1
|
Weldearegay YB, Brogaard L, Nerlich A, Schaaf D, Heegaard PMH, Valentin-Weigand P. Transcriptional Host Responses to Infection with Streptococcus suis in a Porcine Precision-Cut Lung Slice Model: Between-Strain Differences Suggest Association with Virulence Potential. Pathogens 2023; 13:4. [PMID: 38276150 PMCID: PMC10820225 DOI: 10.3390/pathogens13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Streptococcus suis is a porcine and zoonotic pathogen in the upper respiratory tract, expressing different capsular serotypes and virulence-associated factors. Given its genomic and phenotypic diversity, the virulence potential of S. suis cannot be attributed to a single factor. Since strong inflammatory response is a hallmark of S. suis infection, the objective of this study was to investigate the differences in transcriptional host responses to two serotype 2 and one serotype 9 strains. Both serotypes are frequently found in clinical isolates. We infected porcine precision-cut lung slices (PCLSs) with two serotype 2 strains of high (strain S10) and low (strain T15) virulence, and a serotype 9 strain 8067 of moderate virulence. We observed higher expression of inflammation-related genes during early infection with strains T15 and 8067, in contrast to infection with strain 10, whose expression peaked late. In addition, bacterial gene expression from infected PCLSs revealed differences, mainly of metabolism-related and certain virulence-associated bacterial genes amongst these strains. We conclude that the strain- and time-dependent induction of genes involved in innate immune response might reflect clinical outcomes of infection in vivo, implying rapid control of infection with less virulent strains compared to the highly virulent strain S10.
Collapse
Affiliation(s)
- Yenehiwot Berhanu Weldearegay
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Désirée Schaaf
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Peter M. H. Heegaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
- Department of Health Technology, Experimental & Translational Immunology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| |
Collapse
|
2
|
Zhang Q, Wang F, Xu S, Cui J, Li K, Shiwen X, Guo MY. Polystyrene microplastics induce myocardial inflammation and cell death via the TLR4/NF-κB pathway in carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108690. [PMID: 36944415 DOI: 10.1016/j.fsi.2023.108690] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) have attracted widespread attention as an emerging environmental pollutant. Especially in aquatic ecosystems, the harm of MPs to aquatic animals has increasingly become a severe environmental problem. In this study, we constructed a carp polystyrene microplastics (PS-MPs) exposure model to explore the damage and mechanism of PS-MPs exposure to carp myocardial tissue. The results of H&E, TUNEL, and AO/EB staining showed that PS-MPs exposure could induce inflammation, apoptosis, and necrosis in carp myocardial tissue and cardiomyocytes. In addition, our study explored the targeting relationship between PS-MPs and TLR4 and found that PS-MPs exposure could significantly increase the expression of TLR4 pathway-related factors. As the concentration of PS-MPs increased, the NF-κB pathway and inflammation-related factors increased dose-dependent. In addition, myocardial injury induced by exposure to PS-MPs was predominantly apoptotic, accompanied by necrosis. In short, our data suggest that PS-MPs cause damage to myocardial tissue via the TLR4\NF-κB pathway. The above findings enrich the theory of toxicological studies on PS-MPs and provide an essential reference for aquaculture.
