1
|
Pratap PP, Cottrell CA, Quinn J, Carnathan DG, Bader DLV, Tran AS, Enemuo CA, Ngo JT, Richey ST, Gao H, Shen X, Greene KM, Hurtado J, Michaels KK, Ben-Akiva E, Allen JD, Ozorowski G, Crispin M, Briney B, Montefiori D, Silvestri G, Irvine DJ, Crotty S, Ward AB. Immunofocusing on the conserved fusion peptide of HIV envelope glycoprotein in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625755. [PMID: 39651156 PMCID: PMC11623688 DOI: 10.1101/2024.11.27.625755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During infection, the fusion peptide (FP) of HIV envelope glycoprotein (Env) serves a central role in viral fusion with the host cell. As such, the FP is highly conserved and therefore an attractive epitope for vaccine design. Here, we describe a vaccination study in non-human primates (NHPs) where glycan deletions were made on soluble HIV Env to increase FP epitope exposure. When delivered via implantable osmotic pumps, this immunogen primed immune responses against the FP, which were then boosted with heterologous trimers resulting in a focused immune response targeting the conserved FP epitope. Although autologous immunizations did not elicit high affinity FP-targeting antibodies, the conserved FP epitope on a heterologous trimer further matured the lower affinity, FP-targeting B cells. This study suggests using epitope conservation strategies on distinct Env trimer immunogens can focus humoral responses on desired neutralizing epitopes and suppress immune-distracting antibody responses against non-neutralizing epitopes.
Collapse
|
2
|
Ambegaonkar AA, Holla P, Sohn H, George R, Tran TM, Pierce SK. Isotype switching in human memory B cells sets intrinsic antigen-affinity thresholds that dictate antigen-driven fates. Proc Natl Acad Sci U S A 2024; 121:e2313672121. [PMID: 38502693 PMCID: PMC10990115 DOI: 10.1073/pnas.2313672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.
Collapse
Affiliation(s)
- Abhijit A. Ambegaonkar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
3
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
4
|
Guo L, Zhang Q, Gu X, Ren L, Huang T, Li Y, Zhang H, Liu Y, Zhong J, Wang X, Chen L, Zhang Y, Li D, Fang M, Xu L, Li H, Wang Z, Li H, Bai T, Liu W, Peng Y, Dong T, Cao B, Wang J. Durability and cross-reactive immune memory to SARS-CoV-2 in individuals 2 years after recovery from COVID-19: a longitudinal cohort study. THE LANCET. MICROBE 2024; 5:e24-e33. [PMID: 38048805 PMCID: PMC10789611 DOI: 10.1016/s2666-5247(23)00255-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND SARS-CoV-2-specific adaptive immunity more than 1 year after initial infection has not been well characterised. The aim of this study was to investigate the durability and cross-reactivity of immunological memory acquired from natural infection against SARS-CoV-2 in individuals recovered from COVID-19 2 years after infection. METHODS In this longitudinal cohort study, we recruited patients who had recovered from laboratory-confirmed COVID-19 and were discharged from Jinyintan Hospital (Wuhan, China) between Jan 7 and May 29, 2020. We carried out three successive follow-ups between June 16 and Sept 3, 2020 (6 months), Dec 16, 2020, and Feb 7, 2021 (1 year), and Nov 16, 2021, and Jan 10, 2022 (2 years), in which blood samples were taken. We included participants who did not have re-infection or receive a SARS-CoV-2 vaccination (infected-unvaccinated), and participants who received one to three doses of inactivated vaccine 1-2 years after infection (infected-vaccinated). We evaluated the presence of IgG antibodies, neutralising antibodies, and memory B-cell and memory T-cell responses against the prototype strain and delta and omicron variants. FINDINGS In infected-unvaccinated participants, neutralising antibody titres continually declined from 6-month to 2-year follow-up visits, with a half-life of about 141·2 days. Neutralising antibody responses to omicron sublineages (BA.1, BA.1.1, BA.2, BA.4/5, BF.7, BQ.1, and XBB) were poor. Memory B-cell responses to the prototype strain were retained at 2 years and presented cross-reactivity to the delta and omicron BA.1 variants. The magnitude of interferon γ and T-cell responses to SARS-CoV-2 were not significantly different between 1 year and 2 years after infection. Multifunctional T-cell responses against SARS-CoV-2 spike protein and nucleoprotein were detected in most participants. Recognition of the BA.1 variant by memory T cells was not affected in most individuals. The antibody titres and the frequencies of memory B cells, but not memory T cells, increased in infected-vaccinated participants after they received the inactivated vaccine. INTERPRETATION This study improves the understanding of the duration of SARS-CoV-2-specific immunity without boosting, which has implications for the design of vaccination regimens and programmes. Our data suggest that memory T-cell responses primed by initial viral infection remain highly cross-reactive after 2 years. With the increasing emergence of variants, effective vaccines should be introduced to boost neutralising antibody and overall T-cell responses to newly emerged SARS-CoV-2 variants. FUNDING Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities for Peking Union Medical College, Beijing Natural Science Foundation, UK Medical Research Council.
