1
|
Cui XJ, Xie B, Zhu KW, Liao QQ, Zhou JC, Du S, Liu XX, Chen ZJ, Yang Y, Yi X. Prognostic value of the platelet, neutrophil, monocyte, basophil, and eosinophil to lymphocyte ratios in patients with severe community-acquired pneumonia (SCAP). Sci Rep 2024; 14:30406. [PMID: 39638829 PMCID: PMC11621349 DOI: 10.1038/s41598-024-80727-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Severe community-acquired pneumonia (SCAP) is a serious respiratory inflammation disease with high morbidity and mortality. This study aimed to evaluate the prognostic value of the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), basophil-to-lymphocyte ratio (BLR) and eosinophil-to-lymphocyte ratio (ELR) in patients with SCAP. The study retrospectively included 554 patients with SCAP, and the clinical data were obtained from the electronic patient record (EMR) system. The primary outcome was in-hospital mortality, and the secondary outcomes included hospital length of stay (LOS), overall survival (OS), admission to ICU, ICU LOS, and ICU mortality. The results showed that both NLR and BLR were significant but not independent prognostic factors for in-hospital mortality; NLR was negatively correlated with hospital LOS while ELR was positively correlated with hospital LOS; both increased NLR and increased BLR were associated with reduced OS, while increased ELR was associated with improved OS; increased PLR, NLR, MLR, and BLR were all correlated with elevated ICU admission rates, while increased ELR was correlated with a reduced ICU admission rate; ELR was positively correlated with ICU LOS; both higher NLR and higher BLR were associated with increased ICU mortality. In summary, NLR and BLR were useful prognostic factors for clinical outcomes in patients with SCAP.
Collapse
Affiliation(s)
- Xiao-Jiao Cui
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Bo Xie
- Department of Cardiology, Chengdu First People's Hospital, No.18 North Wanxiang Road, High-tech District, Chengdu, 610016, Sichuan, China
| | - Ke-Wei Zhu
- Office of Pharmacovigilance, GuangZhou BaiYunShan Pharmaceutical Holdings Co.,Ltd, BaiYunShan Pharmaceutical General Factory, No.88 Yunxiang Road Tonghe Street, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Qian-Qian Liao
- Department of Pharmacy, People's Hospital of Guilin, No.12 Civilization Road, Xiangshan District, Guilin, China
| | - Jian-Cheng Zhou
- Department of Pharmacy, Jiangsu Province Hospital, No.300 Guangzhou Road, Gulou District, Nanjing, China
| | - Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xin-Xia Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Zhu-Jun Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Yong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China.
| | - Xiaoqing Yi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Horikawa I, Nagai H, Taniguchi M, Chen G, Shinohara M, Suzuki T, Ishii S, Katayama Y, Kitaoka S, Furuyashiki T. Chronic stress alters lipid mediator profiles associated with immune-related gene expressions and cell compositions in mouse bone marrow and spleen. J Pharmacol Sci 2024; 154:279-293. [PMID: 38485346 DOI: 10.1016/j.jphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
Collapse
Affiliation(s)
- Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masayuki Taniguchi
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Guowei Chen
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
3
|
Sha J, Zhang M, Feng J, Shi T, Li N, Jie Z. Promyelocytic leukemia zinc finger controls type 2 immune responses in the lungs by regulating lineage commitment and the function of innate and adaptive immune cells. Int Immunopharmacol 2024; 130:111670. [PMID: 38373386 DOI: 10.1016/j.intimp.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.
Collapse
Affiliation(s)
- Jiafeng Sha
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Nakada T. Special Issue "Molecular Studies of Dermatitis: From Mechanism to Therapy". Int J Mol Sci 2024; 25:2696. [PMID: 38473943 DOI: 10.3390/ijms25052696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Dermatitis (eczema) represents a group of inflammatory cutaneous diseases [...].
