal relocalization of IZUMO1, an essential factor for sperm-egg fusion, to the equatorial segment. While both single KO sperm can bind to the oolemma, they show the fusion defect, resulting that Dcst1 KO males become almost sterile and Dcst2 KO males become sterile. Similar to mice, zebrafish dcst1 KO males are subfertile and dcst2 and dcst1/2 double KO males are sterile. Zebrafish dcst1/2 KO sperm are motile and can approach the egg, but are defective in binding to the oolemma. Furthermore, we find that DCST1 and DCST2 interact with each other and are interdependent. These data demonstrate that DCST1/2 are essential for male fertility in two vertebrate species, highlighting their crucial role as conserved factors in fertilization.
Collapse
Affiliation(s)
- Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Andreas Blaha
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Krista R Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sara Berent
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Mayo Kodani
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Luis Enrique Cabrera-Quio
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
7
|
Dionisio-Santos DA, Karaahmet B, Belcher EK, Owlett LD, Trojanczyk LA, Olschowka JA, O'Banion MK. Evaluating Effects of Glatiramer Acetate Treatment on Amyloid Deposition and Tau Phosphorylation in the 3xTg Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:758677. [PMID: 34744620 PMCID: PMC8569891 DOI: 10.3389/fnins.2021.758677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation driven by the accumulation of amyloid β (Aβ) can lead to neurofibrillary tangle formation in Alzheimer's Disease (AD). To test the hypothesis that an anti-inflammatory immunomodulatory agent might have beneficial effects on amyloid and tau pathology, as well as microglial phenotype, we evaluated glatiramer acetate (GA), a multiple sclerosis drug thought to bias type 2 helper T (Th2) cell responses and alternatively activate myeloid cells. We administered weekly subcutaneous injections of GA or PBS to 15-month-old 3xTg AD mice, which develop both amyloid and tau pathology, for a period of 8 weeks. We found that subcutaneous administration of GA improved behavioral performance in novel object recognition and decreased Aβ plaque in the 3xTg AD mice. Changes in tau phosphorylation were mixed with specific changes in phosphoepitopes seen in immunohistochemistry but not observed in western blot. In addition, we found that there was a trend toward increased microglia complexity in 3xTg mice treated with GA, suggesting a shift toward homeostasis. These findings correlated with subtle changes in the microglial transcriptome, in which the most striking difference was the upregulation of Dcstamp. Lastly, we found no evidence of changes in proportions of major helper T cell (Th) subtypes in the periphery. Overall, our study provides further evidence for the benefits of immunomodulatory therapies that alter the adaptive immune system with the goal of modifying microglia responses for the treatment of Alzheimer's Disease.
Collapse
Affiliation(s)
- Dawling A Dionisio-Santos
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Berke Karaahmet
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Elizabeth K Belcher
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Laura D Owlett
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Lee A Trojanczyk
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - John A Olschowka
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - M Kerry O'Banion
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Li R, Guo C, Lin X, Chan TF, Lai KP, Chen J. Integrative omics analyses uncover the mechanism underlying the immunotoxicity of perfluorooctanesulfonate in human lymphocytes. CHEMOSPHERE 2020; 256:127062. [PMID: 32434090 DOI: 10.1016/j.chemosphere.2020.127062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a man-made chemical widely used in industrial products. Due to its high persistence, PFOS has been detected in most animal species including the human population, wild animals, and aquatic organisms. Both cross-sectional studies and laboratory animal studies have shown hepatotoxicity, renal toxicity, and reproductive toxicity caused by PFOS exposure. Recently, a limited number of PFOS studies have raised concerns about its potential immune system effects. However, the molecular mechanism underlying the immunotoxicity of PFOS remains unknown. In this study, we used primary human lymphocytes as a model, together with integrative omics analyses, including the transcriptome and lipidome, and bioinformatics analysis, to resolve the immune toxicity effects of PFOS. Our results demonstrated that PFOS could alter the production of interleukins in human lymphocytes. Additionally, PFOS exposure could dysregulate clusters of genes and lipids that play important roles in immune functions, such as lymphocyte differentiation, inflammatory response, and immune response. The findings of this study offer novel insight into the molecular mechanisms underlying the immunotoxicity of PFOS, and open the potential of using the identified PFOS-responsive genes and lipids as biomarkers for risk assessment.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
10
|
Dalby E, Christensen SM, Wang J, Hamidzadeh K, Chandrasekaran P, Hughitt VK, Tafuri WL, Arantes RME, Rodrigues IA, Herbst R, El-Sayed NM, Sims GP, Mosser DM. Immune Complex-Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:102-112. [PMID: 32434940 DOI: 10.4049/jimmunol.1901382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