Collapse
Affiliation(s)
- Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Li
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ying Liu
- Jinyintan Hospital, Wuhan, Hubei Province, China
| | - Jingchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yin Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danyang Li
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meiyu Fang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liuhui Xu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haibo Li
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zai Wang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Bai
- Jinyintan Hospital, Wuhan, Hubei Province, China
| | - Wen Liu
- Jinyintan Hospital, Wuhan, Hubei Province, China
| | - Yanchun Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Bin Cao
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
6
|
Inoue T, Shinnakasu R, Kawai C, Yamamoto H, Sakakibara S, Ono C, Itoh Y, Terooatea T, Yamashita K, Okamoto T, Hashii N, Ishii-Watabe A, Butler NS, Matsuura Y, Matsumoto H, Otsuka S, Hiraoka K, Teshima T, Murakami M, Kurosaki T. Antibody feedback contributes to facilitating the development of Omicron-reactive memory B cells in SARS-CoV-2 mRNA vaccinees. J Exp Med 2023; 220:213745. [PMID: 36512034 PMCID: PMC9750191 DOI: 10.1084/jem.20221786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
In contrast to a second dose of the SARS-CoV-2 mRNA vaccine, a third dose elicits potent neutralizing activity against the Omicron variant. To address the underlying mechanism for this differential antibody response, we examined spike receptor-binding domain (RBD)-specific memory B cells in vaccinated individuals. Frequency of Omicron-reactive memory B cells increased ∼9 mo after the second vaccine dose. These memory B cells show an altered distribution of epitopes from pre-second memory B cells, presumably due to an antibody feedback mechanism. This hypothesis was tested using mouse models, showing that an addition or a depletion of RBD-induced serum antibodies results in a concomitant increase or decrease, respectively, of Omicron-reactive germinal center (GC) and memory B cells. Our data suggest that pre-generated antibodies modulate the selection of GC and subsequent memory B cells after the second vaccine dose, accumulating more Omicron-reactive memory B cells over time, which contributes to the generation of Omicron-neutralizing antibodies elicited by the third vaccine dose.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Medical Research Support, Advanced Research Support Center, Ehime University, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinya Otsuka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Kei Hiraoka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
7
|
Henry B, Laidlaw BJ. Functional heterogeneity in the memory B-cell response. Curr Opin Immunol 2023; 80:102281. [PMID: 36652774 DOI: 10.1016/j.coi.2022.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023]
Abstract
Most vaccines induce robust antibody and memory B-cell (MBC) responses that are capable of mediating protective immunity. However, antibody titers wane following vaccination necessitating the administration of booster vaccines to maintain a protective antibody titer. MBCs are stably maintained following vaccination and can rapidly give rise to antibody-secreting cells or undergo further affinity maturation upon antigen re-encounter. Repeated antigen encounter results in the development of MBCs that encode antibodies capable of mediating broadly protective immunity against viruses such as SARS-CoV-2 and influenza. Here, we summarize emerging evidence that MBCs are a heterogeneous population composed of transcriptionally and phenotypically distinct subsets that have discrete roles in mediating protective immunity upon antigen re-encounter and examine the implications of these findings for the development of vaccines capable of eliciting broadly protective immunity.