Collapse
Affiliation(s)
- Tokio Nakada
- Department of Dermatology, Showa University Fujigaoka Hospital 1-30, Fujigaoka, Aoba-ku, Yokohama 227-8501, Kanagawa, Japan
| |
Collapse
|
5
|
Kim HY, Jeong D, Kim JH, Chung DH. Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets. Immune Netw 2024; 24:e6. [PMID: 38455467 PMCID: PMC10917574 DOI: 10.4110/in.2024.24.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
Collapse
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Duan Q, Zhou Y, Yang D. Endoplasmic reticulum stress in airway hyperresponsiveness. Biomed Pharmacother 2022; 149:112904. [PMID: 35367759 DOI: 10.1016/j.biopha.2022.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022] Open
Abstract
Airway hyperresponsiveness(AHR) is a major clinical phenomenon in lung diseases (asthma, COPD and pulmonary fibrosis) and not only a high-risk factor for perioperative airway spasm leading to hypoxaemia, haemodynamic instability and even "silent lung", but also a potential risk for increased mortality from underlying diseases (e.g. asthma, COPD). Airway reactivity is closely linked to airway inflammation, remodelling and increased mucus secretion, and endoplasmic reticulum stress is an important mechanism for the development of these pathologies. This review, therefore, focuses on the effects of endoplasmic reticulum stress on the immune cells involved in airway hyperreactivity (epithelial cells, dendritic cells, eosinophils and neutrophils) in inflammation and mucus & sputum secretion; and on the differentiation and remodelling of airway smooth muscle cells and epithelial cells. The aim is to clarify the mechanisms associated with endoplasmic reticulum stress in airway hyperresponsiveness and to find new ideas and methods for the prevention of airway hyperresponsiveness in the perioperative period.
Collapse
Affiliation(s)
- Qirui Duan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Ying Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
8
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
9
|
Carson AS, Gardner A, Iweala OI. Where's the Beef? Understanding Allergic Responses to Red Meat in Alpha-Gal Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:267-277. [PMID: 35017216 PMCID: PMC8928418 DOI: 10.4049/jimmunol.2100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023]
Abstract
Alpha-gal syndrome (AGS) describes a collection of symptoms associated with IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal). Individuals with AGS develop delayed hypersensitivity reactions, with symptoms occurring >2 h after consuming mammalian ("red") meat and other mammal-derived food products. The mechanisms of pathogenesis driving this paradigm-breaking food allergy are not fully understood. We review the role of tick bites in the development of alpha-gal-specific IgE and highlight innate and adaptive immune cells possibly involved in alpha-gal sensitization. We discuss the impact of alpha-gal glycosylation on digestion and metabolism of alpha-gal glycolipids and glycoproteins, and the implications for basophil and mast cell activation and mediator release that generate allergic symptoms in AGS.
Collapse
Affiliation(s)
- Audrey S. Carson
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aliyah Gardner
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
10
|
The Value of a Complete Blood Count (CBC) for Sepsis Diagnosis and Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11101881. [PMID: 34679578 PMCID: PMC8534992 DOI: 10.3390/diagnostics11101881] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis represents an important global health burden due to its high mortality and morbidity. The rapid detection of sepsis is crucial in order to prevent adverse outcomes and reduce mortality. However, the diagnosis of sepsis is still challenging and many efforts have been made to identify reliable biomarkers. Unfortunately, many investigated biomarkers have several limitations that do not support their introduction in clinical practice, such as moderate diagnostic and prognostic accuracy, long turn-around time, and high-costs. Complete blood count represents instead a precious test that provides a wealth of information on individual health status. It can guide clinicians to early-identify patients at high risk of developing sepsis and to predict adverse outcomes. It has several advantages, being cheap, easy-to-perform, and available in all wards, from the emergency department to the intensive care unit. Noteworthy, it represents a first-level test and an alteration of its parameters must always be considered within the clinical context, and the eventual suspect of sepsis must be confirmed by more specific investigations. In this review, we describe the usefulness of basic and new complete blood count parameters as diagnostic and prognostic biomarkers of sepsis.
Collapse
|
11
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
[The basophil: From control of immunity to control of leukemias]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:9-25. [PMID: 34051212 DOI: 10.1016/j.pharma.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
The basophils, first described by Paul Ehlrich in 1879, are rare circulating cells, representing approximately 0.01 to 0.3% of the blood leukocytes. Until recently, these cells have been neglected because of their minority status among immune cells and because they show some similarities to mast cells residing in tissues. However, basophils and mast cells are now recognized as distinct cell lines and it appears that basophils have important and non-redundant functions, distinct from those of mast cells. On the one hand, basophils have beneficial contribution to protective immunity, in particular against parasitic infections. On the other hand, basophils are involved in the development of various benign and malignant pathologies, ranging from allergy to certain leukemias. Basophils interact with other immune cells or neoplastic cells through direct contacts or soluble mediators, such as cytokines and proteases, thus contributing to the regulation of the immune system but also to allergic responses, and probably to the process of neoplastic transformation. In this review, we will develop recent knowledge on the involvement of basophils in the modulation of innate and adaptive immunity. We will then describe the benign or malignant circumstances in which an elevation of circulating basophils can be observed. Finally, we will discuss the role played by these cells in the pathophysiology of certain leukemias, particularly during chronic myeloid leukemia.