To maintain homeostasis, macrophages must be capable of assuming either an inflammatory or an anti-inflammatory phenotype. To better understand the latter, we stimulated human macrophages in vitro with TLR ligands in the presence of high-density immune complexes (IC). This combination of stimuli resulted in a broad suppression of inflammatory mediators and an upregulation of molecules involved in tissue remodeling and angiogenesis. Transcriptomic analysis of TLR stimulation in the presence of IC predicted the downstream activation of AKT and the inhibition of GSK3. Consequently, we pretreated LPS-stimulated human macrophages with small molecule inhibitors of GSK3 to partially phenocopy the regulatory effects of stimulation in the presence of IC. The upregulation of DC-STAMP and matrix metalloproteases was observed on these cells and may represent potential biomarkers for this regulatory activation state. To demonstrate the presence of these anti-inflammatory, growth-promoting macrophages in a human infectious disease, biopsies from patients with leprosy (Hanseniasis) were analyzed. The lepromatous form of this disease is characterized by hypergammaglobulinemia and defective cell-mediated immunity. Lesions in lepromatous leprosy contained macrophages with a regulatory phenotype expressing higher levels of DC-STAMP and lower levels of IL-12, relative to macrophages in tuberculoid leprosy lesions. Therefore, we propose that increased signaling by FcγR cross-linking on TLR-stimulated macrophages can paradoxically promote the resolution of inflammation and initiate processes critical to tissue growth and repair. It can also contribute to infectious disease progression.
Collapse
Affiliation(s)
- Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jingya Wang
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Wagner Luiz Tafuri
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | - Rosa Maria Esteves Arantes
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | | | - Ronald Herbst
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
11
|
Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules 2019; 9:biom9110737. [PMID: 31766264 PMCID: PMC6920856 DOI: 10.3390/biom9110737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis and the proper clearance of apoptotic cells play a central role in maintaining tissue homeostasis. Previous work in our laboratory has shown that when a high number of cells enters apoptosis in a tissue, the macrophages that engulf them produce retinoids to enhance their own phagocytic capacity by upregulating several phagocytic genes. Our data indicated that these retinoids might be dihydroretinoids, which are products of the retinol saturase (RetSat) pathway. In the present study, the efferocytosis of RetSat-null mice was investigated. We show that among the retinoid-sensitive phagocytic genes, only transglutaminase 2 responded in macrophages and in differentiating monocytes to dihydroretinol. Administration of dihydroretinol did not affect the expression of the tested genes differently between differentiating wild type and RetSat-null monocytes, despite the fact that the expression of RetSat was induced. However, in the absence of RetSat, the expression of numerous differentiation-related genes was altered. Among these, impaired production of MFG-E8, a protein that bridges apoptotic cells to the αvβ3/β5 integrin receptors of macrophages, resulted in impaired efferocytosis, very likely causing the development of mild autoimmunity in aged female mice. Our data indicate that RetSat affects monocyte/macrophage differentiation independently of its capability to produce dihydroretinol at this stage.
Collapse
|
12
|
Highly diversified expansions shaped the evolution of membrane bound proteins in metazoans. Sci Rep 2017; 7:12387. [PMID: 28959054 PMCID: PMC5620054 DOI: 10.1038/s41598-017-11543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022] Open
Abstract
The dramatic increase in membrane proteome complexity is arguably one of the most pivotal evolutionary events that underpins the origin of multicellular animals. However, the origin of a significant number of membrane families involved in metazoan development has not been clarified. In this study, we have manually curated the membrane proteomes of 22 metazoan and 2 unicellular holozoan species. We identify 123,014 membrane proteins in these 24 eukaryotic species and classify 86% of the dataset. We determine 604 functional clusters that are present from the last holozoan common ancestor (LHCA) through many metazoan species. Intriguingly, we show that more than 70% of the metazoan membrane protein families have a premetazoan origin. The data show that enzymes are more highly represented in the LHCA and expand less than threefold throughout metazoan species; in contrast to receptors that are relatively few in the LHCA but expand nearly eight fold within metazoans. Expansions related to cell adhesion, communication, immune defence, and developmental processes are shown in conjunction with emerging biological systems, such as neuronal development, cytoskeleton organization, and the adaptive immune response. This study defines the possible LHCA membrane proteome and describes the fundamental functional clusters that underlie metazoan diversity and innovation.
Collapse
|
13
|
Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017; 16:602-611. [PMID: 28411168 DOI: 10.1016/j.autrev.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
Abstract
Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens.