Collapse
Affiliation(s)
- Brittany Henry
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Long Z, He J, Shuai Q, Zhang K, Xiang J, Wang H, Xie S, Wang S, Du W, Yao X, Huang J. Influenza vaccination-induced H3 stalk-reactive memory B-cell clone expansion. Vaccine 2023; 41:1132-1141. [PMID: 36621409 DOI: 10.1016/j.vaccine.2022.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Current vaccine formulations elicit a recall immune response against viruses by targeting epitopes on the globular head of hemagglutinin (HA), and stalk-reactive antibodies are rarely found. However, stalk-specific memory B-cell expansion after influenza vaccination is poorly understood. In this study, B cells were isolated from individuals immunized with seasonal tetravalent influenza vaccines at days 0 and 28 for H7N9 stimulation in vitro. Plasma and supernatants were collected for the analysis of anti-HA IgG using ELISA and a Luminex assay. Memory B cells were positively enriched, and total RNA was extracted for B cell receptor (BCR) H-CDR3 sequencing. All subjects displayed increased anti-H3 antibody secretion after vaccination, whereas no increase in cH5/3-reactive IgG levels was detected. The number of shared memory B-cell clones among individuals dropped dramatically from 593 to 37. Four out of 5 subjects displayed enhanced frequencies of the VH3-23 and VH3-30 genes, and one exhibited an increase in the frequency of VH1-18, which are associated with the stalk of HA. An increase in H3 stalk-specific antibodies produced by B cells stimulated with H7N9 viruses was detected after vaccination. These results demonstrated that H3 stalk-specific memory B cells can expand and secrete antibodies that bind to the stalk in vitro, although no increase in serum H3 stalk-reactive antibodies was found after vaccination, indicating potential for developing a universal vaccine strategy.
Collapse
Affiliation(s)
- Zhaoyi Long
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiang He
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Blood Transfusion, Suining Central Hospital, Suining, China
| | - Qinglu Shuai
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ke Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Huan Wang
- Key Laboratory of Infectious Disease and Biosafety, Provincial Department of Education, Guizhou, Zunyi Medical University, Zunyi, China
| | - Shuang Xie
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shengyu Wang
- Key Laboratory of Infectious Disease and Biosafety, Provincial Department of Education, Guizhou, Zunyi Medical University, Zunyi, China
| | - Wensheng Du
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Junqiong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Kotaki R, Moriyama S, Takahashi Y. Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflamm Regen 2023; 43:4. [PMID: 36631890 PMCID: PMC9834039 DOI: 10.1186/s41232-023-00255-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is ongoing because of the repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, highlighting the importance of developing vaccines for variants that may continue to emerge. In the present review, we discuss humoral immune responses against SARS-CoV-2 with a focus on the antibody breadth to the variants. Recent studies have revealed that the temporal maturation of humoral immunity improves the antibody potency and breadth to the variants after infection or vaccination. Repeated vaccination or infection further accelerates the expansion of the antibody breadth. Memory B cells play a central role in this phenomenon, as the reactivity of the B-cell antigen receptor (BCR) on memory B cells is a key determinant of the antibody potency and breadth recalled upon vaccination or infection. The evolution of memory B cells remarkably improves the reactivity of BCR to antigenically distinct Omicron variants, to which the host has never been exposed. Thus, the evolution of memory B cells toward the variants constitutes an immunological basis for the durable and broad control of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
10
|
Wolf C, Köppert S, Becza N, Kuerten S, Kirchenbaum GA, Lehmann PV. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022; 11:cells11223662. [PMID: 36429090 PMCID: PMC9688940 DOI: 10.3390/cells11223662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.
