1
|
Armitage CW, Carey AJ, Bryan ER, Kollipara A, Trim LK, Beagley KW. Pathogenic NKT cells attenuate urogenital chlamydial clearance and enhance infertility. Scand J Immunol 2023; 97:e13263. [PMID: 36872855 PMCID: PMC10909442 DOI: 10.1111/sji.13263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Urogenital chlamydial infections continue to increase with over 127 million people affected annually, causing significant economic and public health pressures. While the role of traditional MHCI and II peptide presentation is well defined in chlamydial infections, the role of lipid antigens in immunity remains unclear. Natural killer (NK) T cells are important effector cells that recognize and respond to lipid antigens during infections. Chlamydial infection of antigen-presenting cells facilitates presentation of lipid on the MHCI-like protein, CD1d, which stimulates NKT cells to respond. During urogenital chlamydial infection, wild-type (WT) female mice had significantly greater chlamydial burden than CD1d-/- (NKT-deficient) mice, and had significantly greater incidence and severity of immunopathology in both primary and secondary infections. WT mice had similar vaginal lymphocytic infiltrate, but 59% more oviduct occlusion compared to CD1d-/- mice. Transcriptional array analysis of oviducts day 6 post-infection revealed WT mice had elevated levels of Ifnγ (6-fold), Tnfα (38-fold), Il6 (2.5-fold), Il1β (3-fold) and Il17a (6-fold) mRNA compared to CD1d-/- mice. In infected females, oviduct tissues had an elevated infiltration of CD4+ -invariant NKT (iNKT) cells, however, iNKT-deficient Jα18-/- mice had no significant differences in hydrosalpinx severity or incidence compared to WT controls. Lipid mass spectrometry of surface-cleaved CD1d in infected macrophages revealed an enhancement of presented lipids and cellular sequestration of sphingomyelin. Taken together, these data suggest an immunopathogenic role for non-invariant NKT cells in urogenital chlamydial infections, facilitated by lipid presentation via CD1d via infected antigen-presenting cells.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Fine N, Gracey E, Dimitriou I, La Rose J, Glogauer M, Rottapel R. GEF-H1 Is Required for Colchicine Inhibition of Neutrophil Rolling and Recruitment in Mouse Models of Gout. THE JOURNAL OF IMMUNOLOGY 2020; 205:3300-3310. [PMID: 33199537 DOI: 10.4049/jimmunol.1900783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Gout is a painful arthritic inflammatory disease caused by buildup of monosodium urate (MSU) crystals in the joints. Colchicine, a microtubule-depolymerizing agent that is used in prophylaxis and treatment of acute gout flare, alleviates the painful inflammatory response to MSU crystals. Using i.p. and intra-articular mouse models of gout-like inflammation, we found that GEF-H1/GEF-H1/AHRGEF2, a microtubule-associated Rho-GEF, was necessary for the inhibitory effect of colchicine on neutrophil recruitment. GEF-H1 was required for neutrophil polarization in response to colchicine, characterized by uropod formation, accumulation of F-actin and myosin L chain at the leading edge, and accumulation of phosphorylated myosin L chain, flotillin-2, and P-selectin glycoprotein ligand-1 (PSGL-1) in the uropod. Wild-type neutrophils that were pre-exposed to colchicine failed to roll or accumulate on activated endothelial monolayers, whereas GEF-H1 knockout (GEF-H1-/-) neutrophils were unaffected by treatment with colchicine. In vivo, colchicine blocked MSU-induced recruitment of neutrophils to the peritoneum and the synovium in wild-type mice, but not in GEF-H1-/- mice. Inhibition of macrophage IL-1β production by colchicine was independent of GEF-H1, supporting a neutrophil-intrinsic mode of action. Our results suggest that the anti-inflammatory effects of colchicine in acute gout-like inflammation can be accounted for by inhibition of neutrophil-rolling interactions with the inflamed vasculature and occurs through GEF-H1-dependent neutrophil stimulation by colchicine. These results contribute to our understanding of the therapeutic action of colchicine, and could inform the application of this drug in other conditions.