Collapse
Affiliation(s)
- Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
Ruef N, Dolder S, Aeberli D, Seitz M, Balani D, Hofstetter W. Granulocyte-macrophage colony-stimulating factor-dependent CD11c-positive cells differentiate into active osteoclasts. Bone 2017; 97:267-277. [PMID: 28161590 DOI: 10.1016/j.bone.2017.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/30/2023]
Abstract
Levels of circulating cytokines are elevated in inflammatory diseases. Previously, it was shown that interleukin (IL-)17A, in synergism with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and tumor necrosis factor α (TNFα), induces the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) by murine osteoblasts in vitro. In this study, we further analyzed the effects of GM-CSF on osteoclast development in vitro. The effects of IL-17A, TNFα, and 1,25(OH)2D3 on the regulation of osteoclast development were investigated in cocultures of bone marrow-derived osteoclast progenitor cells (OPC) and mouse calvarial osteoblasts. Additionally, OPC were grown for 3days in media containing macrophage colony-stimulating factor (M-CSF), GM-CSF, or M-CSF/GM-CSF. Subsequently, the osteoclastogenic potential and the capacity to dissolve amorphous calcium phosphate were assessed in each of the three populations of OPC. IL-17A, in synergism with TNFα and 1,25(OH)2D3, inhibited the development of osteoclasts in cocultures by stimulating the osteoblast lineage cells to release GM-CSF. GM-CSF-treated OPC expressed traits characteristic of dendritic cells. Upon removal of GM-CSF and supplementation of the culture media with M-CSF/RANKL, the cells lost their dendritic cell characteristics and differentiated into osteoclasts. OPC pretreated with GM-CSF and M-CSF/GM-CSF exhibited delayed development to osteoclasts and an extended proliferation phase. Elevated levels of GM-CSF in systemic inflammatory diseases may cause an expansion of the OPC pools in the bone, bone marrow, and blood. Upon homing to the bone, this may lead to an increase in the number of osteoclasts and in bone resorption.
Collapse
Affiliation(s)
- Nina Ruef
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Bern, Switzerland
| | - Daniel Aeberli
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, Bern, Switzerland
| | - Michal Seitz
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, Bern, Switzerland
| | - Deepak Balani
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Wisitrasameewong W, Kajiya M, Movila A, Rittling S, Ishii T, Suzuki M, Matsuda S, Mazda Y, Torruella MR, Azuma MM, Egashira K, Freire MO, Sasaki H, Wang CY, Han X, Taubman MA, Kawai T. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption. J Dent Res 2017; 96:685-693. [PMID: 28199142 DOI: 10.1177/0022034517690490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T-cell response and resultant production of RANKL was affected by anti-DC-STAMP-mAb. This study illustrated the roles of DC-STAMP in promoting local OC cell fusion without affecting adaptive immune responses to oral bacteria. Therefore, it is plausible that a novel therapeutic regimen targeting DC-STAMP could suppress periodontal bone loss.
Collapse
Affiliation(s)
- W Wisitrasameewong
- 1 Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,3 Harvard School of Dental Medicine, Boston, MA, USA
| | - M Kajiya
- 4 Hiroshima University Graduate School of Biomedical Sciences, Periodontal Medicine, Hiroshima, Japan
| | - A Movila
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - S Rittling
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - T Ishii
- 5 Tokyo Dental College, Tokyo, Chiyoda-ku, Japan
| | - M Suzuki
- 6 College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - S Matsuda
- 4 Hiroshima University Graduate School of Biomedical Sciences, Periodontal Medicine, Hiroshima, Japan
| | - Y Mazda
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - M R Torruella
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - M M Azuma
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,7 Araçatuba Dental School, Department of Endodontics, UnivEstadual Paulista, Araçatuba, São Paulo, Brazil
| | - K Egashira
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,8 LION Corporation, Research and Development Headquarters, Odawara, Kanagawa, Japan
| | - M O Freire
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - H Sasaki
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - C Y Wang
- 9 UCLA, Lab of Molecular Signaling, Division of Oral Biology and Medicine, UCLA, Los Angeles, CA, USA
| | - X Han