Collapse
Affiliation(s)
- Carla Wolf
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Köppert
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Noémi Becza
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
11
|
Aartse A, Mortier D, Mooij P, Hofman S, van Haaren MM, Corcoran M, Karlsson Hedestam GB, Eggink D, Claireaux M, Bogers WMJM, van Gils MJ, Koopman G. Primary antibody response after influenza virus infection is first dominated by low-mutated HA-stem antibodies followed by higher-mutated HA-head antibodies. Front Immunol 2022; 13:1026951. [PMID: 36405682 PMCID: PMC9670313 DOI: 10.3389/fimmu.2022.1026951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Several studies have shown that the first encounter with influenza virus shapes the immune response to future infections or vaccinations. However, a detailed analysis of the primary antibody response is lacking as this is difficult to study in humans. It is therefore not known what the frequency and dynamics of the strain-specific hemagglutinin (HA) head- and stem-directed antibody responses are directly after primary influenza virus infection. Here, sera of twelve H1N1pdm2009 influenza virus-infected cynomolgus macaques were evaluated for HA-head and HA-stem domain antibody responses. We observed an early induction of HA-stem antibody responses, which was already decreased by day 56. In contrast, responses against the HA-head domain were low early after infection and increased at later timepoint. The HA-specific B cell repertoires in each animal showed diverse VH-gene usage with preferred VH-gene and JH-gene family usage for HA-head or HA-stem B cells but a highly diverse allelic variation within the VH-usage. HA-head B cells had shorter CDRH3s and higher VH-gene somatic hyper mutation levels relative to HA-stem B cells. In conclusion, our data suggest that HA-stem antibodies are the first to react to the infection while HA-head antibodies show a delayed response, but a greater propensity to enter the germinal center and undergo affinity maturation.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marlies M. van Haaren
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet (KI), Stockholm, Sweden
| | | | - Dirk Eggink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
12
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
13
|
Nishio A, Hasan S, Park H, Park N, Salas JH, Salinas E, Kardava L, Juneau P, Frumento N, Massaccesi G, Moir S, Bailey JR, Grakoui A, Ghany MG, Rehermann B. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat Commun 2022; 13:5446. [PMID: 36114169 PMCID: PMC9481596 DOI: 10.1038/s41467-022-33035-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The increasing incidence of hepatitis C virus (HCV) infections underscores the need for an effective vaccine. Successful vaccines to other viruses generally depend on a long-lasting humoral response. However, data on the half-life of HCV-specific responses are lacking. Here we study archived sera and mononuclear cells that were prospectively collected up to 18 years after cure of chronic HCV infection to determine the role of HCV antigen in maintaining neutralizing antibody and B cell responses. We show that HCV-neutralizing activity decreases rapidly in potency and breadth after curative treatment. In contrast, HCV-specific memory B cells persist, and display a restored resting phenotype, normalized chemokine receptor expression and preserved ability to differentiate into antibody-secreting cells. The short half-life of HCV-neutralizing activity is consistent with a lack of long-lived plasma cells. The persistence of HCV-specific memory B cells and the reduced inflammation after cure provide an opportunity for vaccination to induce protective immunity against re-infection.
Collapse
Affiliation(s)
- Akira Nishio
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Sharika Hasan
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Heiyoung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Nana Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Jordan H Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eduardo Salinas
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Paul Juneau
- Division of Data Services, NIH Library, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
- Contractor- Zimmerman Associates, Inc, Fairfax, VA, USA
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arash Grakoui
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Marc G Ghany