Collapse
Affiliation(s)
- Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Fuhan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Capsular polysaccharide switching in Streptococcus suis modulates host cell interactions and virulence. Sci Rep 2021; 11:6513. [PMID: 33753801 PMCID: PMC7985379 DOI: 10.1038/s41598-021-85882-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
The capsular polysaccharide (CPS) of Streptococcus suis defines various serotypes based on its composition and structure. Though serotype switching has been suggested to occur between S. suis strains, its impact on pathogenicity and virulence remains unknown. Herein, we experimentally generated S. suis serotype-switched mutants from a serotype 2 strain that express the serotype 3, 4, 7, 8, 9, or 14 CPS. The effects of serotype switching were then investigated with regards to classical properties conferred by presence of the serotype 2 CPS, including adhesion to/invasion of epithelial cells, resistance to phagocytosis by macrophages, killing by whole blood, dendritic cell-derived pro-inflammatory mediator production and virulence using mouse and porcine infection models. Results demonstrated that these properties on host cell interactions were differentially modulated depending on the switched serotypes, although some different mutations other than loci of CPS-related genes were found in each the serotype-switched mutant. Among the serotype-switched mutants, the mutant expressing the serotype 8 CPS was hyper-virulent, whereas mutants expressing the serotype 3 or 4 CPSs had reduced virulence. By contrast, switching to serotype 7, 9, or 14 CPSs had little to no effect. These findings suggest that serotype switching can drastically alter S. suis virulence and host cell interactions.
Collapse
|
4
|
Annexin A1 Attenuates Neutrophil Migration and IL-6 Expression through Fpr2 in a Mouse Model of Streptococcus suis-Induced Meningitis. Infect Immun 2021; 89:IAI.00680-20. [PMID: 33318141 PMCID: PMC8097268 DOI: 10.1128/iai.00680-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. As a glucocorticoid anti-inflammatory mediator, annexin A1 (AnxA1) mainly acts through formyl peptide receptor 2 (Fpr2) to alleviate inflammation in the peripheral system. In this study, we evaluated the roles of AnxA1 and Fpr2 in a mouse model of S. suis meningitis created via intracisternal infection in Fpr2-deficient (Fpr2−/−) and wild-type (WT) mice. We revealed that Fpr2−/− mice were highly susceptible to S. suis meningitis, displaying increased inflammatory cytokine levels, bacterial dissemination, and neutrophil migration compared with WT mice. Additionally, AnxA1 exerted anti-inflammatory effects through Fpr2, such as attenuation of leukocyte infiltration, inflammatory mediator production, and astrocyte or microglial activation in the brain. Importantly, we found that the antimigratory function of AnxA1 decreases neutrophil adherence to the endothelium through Fpr2. Finally, an in vitro study revealed that AnxA1 potentially suppresses interleukin-6 (IL-6) expression through the Fpr2/p38/COX-2 pathway. These data demonstrated that Fpr2 is an anti-inflammatory receptor that regulates neutrophil migration in mice with S. suis meningitis and identified AnxA1 as a potential therapeutic option.
Collapse
|
5
|
Recognition of Lipoproteins by Toll-like Receptor 2 and DNA by the AIM2 Inflammasome Is Responsible for Production of Interleukin-1β by Virulent Suilysin-negative Streptococcus suis Serotype 2. Pathogens 2020; 9:pathogens9020147. [PMID: 32098284 PMCID: PMC7168628 DOI: 10.3390/pathogens9020147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent causing sudden death, septic shock and meningitis. These pathologies are the consequence of an exacerbated inflammatory response composed of various mediators including interleukin (IL)-1β. Elevated levels of the toxin suilysin (SLY) were demonstrated to play a key role in S. suis-induced IL-1β production. However, 95% of serotype 2 strains isolated from diseased pigs in North America, many of which are virulent, do not produce SLY. In this study, we demonstrated that SLY-negative S. suis induces elevated levels of IL-1β in systemic organs, with dendritic cells contributing to this production. SLY-negative S. suis-induced IL-1β production requires MyD88 and TLR2 following recognition of lipoproteins. However, the higher internalization rate of the SLY-negative strain results in intracellularly located DNA being recognized by the AIM2 inflammasome, which promotes IL-1β production. Finally, the role of IL-1 in host survival during the S. suis systemic infection is beneficial and conserved, regardless of SLY production, via modulation of the inflammation required to control bacterial burden. In conclusion, this study demonstrates that SLY is not required for S. suis-induced IL-1β production.