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - M A Taubman
- 2 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - T Kawai
- 10 Department of Periodontology, NOVA Southeastern University College of Dental Medicine, Fort Lauderdale, FL, USA
| |
Collapse
|
16
|
Metronomic cyclophosphamide activation of anti-tumor immunity: tumor model, mouse host, and drug schedule dependence of gene responses and their upstream regulators. BMC Cancer 2016; 16:623. [PMID: 27515027 PMCID: PMC4982114 DOI: 10.1186/s12885-016-2597-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Background Cyclophosphamide (CPA) can activate immunogenic tumor cell death, which induces immune-based tumor ablation and long-term anti-tumor immunity in a syngeneic C57BL/6 (B6) mouse GL261 glioma model when CPA is given on a 6-day repeating metronomic schedule (CPA/6d). In contrast, we find that two other syngeneic B6 mouse tumors, LLC lung carcinoma and B16F10 melanoma, do not exhibit these drug-induced immune responses despite their intrinsic sensitivity to CPA cytotoxicity. Methods To elucidate underlying mechanisms, we investigated gene expression and molecular pathway changes associated with the disparate immune responsiveness of these tumors to CPA/6d treatment. Results Global transcriptome analysis indicated substantial elevation of basal GL261 immune infiltration and strong CPA/6d activation of GL261 immune stimulatory pathways and their upstream regulators, but without preferential depletion of negative immune regulators compared to LLC and B16F10 tumors. In LLC tumors, where CPA/6d treatment is shown to be anti-angiogenic, CPA/6d suppressed VEGFA target genes and down regulated cell adhesion and leukocyte transendothelial migration genes. In GL261 tumors implanted in adaptive immune-deficient scid mice, where CPA/6d-induced GL261 regression is incomplete and late tumor growth rebound can occur, T cell receptor signaling and certain cytokine-cytokine receptor responses seen in B6 mice were deficient. Extending the CPA treatment interval from 6 to 9 days (CPA/9d) − which results in a strong but transient natural killer cell response followed by early tumor growth rebound − induced fewer cytokines and increased expression of drug metabolism genes. Conclusions These findings elucidate molecular response pathways activated by intermittent metronomic CPA treatment and identify deficiencies that characterize immune-unresponsive tumor models and drug schedules. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2597-2) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Kanemoto S, Kobayashi Y, Yamashita T, Miyamoto T, Cui M, Asada R, Cui X, Hino K, Kaneko M, Takai T, Matsuhisa K, Takahashi N, Imaizumi K. Luman is involved in osteoclastogenesis through the regulation of DC-STAMP expression, stability and localization. J Cell Sci 2015; 128:4353-65. [PMID: 26503158 PMCID: PMC4712816 DOI: 10.1242/jcs.176057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/19/2015] [Indexed: 01/12/2023] Open
Abstract
Luman (also known as CREB3) is a type-II transmembrane transcription factor belonging to the OASIS family that localizes to the endoplasmic reticulum (ER) membrane under normal conditions. In response to ER stress, OASIS-family members are subjected to regulated intramembrane proteolysis (RIP), following which the cleaved N-terminal fragments translocate to the nucleus. In this study, we show that treatment of bone marrow macrophages (BMMs) with cytokines – macrophage colony-stimulating factor (M-CSF) and RANKL (also known as TNFSF11) – causes a time-dependent increase in Luman expression, and that Luman undergoes RIP and becomes activated during osteoclast differentiation. Small hairpin (sh)RNA-mediated knockdown of Luman in BMMs prevented the formation of multinucleated osteoclasts, concomitant with the suppression of DC-STAMP, a protein that is essential for cell–cell fusion in osteoclastogenesis. The N-terminus of Luman facilitates promoter activity of DC-STAMP, resulting in upregulation of DC-STAMP expression. Furthermore, Luman interacts with DC-STAMP, and controls its stability and localization. These results suggest that Luman regulates the multinucleation of osteoclasts by promoting cell fusion of mononuclear osteoclasts through DC-STAMP induction and intracellular distribution during osteoclastogenesis. Highlighted Article: Luman, an ER-resident transcription factor, regulates the multinucleation of osteoclasts by promoting cell fusion of mononuclear osteoclasts through DC-STAMP induction and transportation during osteoclastogenesis.