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Jeffries AM, Suptela AJ, Marriott I. Z-DNA binding protein 1 mediates necroptotic and apoptotic cell death pathways in murine astrocytes following herpes simplex virus-1 infection. J Neuroinflammation 2022; 19:109. [PMID: 35549723 PMCID: PMC9103380 DOI: 10.1186/s12974-022-02469-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms by which glia respond to viral central nervous system (CNS) pathogens are now becoming apparent with the demonstration that microglia and astrocytes express an array of pattern recognition receptors that include intracellular RNA and DNA sensors. We have previously demonstrated that glia express Z-DNA binding protein 1 (ZBP1) and showed that this cytosolic nucleic acid sensor contributes to the inflammatory/neurotoxic responses of these cells to herpes simplex virus-1 (HSV-1). However, the relative contribution made by ZBP1- to HSV-1-mediated cell death in glia has not been determined. Methods We have investigated the relative contribution made by ZBP1- to HSV-1-mediated cell death in primary astrocytes derived from mice genetically deficient in this sensor. We have used capture ELISAs and immunoblot analysis to assess inflammatory cytokine production and ZBP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL) expression levels, respectively, following HSV-1 challenge. Furthermore, we have used a commercially available cell viability assay to determine the proportion and rate of cell death in cells following infection with laboratory and neuroinvasive clinical strains of HSV-1, and pharmacological inhibitors of necroptotic and apoptotic pathway components to assess the relative role of each. Results We show that the loss of ZBP1 in astrocytes results in an increase in the number of viral particles released following HSV-1 infection. Importantly, we have confirmed that HSV-1 induces necroptosis in astrocytes and have established the ability of ZBP1 to mediate this cell death pathway. Interestingly, while ZBP1 is best known for its role in necroptotic signaling, our findings indicate that this sensor can also contribute to virally induced apoptosis in these glia. Conclusions Our findings indicate that ZBP1 serves as a restriction factor for HSV-1 infection and is associated with the induction of both necroptotic and apoptotic cell death pathways in primary murine astrocytes. While it remains to be seen whether ZBP1-mediated activation of cell death in astrocytes contributes significantly to host protection or, rather, exacerbates HSV-1 encephalitis pathology, the identification of such a role in resident CNS cells may represent a novel target for therapeutic intervention to reduce HSV encephalitis-associated morbidity and mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02469-z.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Alexander J Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
15
|
Inoue T, Shinnakasu R, Kurosaki T. Generation of High Quality Memory B Cells. Front Immunol 2022; 12:825813. [PMID: 35095929 PMCID: PMC8790150 DOI: 10.3389/fimmu.2021.825813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protection against pathogen re-infection is mediated, in large part, by two humoral cellular compartments, namely, long-lived plasma cells and memory B cells. Recent data have reinforced the importance of memory B cells, particularly in response to re-infection of different viral subtypes or in response with viral escape mutants. In regard to memory B cell generation, considerable advancements have been made in recent years in elucidating its basic mechanism, which seems to well explain why the memory B cells pool can deal with variant viruses. Despite such progress, efforts to develop vaccines that induce broadly protective memory B cells to fight against rapidly mutating pathogens such as influenza virus and HIV have not yet been successful. Here, we discuss recent advances regarding the key signals and factors regulating germinal center-derived memory B cell development and activation and highlight the challenges for successful vaccine development.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
16
|
Tay MZ, Rouers A, Fong S, Goh YS, Chan Y, Chang ZW, Xu W, Tan CW, Chia WN, Torres‐Ruesta A, Amrun SN, Huang Y, Hor PX, Loh CY, Yeo NK, Wang B, Ngoh EZX, Salleh SNM, Chavatte J, Lim AJ, Maurer‐Stroh S, Wang L, Lin RVTP, Wang C, Tan S, Young BE, Leo Y, Lye DC, Renia L, Ng LFP. Decreased memory B cell frequencies in COVID-19 delta variant vaccine breakthrough infection. EMBO Mol Med 2022; 14:e15227. [PMID: 34994081 PMCID: PMC8899913 DOI: 10.15252/emmm.202115227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor-binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Angeline Rouers
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Siew‐Wai Fong
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Yi‐Hao Chan