Collapse
Affiliation(s)
- Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Eric Gracey
- Vlaams Institute for Biotechnology Centre for Inflammation Research, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, University of Ghent, 9000 Ghent, Belgium
| | - Ioannis Dimitriou
- Department of Immunology, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - José La Rose
- Department of Immunology, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Robert Rottapel
- Department of Immunology, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario M5G 1L7, Canada; .,Department of Medicine, Ontario Institute for Cancer Research, University of Toronto, Toronto, Ontario M5G 1L7, Canada; and.,Division of Rheumatology, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
3
|
|
4
|
Noto Llana M, Sarnacki SH, Morales AL, Aya Castañeda MDR, Giacomodonato MN, Blanco G, Cerquetti MC. Activation of iNKT Cells Prevents Salmonella-Enterocolitis and Salmonella-Induced Reactive Arthritis by Downregulating IL-17-Producing γδT Cells. Front Cell Infect Microbiol 2017; 7:398. [PMID: 28944217 PMCID: PMC5596086 DOI: 10.3389/fcimb.2017.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive arthritis (ReA) is an inflammatory condition of the joints that arises following an infection. Salmonella enterocolitis is one of the most common infections leading to ReA. Although the pathogenesis remains unclear, it is known that IL-17 plays a pivotal role in the development of ReA. IL-17-producers cells are mainly Th17, iNKT, and γδT lymphocytes. It is known that iNKT cells regulate the development of Th17 lineage. Whether iNKT cells also regulate γδT lymphocytes differentiation is unknown. We found that iNKT cells play a protective role in ReA. BALB/c Jα18−/− mice suffered a severe Salmonella enterocolitis, a 3.5-fold increase in IL-17 expression and aggravated inflammation of the synovial membrane. On the other hand, activation of iNKT cells with α-GalCer abrogated IL-17 response to Salmonella enterocolitis and prevented intestinal and joint tissue damage. Moreover, the anti-inflammatory effect of α-GalCer was related to a drop in the proportion of IL-17-producing γδT lymphocytes (IL17-γδTcells) rather than to a decrease in Th17 cells. In summary, we here show that iNKT cells play a protective role against Salmonella-enterocolitis and Salmonella-induced ReA by downregulating IL17-γδTcells.
Collapse
Affiliation(s)
- Mariángeles Noto Llana
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sebastián H Sarnacki
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Andrea L Morales
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María Del R Aya Castañeda
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Mónica N Giacomodonato
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Guillermo Blanco
- Departamento de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María C Cerquetti
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
5
|
Cao Y, Feng Y, Zhang Y, Zhu X, Jin F. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 2016; 16:343. [PMID: 27246354 PMCID: PMC4888479 DOI: 10.1186/s12885-016-2376-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
Background L-Arg is involved in many biological activities, including the activation of T cells. In breast cancer patients, L-Arg is depleted by nitric oxide synthase 2 (NOS2) and arginase 1 (ARG-1) produced by myeloid-derived suppressor cells (MDSCs). Our aim was to test whether L-Arg supplementation could enhance antitumor immune response and improve survivorship in a rodent model of mammary tumor. Methods Tumor volumes in control and L-Arg treated 4 T1 tumor bearing (TB) BALB/c mice were measured and survival rates were recorded. The percentages of MDSCs, dendritic cells (DCs), regulatory T cells (Tregs), macrophages, CD4+ T cells, and CD8+ T cells were examined by flow cytometry. Additionally, levels of IL-10, TNF-α, and IFN-γ were measured by enzyme-linked immunosorbent assay (ELISA) and nitric oxide (NO) levels were measured by the Griess reaction. IFN-γ, T-bet, Granzyme B, ARG-1 and iNOS mRNA levels were examined by real-time RT-PCR. Results L-Arg treatment inhibited tumor growth and prolonged the survival time of 4 T1 TB mice. The frequency of MDSCs was significantly suppressed in L-Arg treated TB mice. In contrast, the numbers and function of macrophages, CD4+ T cells, and CD8+ T cells were significantly enhanced. The IFN-γ, TNF-α, NO levels in splenocytes supernatant, as well as iNOS, IFN-γ, Granzyme B mRNA levels in splenocytes and tumor blocks were significantly increased. The ARG-1 mRNA level in tumor blocks, the frequency of Tregs, and IL-10 level were not affected. Conclusion L-Arg supplementation significantly inhibited tumor growth and prolonged the survival time of 4 T1 TB mice, which was associated with the reduction of MDSCs, and enhanced innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yonghui Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yanjun Zhang
- Department of Medical Examination Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
6
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
7
|
Shekhar S, Joyee AG, Yang X. Dynamics of NKT-Cell Responses to Chlamydial Infection. Front Immunol 2015; 6:233. [PMID: 26029217 PMCID: PMC4432794 DOI: 10.3389/fimmu.2015.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Antony George Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada ; Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| |
Collapse
|
8
|
Inman RD. Reactive arthritis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Shekhar S, Joyee AG, Yang X. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J Innate Immun 2014; 6:575-84. [PMID: 24903638 DOI: 10.1159/000361048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
10
|
Habbeddine M, Verbeke P, Delarbre C, Moutier R, Prieto S, Ojcius DM, Kanellopoulos-Langevin C. CD1d-restricted NKT cells modulate placental and uterine leukocyte populations during chlamydial infection in mice. Microbes Infect 2013; 15:928-38. [PMID: 23999314 DOI: 10.1016/j.micinf.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023]
Abstract
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal-maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d(-/-) mice. We have also shown that infected- as well as uninfected-CD1d(-/-) mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d(-/-) placentas contained significantly higher percentages of CD4(+) and CD8(+) T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4(+) T cells in CD1d(-/-) mice. In infected WT pregnant mice, the numbers of uterine CD4(+) and CD8(+) T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d(-/-) mice. An increase in the percentage of CD8(+) T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d(-/-) mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal-fetal interface in the presence or absence of Chlamydia infection.