Collapse
Affiliation(s)
- Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Min Cui
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Xiang Cui
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kenta Hino
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoko Takai
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
18
|
Zhang C, Dou CE, Xu J, Dong S. DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J Cell Physiol 2014; 229:1330-5. [PMID: 24420845 DOI: 10.1002/jcp.24553] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
As a member of the mononuclear phagocyte system, osteoclasts (OC) absorb the bone matrix and participate in bone modeling by keeping a balance with osteoblasts (OB) and stromal cells. Mature OC derive from the fusion of mononuclear osteoclasts (mOC) and the fusion is considered as the indispensable process for the osteoclastogenesis and absorbing activity of OC. DC-STAMP (dendritic cell-specific transmembrane protein) has been validated playing a key role in the fusion of mOC. DC-STAMP is mainly expressed in OC, macrophages and dendritic cells (DC). While DC-STAMP was discovered in DC, more attentions have been paid to DC-STAMP in OC in this decade. This review will mainly focus on the function of DC-STAMP in OC. Studies on DC-STAMP in DC may also provide new sight for the study of DC-STAMP in OC. Since the function of DC-STAMP is still poorly understood and few studies have been implemented for illustration, many issues are still unknown and need to be revealed. We will also discuss these questions in this review.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
19
|
Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, Nielsen R, Simianer H. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet 2014; 10:e1004148. [PMID: 24586189 PMCID: PMC3937232 DOI: 10.1371/journal.pgen.1004148] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/14/2013] [Indexed: 11/18/2022] Open
Abstract
Human driven selection during domestication and subsequent breed formation has likely left detectable signatures within the genome of modern cattle. The elucidation of these signatures of selection is of interest from the perspective of evolutionary biology, and for identifying domestication-related genes that ultimately may help to further genetically improve this economically important animal. To this end, we employed a panel of more than 15 million autosomal SNPs identified from re-sequencing of 43 Fleckvieh animals. We mainly applied two somewhat complementary statistics, the integrated Haplotype Homozygosity Score (iHS) reflecting primarily ongoing selection, and the Composite of Likelihood Ratio (CLR) having the most power to detect completed selection after fixation of the advantageous allele. We find 106 candidate selection regions, many of which are harboring genes related to phenotypes relevant in domestication, such as coat coloring pattern, neurobehavioral functioning and sensory perception including KIT, MITF, MC1R, NRG4, Erbb4, TMEM132D and TAS2R16, among others. To further investigate the relationship between genes with signatures of selection and genes identified in QTL mapping studies, we use a sample of 3062 animals to perform four genome-wide association analyses using appearance traits, body size and somatic cell count. We show that regions associated with coat coloring significantly (P<0.0001) overlap with the candidate selection regions, suggesting that the selection signals we identify are associated with traits known to be affected by selection during domestication. Results also provide further evidence regarding the complexity of the genetics underlying coat coloring in cattle. This study illustrates the potential of population genetic approaches for identifying genomic regions affecting domestication-related phenotypes and further helps to identify specific regions targeted by selection during speciation, domestication and breed formation of cattle. We also show that Linkage Disequilibrium (LD) decays in cattle at a much faster rate than previously thought. Domestication of cattle had a major impact on human civilization by providing protein and physical power for agrarian life style. Domestication followed by breed formation has likely left detectable signatures within the genome of modern cattle. Current cattle breeds, for instance, have a more uniform appearance and milder temper than their wild ancestors. The elucidation of these signatures of selection is of interest to identify domestication-related genes that help to genetically improve this economically important species. The development of novel sequencing technologies has enabled higher-resolution genomic analyses of past selection. In this paper, we exploited whole genome sequencing along with multiple statistical metrics to identify regions/genes putatively targeted by selection. We show strong signals of selection near to several candidate genes related to domesticated phenotypes such as coat coloring, neurobehavioral functioning and sensory perception, including KIT, MITF, MC1R, NRG4, Erbb4, TMEM132D and TAS2R16. By means of association mapping we additionally show that candidate selection regions for appearance traits overlap with major coat color QTLs. Our study demonstrates the utility of population based techniques for detecting past selection and is the first attempt to localize signatures of past selection in cattle based on massive re-sequencing of the entire genome.
Collapse
Affiliation(s)
- Saber Qanbari
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany
- * E-mail:
| | - Hubert Pausch
- Chair of Animal Breeding, Technische Universitaet Muenchen, Munich, Germany
| | - Sandra Jansen
- Chair of Animal Breeding, Technische Universitaet Muenchen, Munich, Germany
| | - Mehmet Somel
- Departments of Integrative Biology and Statistics, University of California at Berkeley, Berkeley, California, United States of America