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Weili Xu
- Singapore Immunology NetworkA*STARSingapore CitySingapore
| | - Chee Wah Tan
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Wan Ni Chia
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Anthony Torres‐Ruesta
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Yuling Huang
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Chiew Yee Loh
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Nicholas Kim‐Wah Yeo
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Bei Wang
- Singapore Immunology NetworkA*STARSingapore CitySingapore
| | | | | | - Jean‐Marc Chavatte
- National Centre for Infectious DiseasesSingapore CitySingapore
- National Public Health LaboratoryNational Centre for Infectious DiseasesSingapore CitySingapore
| | - Alicia Jieling Lim
- National Centre for Infectious DiseasesSingapore CitySingapore
- National Public Health LaboratoryNational Centre for Infectious DiseasesSingapore CitySingapore
| | | | - Lin‐Fa Wang
- Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingapore CitySingapore
- SingHealth Duke‐NUS Global Health InstituteSingapore CitySingapore
| | - Raymond Valentine Tzer Pin Lin
- National Centre for Infectious DiseasesSingapore CitySingapore
- National Public Health LaboratoryNational Centre for Infectious DiseasesSingapore CitySingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Cheng‐I Wang
- Singapore Immunology NetworkA*STARSingapore CitySingapore
| | - Seow‐Yen Tan
- Department of Infectious DiseasesChangi General HospitalSingapore CitySingapore
| | - Barnaby Edward Young
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
| | - Yee‐Sin Leo
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Yong Loo Lin School of MedicineNational University of Singapore and National University Health SystemSingapore CitySingapore
| | - David C Lye
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Yong Loo Lin School of MedicineNational University of Singapore and National University Health SystemSingapore CitySingapore
| | - Laurent Renia
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
- Singapore Immunology NetworkA*STARSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
| | - Lisa FP Ng
- A*STAR Infectious Diseases LabsAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- National Institute of Health ResearchHealth Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
17
|
Abstract
Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA;
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
18
|
Shinnakasu R, Sakakibara S, Yamamoto H, Wang PH, Moriyama S, Sax N, Ono C, Yamanaka A, Adachi Y, Onodera T, Sato T, Shinkai M, Suzuki R, Matsuura Y, Hashii N, Takahashi Y, Inoue T, Yamashita K, Kurosaki T. Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses. J Exp Med 2021; 218:e20211003. [PMID: 34623376 PMCID: PMC8641255 DOI: 10.1084/jem.20211003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Po-hung Wang
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Saya Moriyama
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Atsushi Yamanaka
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yu Adachi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Yewdell WT, Smolkin RM, Belcheva KT, Mendoza A, Michaels AJ, Cols M, Angeletti D, Yewdell JW, Chaudhuri J. Temporal dynamics of persistent germinal centers and memory B cell differentiation following respiratory virus infection. Cell Rep 2021; 37:109961. [PMID: 34758310 PMCID: PMC7612942 DOI: 10.1016/j.celrep.2021.109961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Following infection or immunization, memory B cells (MBCs) and long-lived plasma cells provide humoral immunity that can last for decades. Most principles of MBC biology have been determined with hapten-protein carrier models or fluorescent protein immunizations. Here, we examine the temporal dynamics of the germinal center (GC) B cell and MBC response following mouse influenza A virus infection. We find that antiviral B cell responses within the lung-draining mediastinal lymph node (mLN) and the spleen are distinct in regard to duration, enrichment for antigen-binding cells, and class switching dynamics. While splenic GCs dissolve after 6 weeks post-infection, mLN hemagglutinin-specific (HA+) GCs can persist for 22 weeks. Persistent GCs continuously differentiate MBCs, with “peak” and “late” GCs contributing equal numbers of HA+ MBCs to the long-lived compartment. Our findings highlight critical aspects of persistent GC responses and MBC differentiation following respiratory virus infection with direct implications for developing effective vaccination strategies.