Collapse
|
13
|
Nakayama M, Hori A, Toyoura S, Yamaguchi SI. Shaping of T Cell Functions by Trogocytosis. Cells 2021; 10:cells10051155. [PMID: 34068819 PMCID: PMC8151334 DOI: 10.3390/cells10051155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Collapse
|
14
|
Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells 2021; 10:cells10040895. [PMID: 33919759 PMCID: PMC8070740 DOI: 10.3390/cells10040895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are well known to contribute significantly to Th2 immunity, such as allergic inflammations. Although basophils have often not been considered in the pathogenicity of allergic dermatitis and asthma, their role in Th2 immunity has become apparent in recent years. Eosinophils and basophils are present at sites of allergic inflammations. It is therefore reasonable to speculate that these two types of granulocytes interact in vivo. In various experimental allergy models, basophils and eosinophils appear to be closely linked by directly or indirectly influencing each other since they are responsive to similar cytokines and chemokines. Indeed, basophils are shown to be the gatekeepers that are capable of regulating eosinophil entry into inflammatory tissue sites through activation-induced interactions with endothelium. However, the direct evidence that eosinophils and basophils interact is still rarely described. Nevertheless, new findings on the regulation and function of eosinophils and basophils biology reported in the last 25 years have shed some light on their potential interaction. This review will focus on the current knowledge that basophils may regulate the biology of eosinophil in atopic dermatitis and allergic asthma.
Collapse
|
15
|
Trogocytosis between Non-Immune Cells for Cell Clearance, and among Immune-Related Cells for Modulating Immune Responses and Autoimmunity. Int J Mol Sci 2021; 22:ijms22052236. [PMID: 33668117 PMCID: PMC7956485 DOI: 10.3390/ijms22052236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
The term trogocytosis refers to a rapid bidirectional and active transfer of surface membrane fragment and associated proteins between cells. The trogocytosis requires cell-cell contact, and exhibits fast kinetics and the limited lifetime of the transferred molecules on the surface of the acceptor cells. The biological actions of trogocytosis include information exchange, cell clearance of unwanted tissues in embryonic development, immunoregulation, cancer surveillance/evasion, allogeneic cell survival and infectious pathogen killing or intercellular transmission. In the present review, we will extensively review all these aspects. In addition to its biological significance, aberrant trogocytosis in the immune system leading to autoimmunity and immune-mediated inflammatory diseases will also be discussed. Finally, the prospective investigations for further understanding the molecular basis of trogocytosis and its clinical applications will also be proposed.
Collapse
|
16
|
Berger AE, Durrieu C, Dzviga C, Perrot JL, Lambert C. Human peripheral basophils extended phenotype shows a high expression of CD244 immuno-regulatory receptor. J Immunol Methods 2021; 492:112951. [PMID: 33493550 DOI: 10.1016/j.jim.2020.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Basophils play a major physio-pathological role in hypersensitivity related diseases. Basophils express high affinity Immunoglobulin (Ig) E receptors (FcεRI), IgG and complement regulatory. Basophils also have immunoregulatory activity through interaction with T cells. The aim of this study was to look for the expression of markers reflecting the activation status of peripheral Basophil in healthy donors. METHOD the study was performed on 29 healthy donors, 62% females with a mean age of 50.1 + 17.0 years. Basophils were identified on their expression of CD123 without HLA-DR and/or CD193 in two 8 colors panels including CD46, CD55, CD59, CD203c, CD32 (FcγRII), CD64 (FcγRIII), CD163, CD137L (4-1BBL), CD252 (OX40L), CD244 (2B4) and CD3 on whole blood. Basophil activation with anti IgE was performed on 14 donors. RESULTS AND DISCUSSION Our results confirmed the Basophil expression of CD123, CD193 and CD203 (the latter is strongly increased under stimulation). Complement regulatory proteins (CD46, CD55, CD59) were expressed at the same levels as on other leukocytes; CD46, CD59 expression being slightly increased under stimulation. CD32 and CD163 scavenger were slightly higher than on lympho and not influenced by activation. CD252 or CD137L were expressed at low levels and significantly induced by stimulation. Most of all, CD244 was highly expressed on Basophils as compared to any other leukocytes in fresh peripheral blood. CONCLUSIONS Our study shows that human resting Basophils express IgE and IgG Fc receptors and check point receptor CD244 that could potentially play a role in their previously reported immunoregulatory activity in sensitization and even in tumor immune escape.