| | - Tim M. Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universitaet Muenchen, Munich, Germany
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California at Berkeley, Berkeley, California, United States of America
| | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Goettingen, Germany
| |
Collapse
|
20
|
Chiu YG, Ritchlin CT. Characterization of DC-STAMP+ Cells in Human Bone Marrow. JOURNAL OF BONE MARROW RESEARCH 2013; 1:1000127. [PMID: 25419541 PMCID: PMC4238037 DOI: 10.4172/2329-8820.1000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteoclasts (OC), specialized cells derived from monocytes, maintain skeletal homeostasis under normal conditions but degrade bone in patients with rheumatoid (RA) and psoriatic arthritis (PsA). Monocytes initially develop in the bone marrow (BM), circulate in peripheral blood, and differentiate into distinct cell types with diverse functions. Imaging studies in (RA) patients and murine arthritis models demonstrate that bone marrow edema detected on MRI is the result of enhanced myelopoiesis which precedes the development of bone erosions detected on plain radiographs several years later. A major knowledge gap, however, is whether OC develop in the BM and circulate to the joint and if the differentiation to OC takes place in the joint space in response to differentiation signals such as RANKL and TNF. We have previously demonstrated that osteoclast precursors (OCP) are increased in the circulaton of patients with RA and PsA. We showed that DC-STAMP (Dendritic Cell-Specific Transmembrane protein), a 7-pass transmembrane protein expressed on the surface of monocytes, is essential for cell-to-cell fusion during OC differentiation and is a valid biomarker of OCP. Herein, we examined OCP in human bone marrow and identified one novel subset of DC-STAMP+CD45intermediate monocytes which was absent in the blood. We also found that OCPs reside in human BM with a higher frequency than in the peripheral blood. These findings support the notion that the BM is a major reservoir of circulating OCPs. In addition, we demonstrated that a higher frequency of DC-STAMP+ cells in the BM have detectable intracellular IFN-γ, IL-4 and IL-17A than DC-STAMP+ cells circulating in the peripheral blood. Finally, the frequency of DC-STAMP+ monocytes and T cells is signficantly higher in PsA BM compared to healthy controls, suggesting an enhanced myelopoiesis is a central event in inflammatory arthritis.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Allergy/Immunology and Rheumatology Division, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Christopher T Ritchlin
- Allergy/Immunology and Rheumatology Division, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642, USA
| |
Collapse
|
21
|
Dendritic cells: cellular mediators for immunological tolerance. Clin Dev Immunol 2013; 2013:972865. [PMID: 23762100 PMCID: PMC3671285 DOI: 10.1155/2013/972865] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/07/2013] [Indexed: 01/07/2023]
Abstract
In general, immunological tolerance is acquired upon treatment with non-specific immunosuppressive drugs. This indiscriminate immunosuppression of the patient often causes serious side-effects, such as opportunistic infectious diseases. Therefore, the need for antigen-specific modulation of pathogenic immune responses is of crucial importance in the treatment of inflammatory diseases. In this perspective, dendritic cells (DCs) can have an important immune-regulatory function, besides their notorious antigen-presenting capacity. DCs appear to be essential for both central and peripheral tolerance. In the thymus, DCs are involved in clonal deletion of autoreactive immature T cells by presenting self-antigens. Additionally, tolerance is achieved by their interactions with T cells in the periphery and subsequent induction of T cell anergy, T cell deletion, and induction of regulatory T cells (Treg). Various studies have described, modulation of DC characteristics with the purpose to induce antigen-specific tolerance in autoimmune diseases, graft-versus-host-disease (GVHD), and transplantations. Promising results in animal models have prompted researchers to initiate first-in-men clinical trials. The purpose of current review is to provide an overview of the role of DCs in the immunopathogenesis of autoimmunity, as well as recent concepts of dendritic cell-based therapeutic opportunities in autoimmune diseases.
Collapse
|
22
|
Miyamoto H, Katsuyama E, Miyauchi Y, Hoshi H, Miyamoto K, Sato Y, Kobayashi T, Iwasaki R, Yoshida S, Mori T, Kanagawa H, Fujie A, Hao W, Morioka H, Matsumoto M, Toyama Y, Miyamoto T. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J Biol Chem 2012; 287:32479-84. [PMID: 22865856 DOI: 10.1074/jbc.m112.358226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophage lineage cells such as osteoclasts and foreign body giant cells (FBGCs) form multinuclear cells by cell-cell fusion of mononuclear cells. Recently, we reported that two seven-transmembrane molecules, osteoclast stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP), were essential for osteoclast and FBGC cell-cell fusion in vivo and in vitro. However, signaling required to regulate FBGC fusion remained largely unknown. Here, we show that signal transducer and activator of transcription 1 (STAT1) deficiency in macrophages enhanced cell-cell fusion and elevated DC-STAMP expression in FBGCs. By contrast, lack of STAT6 increased STAT1 activation, significantly inhibiting cell-cell fusion and decreasing OC-STAMP and DC-STAMP expression in IL-4-induced FBGCs. Furthermore, either STAT1 loss or co-expression of OC-STAMP/DC-STAMP was sufficient to induce cell-cell fusion of FBGCs without IL-4. We conclude that the STAT6-STAT1 axis regulates OC-STAMP and DC-STAMP expression and governs fusogenic mechanisms in FBGCs.