Collapse
Affiliation(s)
- William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ryan M Smolkin
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Kalina T Belcheva
- Biochemistry, Cellular, and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alejandra Mendoza
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony J Michaels
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
20
|
Inoue T, Shinnakasu R, Kawai C, Ise W, Kawakami E, Sax N, Oki T, Kitamura T, Yamashita K, Fukuyama H, Kurosaki T. Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal. J Exp Med 2021; 218:211457. [PMID: 33045065 PMCID: PMC7555411 DOI: 10.1084/jem.20200866] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
A still unanswered question is what drives the small fraction of activated germinal center (GC) B cells to become long-lived quiescent memory B cells. We found here that a small population of GC-derived CD38intBcl6hi/intEfnb1+ cells with lower mTORC1 activity favored the memory B cell fate. Constitutively high mTORC1 activity led to defects in formation of the CD38intBcl6hi/intEfnb1+ cells; conversely, decreasing mTORC1 activity resulted in relative enrichment of this memory-prone population over the recycling-prone one. Furthermore, the CD38intBcl6hi/intEfnb1+ cells had higher levels of Bcl2 and surface BCR that, in turn, contributed to their survival and development. We also found that downregulation of Bcl6 resulted in increased expression of both Bcl2 and BCR. Given the positive correlation between the strength of T cell help and mTORC1 activity, our data suggest a model in which weak help from T cells together with provision of an increased survival signal are key for GC B cells to adopt a memory B cell fate.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Kanagawa, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
21
|
CD27 hiCD38 hi plasmablasts are activated B cells of mixed origin with distinct function. iScience 2021; 24:102482. [PMID: 34113823 PMCID: PMC8169951 DOI: 10.1016/j.isci.2021.102482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Clinically important broadly reactive B cells evolve during multiple infections, with B cells re-activated after secondary infection differing from B cells activated after a primary infection. Here we studied CD27highCD38high plasmablasts from patients with a primary or secondary dengue virus infection. Three transcriptionally and functionally distinct clusters were identified. The largest cluster 0/1 was plasma cell-related, with cells coding for serotype cross-reactive antibodies of the IgG1 isotype, consistent with memory B cell activation during an extrafollicular response. Cells in clusters 2 and 3 expressed low levels of antibody genes and high levels of genes associated with oxidative phosphorylation, EIF2 pathway, and mitochondrial dysfunction. Clusters 2 and 3 showed a transcriptional footprint of T cell help, in line with activation from naive B cells or memory B cells. Our results contribute to the understanding of the parallel B cell activation events that occur in humans after natural primary and secondary infection.
Collapse
|
22
|
Abstract
Memory B cells (MBCs) are critical for the rapid development of protective immunity following re-infection. MBCs capable of neutralizing distinct subclasses of pathogens, such as influenza and HIV, have been identified in humans. However, efforts to develop vaccines that induce broadly protective MBCs to rapidly mutating pathogens have not yet been successful. Better understanding of the signals regulating MBC development and function are essential to overcome current challenges hindering successful vaccine development. Here, we discuss recent advancements regarding the signals and transcription factors regulating germinal centre-derived MBC development and function.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Ripperger TJ, Bhattacharya D. Transcriptional and Metabolic Control of Memory B Cells and Plasma Cells. Annu Rev Immunol 2021; 39:345-368. [PMID: 33556247 DOI: 10.1146/annurev-immunol-093019-125603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.
Collapse
Affiliation(s)
- Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| |
Collapse
|
24
|
Tsuji I, Dominguez D, Egan MA, Dean HJ. Development of a novel assay to assess the avidity of dengue virus-specific antibodies elicited in response to a tetravalent dengue vaccine. J Infect Dis 2021; 225:1533-1544. [PMID: 33534885 PMCID: PMC9071338 DOI: 10.1093/infdis/jiab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022] Open
Abstract
Antibody affinity maturation is a critical step in development of functional antiviral immunity; however, accurate measurement of affinity maturation of polyclonal serum antibody responses to particulate antigens such as virions is challenging. We describe a novel avidity assay employing biolayer interferometry and dengue virus-like particles. After validation using anti-dengue monoclonal antibodies, the assay was used to assess avidity of antibody responses to a tetravalent dengue vaccine candidate (TAK-003) in children, adolescents, and adults during two phase 2 clinical trials conducted in dengue-endemic regions. Vaccination increased avidity index and avidity remained high through 1 year postvaccination. Neutralizing antibody titers and avidity index did not correlate overall; however, a correlation was observed between neutralizing antibody titer and avidity index in those subjects with the highest degree of antibody affinity maturation. Therefore, vaccination with TAK-003 stimulates polyclonal affinity maturation and functional antibody responses, including neutralizing antibodies.
Collapse
|
25
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
26
|
Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response. Cell Host Microbe 2020; 28:572-585.e7. [PMID: 32697938 DOI: 10.1016/j.chom.2020.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Generating sufficient antibody to block infection is a key challenge for vaccines against malaria. Here, we show that antibody titers to a key target, the repeat region of the Plasmodium falciparum circumsporozoite protein (PfCSP), plateaued after two immunizations in a clinical trial of the radiation-attenuated sporozoite vaccine. To understand the mechanisms limiting vaccine responsiveness, we developed immunoglobulin (Ig)-knockin mice with elevated numbers of PfCSP-binding B cells. We determined that recall responses were inhibited by antibody feedback, potentially via epitope masking of the immunodominant PfCSP repeat region. Importantly, the amount of antibody that prevents boosting is below the amount of antibody required for protection. Finally, while antibody feedback limited responses to the PfCSP repeat region in vaccinated volunteers, potentially protective subdominant responses to PfCSP C-terminal regions expanded with subsequent boosts. These data suggest that antibody feedback drives the diversification of immune responses and that vaccination for malaria will require targeting multiple antigens.