Collapse
Affiliation(s)
- Mohamed Habbeddine
- Laboratory of Inflammation, Gestation and Autoimmunity, Jacques Monod Institute, CNRS and University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France; Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, France; INSERM U1104 and CNRS UMR7280, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Zhao L, Peng Y, Liu J, Qi M, Chen Q, Yang X, Zhao W. Protective role of α-galactosylceramide-stimulated natural killer T cells in genital tract infection with Chlamydia muridarum. ACTA ACUST UNITED AC 2012; 65:43-54. [PMID: 22309187 DOI: 10.1111/j.1574-695x.2012.00939.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/28/2022]
Abstract
Natural killer T (NKT) cells are a unique lymphocyte subpopulation which has an important role in the response to microbial pathogens. In this study, we used α-galactosylceramide (α-GalCer), a specific ligand of NKT cells, to enhance NKT response and examine its effect on host defense against genital tract Chlamydia muridarum infection. The results showed that α-GalCer treatment before infection led to reduced pathological changes and bacterial burden in the genital tract. Moreover, α-GalCer-treated mice showed greater local Th1 cytokine production [interferon γ (IFN-γ) and interleukin 12 (IL-12)] in local lymph node cells and genital tissues following challenge infection compared with untreated mice, as well as an enhanced level of IFN-γ production by NK and T cells. In addition, NKT cells in the mice with genital tract C. muridarum infection, unlike those from naïve mice, showed a polarized IFN-γ production. These results suggest a promoting role of NKT cells on type 1 T cell immune response and host resistance to Chlamydia in genital tract infection.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Subrahmanyam PB, Sun W, East JE, Li J, Webb TJ. Natural killer T cell based Immunotherapy. ACTA ACUST UNITED AC 2012; 3:144. [PMID: 24089657 DOI: 10.4172/2157-7560.1000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine, the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
13
|
Abstract
Reactive arthritis (ReA), an inflammatory arthritic condition that is commonly associated with Chlamydia infections, represents a significant health burden, yet is poorly understood. The enigma of this disease is reflected in its problematic name and in its ill-defined pathogenesis. The existence of persistent pathogens in the arthritic joint is acknowledged, but their relevance remains elusive. Progress is being made in understanding the underlying mechanisms of ReA, whereby an imbalance between type 1 and type 2 immune responses seems to be critical in determining susceptibility to disease. Such an imbalance occurs prior to the initiation of an adaptive immune response, suggesting that innate cellular and molecular mechanisms in ReA should be prioritized as fruitful areas for investigation.
Collapse
|
14
|
Carter JD, Inman RD. Chlamydia-induced reactive arthritis: Hidden in plain sight? Best Pract Res Clin Rheumatol 2011; 25:359-74. [DOI: 10.1016/j.berh.2011.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/10/2011] [Indexed: 01/06/2023]
|
15
|
Van Kaer L, Parekh VV, Wu L. Invariant NK T cells: potential for immunotherapeutic targeting with glycolipid antigens. Immunotherapy 2011; 3:59-75. [PMID: 21174558 DOI: 10.2217/imt.10.85] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invariant NK T (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens bound with the antigen-presenting molecule CD1d. iNKT cells have potent immunoregulatory activities that can promote or suppress immune responses during different pathological conditions. These immunoregulatory properties can be harnessed for therapeutic purposes with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid α-galactosylceramide. Preclinical studies have shown substantial promise for iNKT cell-based treatments of infections, cancer and autoimmune and inflammatory diseases. Translation of these preclinical studies to the clinic, while faced with some obstacles, has already had some initial success. In this article, we review the immunodulatory activities of iNKT cells and the potential for developing iNKT cell-based prophylactic and curative therapies of human disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology & Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Avenue South, Nashville, TN 37232-32363, USA.
| | | | | |
Collapse
|
16
|
|