Collapse
Affiliation(s)
- Hiroya Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. ACTA ACUST UNITED AC 2012; 209:139-55. [PMID: 22231304 PMCID: PMC3260867 DOI: 10.1084/jem.20101387] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood monocytes differentiate into distinct colonic macrophage or dendritic cell subsets depending on the presence or absence of inflammation Dendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80hiCX3CR1hi (CD11b+CD103−) cells account for 80% of mouse colonic lamina propria MHC-IIhi cells. Both CD11c+ and CD11c− cells within this population were identified as MPs based on multiple criteria, including an MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs based on phenotypic and functional analysis and comprise three separate CD11chi cell populations: CD103+CX3CR1−CD11b− DCs, CD103+CX3CR1−CD11b+ DCs, and CD103−CX3CR1intCD11b+ DCs. In noninflammatory conditions, Ly6Chi monocytes (MOs) differentiated primarily into CD11c+ but not CD11c− MPs. In contrast, during colitis, Ly6Chi MOs massively invaded the colon and differentiated into proinflammatory CD103−CX3CR1intCD11b+ DCs, which produced high levels of IL-12, IL-23, iNOS, and TNF. These findings demonstrate the dual capacity of Ly6Chi blood MOs to differentiate into either regulatory MPs or inflammatory DCs in the colon and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.
Collapse
Affiliation(s)
- Aymeric Rivollier
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 2012; 27:79-92. [PMID: 21987375 PMCID: PMC3304467 DOI: 10.1002/jbmr.531] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 11/06/2022]
Abstract
Osteoclasts (OC) are bone-resorbing, multinucleated cells that are generated via fusion of OC precursors (OCP). The frequency of OCP is elevated in patients with erosive inflammatory arthritis and metabolic bone diseases. Although many cytokines and cell surface receptors are known to participate in osteoclastogenesis, the molecular mechanisms underlying the regulation of this cellular transformation are poorly understood. Herein, we focused our studies on the dendritic cell-specific transmembrane protein (DC-STAMP), a seven-pass transmembrane receptor-like protein known to be essential for cell-to-cell fusion during osteoclastogenesis. We identified an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic tail of DC-STAMP, and developed an anti-DC-STAMP monoclonal antibody 1A2 that detected DC-STAMP expression on human tumor giant cells, blocked OC formation in vitro, and distinguished four patterns of human PBMC with a positive correlation to OC potential. In freshly isolated monocytes, DC-STAMP(high) cells produced a higher number of OC in culture than DC-STAMP(low) cells and the surface expression of DC-STAMP gradually declined during osteoclastogenesis. Importantly, we showed that DC-STAMP is phosphorylated on its tyrosine residues and physically interacts with SHP-1 and CD16, an SH2-domain-containing tyrosine phosphatase and an ITAM-associated protein, respectively. Taken together, these data show that DC-STAMP is a potential OCP biomarker in inflammatory arthritis. Moreover, in addition to its effect on cell fusion, DC-STAMP dynamically regulates cell signaling during osteoclastogenesis.
Collapse
Affiliation(s)
- Ya-Hui Chiu
- Allergy/Immunology & Rheumatology Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sanecka A, Ansems M, Prosser AC, Danielski K, Warner K, den Brok MH, Jansen BJH, Eleveld-Trancikova D, Adema GJ. DC-STAMP knock-down deregulates cytokine production and T-cell stimulatory capacity of LPS-matured dendritic cells. BMC Immunol 2011; 12:57. [PMID: 21978263 PMCID: PMC3199277 DOI: 10.1186/1471-2172-12-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/06/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are the highly specialized antigen presenting cells of the immune system that play a key role in regulating immune responses. DCs can efficiently initiate immune responses or induce tolerance. Due to this dual function, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. Characterization of DC-specific genes, leading to better understanding of DC immunobiology, will help to guide their use in clinical settings. We previously identified DC-STAMP, a multi-membrane spanning protein preferentially expressed by DCs. DC-STAMP resides in the endoplasmic reticulum (ER) of immature DCs and translocates towards the Golgi compartment upon maturation. In this study we knocked down DC-STAMP in mouse bone marrow-derived DCs (mBMDCs) to determine its function. RESULTS We demonstrate that DC-STAMP knock-down mBMDCs secrete less IL-6, IL-12, TNF-α and IL-10 while IL-1 production is enhanced. Moreover, LPS-matured DC-STAMP knock-down mBMDCs show impaired T cell activation potential and induction of Th1 responses in an alloreaction. CONCLUSIONS We show that DC-STAMP plays an important role in cytokine production by mBMDCs following LPS exposure. Our results reveal a novel function of DC-STAMP in regulating DC-initiated immune responses.