Collapse
|
6
|
Inflammatory Monocytes and Neutrophils Regulate Streptococcus suis-Induced Systemic Inflammation and Disease but Are Not Critical for the Development of Central Nervous System Disease in a Mouse Model of Infection. Infect Immun 2020; 88:IAI.00787-19. [PMID: 31818962 PMCID: PMC7035915 DOI: 10.1128/iai.00787-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.
Collapse
|
7
|
Lavagna A, Auger JP, Dumesnil A, Roy D, Girardin SE, Gisch N, Segura M, Gottschalk M. Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection. Vet Res 2019; 50:52. [PMID: 31262357 PMCID: PMC6604435 DOI: 10.1186/s13567-019-0670-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine pathogen and zoonotic agent causing sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the infection. A rapid, effective and balanced innate immune response against S. suis is critical to control bacterial growth without causing excessive inflammation. Even though interleukin (IL)-1 is one of the most potent and earliest pro-inflammatory mediators produced, its role in the S. suis pathogenesis has not been studied. We demonstrated that a classical virulent European sequence type (ST) 1 strain and the highly virulent ST7 strain induce important levels of IL-1 in systemic organs. Moreover, bone marrow-derived dendritic cells and macrophages contribute to its production, with the ST7 strain inducing higher levels. To better understand the underlying mechanisms involved, different cellular pathways were studied. Independently of the strain, IL-1β production required MyD88 and involved recognition via TLR2 and possibly TLR7 and TLR9. This suggests that the recognized bacterial components are similar and conserved between strains. However, very high levels of the pore-forming toxin suilysin, produced only by the ST7 strain, are required for efficient maturation of pro-IL-1β via activation of different inflammasomes resulting from pore formation and ion efflux. Using IL-1R−/− mice, we demonstrated that IL-1 signaling plays a beneficial role during S. suis systemic infection by modulating the inflammation required to control and clear bacterial burden, thus promoting host survival. Beyond a certain threshold, however, S. suis-induced inflammation cannot be counterbalanced by this signaling, making it difficult to discriminate its role.
Collapse
Affiliation(s)
- Agustina Lavagna
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Audrey Dumesnil
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
8
|
Auger JP, Boa AC, Segura M, Gottschalk M. Antigen I/II Participates in the Interactions of Streptococcus suis Serotype 9 With Phagocytes and the Development of Systemic Disease. Front Cell Infect Microbiol 2019; 9:124. [PMID: 31069179 PMCID: PMC6491464 DOI: 10.3389/fcimb.2019.00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and a zoonotic agent causing a variety of pathologies including sudden death, septic shock, and meningitis. Though serotype 2 is the most studied serotype due to its presence worldwide, serotype 9 is responsible for the greatest number of porcine cases in Spain, the Netherlands, and Germany. Regardless of its increasing importance, very few studies have investigated S. suis serotype 9 virulence factors and pathogenesis. Antigens I/II (AgI/II) are multimodal adhesion proteins implicated in host respiratory tract and oral cavity persistence of various pathogenic human streptococci. It was recently demonstrated that AgI/II is involved in various bacterial functions for serotype 9, participating in the initial steps of the pathogenesis of the infection. However, its contribution to the systemic infection remains unknown. As such, we evaluated herein the role of the S. suis serotype 9 AgI/II in the interactions with phagocytes and the development of systemic disease in a mouse model of infection. Results demonstrated that the presence of AgI/II is important for the development of clinical systemic disease by promoting bacterial survival in blood possibly due to its effect on S. suis phagocytosis, as shown with macrophages and dendritic cells. Furthermore, AgI/II directly participates in dendritic cell activation and pro-inflammatory mediator production following recognition by the Toll-like receptor pathway, which may contribute to the exacerbated systemic inflammation responsible for host death. Taken together, this study demonstrates that the S. suis serotype 9 AgI/II is important for virulence during systemic infection and development of disease. In fact, this is the first study to describe a role of an AgI/II family member in systemic bacterial disease.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Anaïs-Christelle Boa
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|