Collapse
Affiliation(s)
- Anne-Emmanuelle Berger
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Coralie Durrieu
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Charles Dzviga
- Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Jean-Luc Perrot
- Dermatology department, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Claude Lambert
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France; Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France.
| |
Collapse
|
17
|
Li J, Wu J, Liu H, Hua L, Liu Q, Fang D, Chen Y, Ji R, Zhang J, Zhong W. Utility of basophil activation test for predicting the outcome of wheezing in children: a pilot study. BMC Immunol 2021; 22:4. [PMID: 33407109 PMCID: PMC7788708 DOI: 10.1186/s12865-020-00395-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 03/31/2024] Open
Abstract
BACKGROUND No reliable biological marker for the diagnosis of asthma in younger children is currently available. In this study, we analyzed the differences in basophil activation test (BAT) results among children with recurrent wheezing episodes who had different asthma outcomes. RESULTS A prospective cohort study was conducted in children aged under 5 years who visited our pediatric respiratory clinic and ward for wheezing. After enrollment, the participants provided samples for a CD63-based BAT performed using an inhalant allergen mixture as a stimulant. Histories of personal allergic diseases and family allergic diseases were evaluated by using a questionnaire. All participants were followed up for 2 years, and their asthma outcomes were evaluated at the end of the follow-up period. The correlation between the BAT results and asthma outcomes was analyzed. Of the 45 originally enrolled children, 38 completed both the follow-up and a BAT. After stimulation with the inhalant mixture, the CD63 expression on basophils and the rate of positive CD63-based BAT results in children diagnosed with asthma were both significantly higher than those in children who were not diagnosed with asthma (p < 0.05 and p < 0.01, respectively). For the prediction of asthma, the positive predictive value and negative predictive value of CD63-based BAT was 71.8 and 69.2%, respectively. The positive likelihood ratio and negative likelihood ratio of CD63-based BAT were 1.70 and 0.3, respectively. CONCLUSIONS Our pilot study indicates that CD63-based BAT has potential clinical value for predicting asthma outcome in young children with wheezing episodes.
Collapse
Affiliation(s)
- Jingyang Li
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Jinhong Wu
- Department of Pediatrics, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Haipei Liu
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Li Hua
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Quanhua Liu
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Dingzhu Fang
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Yi Chen
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Ruoxu Ji
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China
| | - Jianhua Zhang
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China.
| | - Wenwei Zhong
- Department of Pediatrics, Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200090, China.
- Department of Pediatrics, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
18
|
Wu CY, Chuang HY, Wong CH. Influenza virus neuraminidase regulates host CD8 + T-cell response in mice. Commun Biol 2020; 3:748. [PMID: 33293641 PMCID: PMC7722854 DOI: 10.1038/s42003-020-01486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus (IAV)-specific CD8+ T-cell response was shown to provide protection against pandemic and seasonal influenza infections. However, the response was often relatively weak and the mechanism was unclear. Here, we show that the composition of IAV released from infected cells is regulated by the neuraminidase (NA) activity and the cells infected by NA-defective virus cause intracellular viral protein accumulation and cell death. In addition, after uptake of NA-defective viruses by dendritic cells (DCs), an expression of the major histocompatibility complex class I is induced to activate IAV-specific CD8+ T-cell response. When mice were infected by NA-defective IAV, a CD8+ T-cell response to the highly conserved viral antigens including PB1, NP, HA, M1, M2 and NS1 was observed along with the increasing expression of IL10, IL12 and IL27. Vaccination of mice with NA-defective H1N1 A/WSN/33 induced a strong IAV-specific CD8+ T cell response against H1N1, H3N2 and H5N1. This study reveals the role of NA in the IAV-specific CD8+ T-cell response and virion assembly process, and provides an alternative direction toward the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan.
- Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infect Immun 2020; 88:IAI.00427-20. [PMID: 32958528 PMCID: PMC7671899 DOI: 10.1128/iai.00427-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.