Collapse
Affiliation(s)
- Anna Sanecka
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparative promoter analysis in vivo: identification of a dendritic cell-specific promoter module. Blood 2011; 118:e40-9. [DOI: 10.1182/blood-2011-03-342261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Dendritic cells (DCs) are important immune cells. This study focused on transcriptional networks active in murine DCs, but DCs are difficult to study using conventional molecular techniques. Therefore, comparative promoter analysis was used to identify evolutionarily conserved features between the murine CD11c and DC-STAMP promoters. A promoter framework consisting of 4 transcription factor binding sites was identified that included signal transducer and activator of transcription, homeodomain transcription factors, and 2 members of the Brn POU domain factors family. This promoter module was functionally verified by in vivo promoter analysis and site-directed mutagenesis. Hematopoietic stem cells were engineered by lentiviral vectors and expression of green fluorescent protein reporter was monitored in primary hematopoietic cell types that develop without further manipulation in irradiated recipient mice. The verified promoter module was then modeled and used in a bioinformatics-based search for other potential coregulated genes in murine DCs. A promoter database search identified 2 additional genes, Ppef2 and Pftk1, which have a similar promoter organization and are preferentially expressed in murine DCs. The results define a regulatory network linked to development of murine DCs.
Collapse
|
27
|
Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 2011; 149:507-18. [PMID: 21454302 DOI: 10.1093/jb/mvr041] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signalling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: PERK, IRE1 and ATF6. These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a bZIP domain. These membrane-bound bZIP transcription factors include Luman, OASIS, BBF2H7, CREBH and CREB4. Despite their structural similarities with ATF6, differences in activating stimuli, tissue distribution and response element binding indicate specialized functions of each member on regulating the UPR in specific organs and tissues. Here, we summarize our current understanding of the biochemical characteristics and physiological functions of the ER-resident bZIP transcription factors.
Collapse
Affiliation(s)
- Rie Asada
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
28
|
Dong R, Moulding D, Himoudi N, Adams S, Bouma G, Eddaoudi A, Basu BP, Derniame S, Chana P, Duncan A, Anderson J. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures. Cell Immunol 2011; 272:1-10. [DOI: 10.1016/j.cellimm.2011.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/13/2011] [Accepted: 09/22/2011] [Indexed: 01/07/2023]
|
29
|
Eleveld-Trancikova D, Sanecka A, van Hout-Kuijer MA, Looman MWG, Hendriks IAM, Jansen BJH, Adema GJ. DC-STAMP interacts with ER-resident transcription factor LUMAN which becomes activated during DC maturation. Mol Immunol 2010; 47:1963-73. [PMID: 20546900 DOI: 10.1016/j.molimm.2010.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells (APC) which efficiently prime the immune response or induce tolerance. We recently identified Dendritic Cell Specific TrAnsMembrane Protein (DC-STAMP), a novel 470 amino acid protein preferentially expressed by dendritic cells. Previously we demonstrated that DC-STAMP re-localizes towards the Golgi upon DC maturation. To identify proteins that interact with DC-STAMP, a yeast-2-hybrid analysis was performed. Here, we report a physically interacting partner of DC-STAMP in the endoplasmic reticulum (ER), called LUMAN (also known as CREB3 or LZIP). LUMAN was previously described as an ER-resident transcription factor with unknown function. It is activated in a process called regulated intramembrane proteolysis (RIP), which involves translocation to the Golgi and subsequent proteolytic cleavage. The proteolytically activated form of the protein then translocates to the nucleus. Our data indicate that DC-STAMP plays an important role in the modulation of LUMAN activation. Moreover, we demonstrate that LUMAN is endogenously expressed by DC and becomes activated by RIP upon DC maturation induced by various different stimuli. These data define LUMAN/DC-STAMP as a novel regulatory circuit in DC.
Collapse
Affiliation(s)
- Dagmar Eleveld-Trancikova
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R, Hoshi H, Miyamoto K, Hao W, Yoshida S, Morioka H, Chiba K, Kato S, Tokuhisa T, Saitou M, Toyama Y, Suda T, Miyamoto T. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. ACTA ACUST UNITED AC 2010; 207:751-62. [PMID: 20368579 PMCID: PMC2856022 DOI: 10.1084/jem.20091957] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yoshiteru Miyauchi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Recent studies have elucidated unanticipated connections between the immune and skeletal systems, and this relationship has led to the development of a new field known as osteoimmunology. The goal of research in this field is to: (1) further understand how the bone microenvironment influences immune cell ontogeny and subsequent effector functions, and (2) translate basic science findings in bone biology to clinical applications for autoimmune diseases that target the skeleton such as rheumatoid arthritis (RA). In this review, we will examine the recent findings of the interplay between the immune and skeletal systems. This discussion will focus on the cells and signaling pathways in osteoimmune interactions and how innate and adaptive immune effector cells as well as cytokines and chemokines play a role in the maintenance and dysregulation of skeletal-immune homeostasis. We will also discuss how immunomodulatory biologic drugs, which specifically target these cells and effector molecules, have transformed the treatment of autoimmune mediated inflammatory diseases (IMIDs) and metabolic bone diseases such as osteoporosis.
Collapse
|
32
|
|