Collapse
|
20
|
Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy 2020; 75:1582-1605. [PMID: 32319104 DOI: 10.1111/all.14318] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Collapse
Affiliation(s)
- Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Marie-Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University Zurich Zurich Switzerland
| | - William Busse
- Department of Medicine School of Medicine and Public Health University of Wisconsin Madison WI USA
| | - Massimo Gadina
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Emma Guttman‐Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Agency for Science, Technology and Research (A*STAR) Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS) Singapore Singapore
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Laura Vian
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Jianni Wu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
21
|
Han H, Xu YZ, Liao S, Xiao H, Chen X, Lu X, Wang S, Yang C, Liu HF, Pan Q. Increased number and activation of peripheral basophils in adult-onset minimal change disease. J Cell Mol Med 2020; 24:7841-7849. [PMID: 32510738 PMCID: PMC7348159 DOI: 10.1111/jcmm.15417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the pathogenesis of minimal change disease (MCD) is still not well‐known, and the current understanding on MCD is mainly based on data derived from children, and very few adults. Here, we comprehensively analysed the correlation between the changes of peripheral basophils and the incidence rate and relapse of adult‐onset MCD. The results showed that in patients at the onset of MCD, the ratio and activation of basophils were all higher than those of healthy controls (all P < .05). In vitro test results showed that basophils from healthy controls can be activated by the serum taken from patients with MCD. Among 62 patients at the onset of MCD, with complete remission after treatment and 1 year of follow‐up, the relative and absolute basophil counts before treatment were higher in the long‐term remission group (n = 33) than that of the relapse group (n = 29). The basophil counts were significantly higher in the infrequent relapse group (n = 13) than that of the frequent relapse group (n = 16; P < .05). These findings suggested that basophil may play a pathogenic role in adult‐onset MCD, and the increased number and activation of peripheral basophils could predict recurrence in adult MCD.
Collapse
Affiliation(s)
- Huanqin Han
- Infectious Diseases Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yong-Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haiyan Xiao
- College of Nursing, Department of Anesthesiology and Perioperative Medicine, Augusta University, Augusta, GA, USA
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
22
|
Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, Villar M, Cabezas-Cruz A, de la Fuente J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front Cell Infect Microbiol 2020; 10:78. [PMID: 32211341 PMCID: PMC7075944 DOI: 10.3389/fcimb.2020.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
23
|
Han J, Liu B, Liu QM, Zhang YF, Liu YX, Liu H, Cao MJ, Liu GM. Red Algae Sulfated Polysaccharides Effervescent Tablets Attenuated Ovalbumin-Induced Anaphylaxis by Upregulating Regulatory T cells in Mouse Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11911-11921. [PMID: 31475818 DOI: 10.1021/acs.jafc.9b03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Red algae sulfated polysaccharides (RASP) were extracted from Porphyra haitanensis and Gracilaria lemaneiformis. RASP were applied to effervescent tablets to develop a type of functional food, termed red algae sulfated polysaccharide effervescent tablets (RASPET), based on the antiallergic activities of RASP. The antiallergic activities and the mechanisms of RASPET were investigated in an ovalbumin (OVA)-induced mouse model of food allergy. The results revealed that RASPET alleviated intestinal villi injury by scanning electron microscopy and anaphylactic symptoms; reduced OVA-specific immunoglobulin E, histamine, and mast cell protease-1 levels in the serum; reduced the level of serum interleukin-4; increased serum interferon-γ level; and decreased B cell and mast cell populations. Remarkably, RASPET increased the levels of serum interleukin-10, transforming growth factor-β, and upregulated splenic CD4+foxp3+ T cell populations (15.28, 16.82, and 17.58%, respectively) compared to the OVA group (13.17%). In conclusion, RASPET attenuated OVA-induced anaphylaxis via the upregulation of regulatory T cells.
Collapse
Affiliation(s)
- Jing Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Ya-Fen Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Yi-Xiang Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P. R. China
| |
Collapse
|
24
|
Poddighe D. "Home environment and diseases in early life are associated with allergic rhinitis": Role of respiratory infections and passive smoke exposure in infancy. Int J Pediatr Otorhinolaryngol 2019; 125:133. [PMID: 31302574 DOI: 10.1016/j.ijporl.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan.
| |
Collapse
|
25
|
Kageyama R, Fujiyama T, Satoh T, Keneko Y, Kitano S, Tokura Y, Hashizume H. The contribution made by skin-infiltrating basophils to the development of alpha-gal syndrome. Allergy 2019; 74:1805-1807. [PMID: 30903699 DOI: 10.1111/all.13794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reiko Kageyama
- Department of Dermatology Shimada Municipal Hospital Shimada Japan
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Toshiharu Fujiyama
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Takahiro Satoh
- Department of Dermatology National Defense Medical College Tokorozawa Japan
| | - Yasuhito Keneko
- Department of Dermatology Shimada Municipal Hospital Shimada Japan
| | - Seiya Kitano
- Department of Dermatology Shimada Municipal Hospital Shimada Japan
| | - Yoshiki Tokura
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Hideo Hashizume
- Department of Dermatology Shimada Municipal Hospital Shimada Japan
| |
Collapse
|
26
|
Introduction: Allergy Special Issue. Int Immunol 2018. [DOI: 10.1093/intimm/dxy049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|