Collapse
|
27
|
Fukuyama H, Shinnakasu R, Kurosaki T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol Rev 2020; 296:132-141. [PMID: 32542739 PMCID: PMC7323124 DOI: 10.1111/imr.12887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Influenza is one of the best examples of highly mutable viruses that are able to escape immune surveillance. Indeed, in response to influenza seasonal infection or vaccination, the majority of the induced antibodies are strain‐specific. Current vaccine against the seasonal strains with the strategy of surveillance‐prediction‐vaccine does not cover an unmet virus strain leading to pandemic. Recently, antibodies targeting conserved epitopes on the hemagglutinin (HA) protein have been identified, albeit rarely, and they often showed broad protection. These antibody discoveries have brought the feasibility to develop a universal vaccine. Most of these antibodies bind the HA stem domain and accumulate in the memory B cell compartment. Broadly reactive stem‐biased memory responses were induced by infection with antigenically divergent influenza strains and were able to eradicate these viruses, together indicating the importance of generating memory B cells expressing high‐quality anti‐stem antibodies. Here, we emphasize recent progress in our understanding of how such memory B cells can be generated and discuss how these advances may be relevant to the quest for a universal influenza vaccine.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Cellular Systems Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,INSERM EST, Strasbourg Cedex 2, France
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Lam JH, Smith FL, Baumgarth N. B Cell Activation and Response Regulation During Viral Infections. Viral Immunol 2020; 33:294-306. [PMID: 32326852 DOI: 10.1089/vim.2019.0207] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute viral infections are characterized by rapid increases in viral load, leading to cellular damage and the resulting induction of complex innate and adaptive antiviral immune responses that cause local and systemic inflammation. Successful antiviral immunity requires the activation of many immune cells, including T cells, natural killer cells, and macrophages. B cells play a unique part through their production of antibodies that can both neutralize and clear viral particles before virus entry into a cell. Protective antibodies are produced even before the first exposure of a pathogen, through the regulated secretion of so-called natural antibodies that are generated even in the complete absence of prior microbial exposure. An early wave of rapidly secreted antibodies from extrafollicular (EF) responses draws on the preexisting naive or memory repertoire of B cells to induce a strong protective response that in kinetics tightly follows the clearance of acute infections, such as with influenza virus. Finally, the generation of germinal centers (GCs) provides long-term protection through production of long-lived plasma cells and memory B cells, which shape and broaden the B cell repertoire for more effective responses following repeat exposures. In this study, we review B cell responses to acute viral infections, primarily influenza virus, from the earliest nonspecific B-1 cell to early, antigen-specific EF responses and finally to GC responses. Throughout, we address known factors that lead to distinct B cell response outcomes and discuss how their functions effect viral clearance, highlighting the critical contributions of each response type to the induction of highly protective antiviral humoral immunity.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Fauna L Smith
- Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
30
|
Kubo M, Miyauchi K. Breadth of Antibody Responses during Influenza Virus Infection and Vaccination. Trends Immunol 2020; 41:394-405. [PMID: 32265127 DOI: 10.1016/j.it.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Influenza viruses are a major public health problem, causing severe respiratory diseases. Vaccines offer the effective protective strategy against influenza virus infection. However, the systemic and adaptive immune responses to infection and vaccination are quite different. Inactivated vaccines are the best available countermeasure to induce effective antibodies against the emerged virus, but the response is narrow compared with potential breadth of virus infection. There is solid evidence to indicate that antibody responses to natural infection are relatively broad and exhibit quite different immunodominance patterns. Furthermore, T follicular helper cells (TFH) and germinal center (GC) responses play a central role in generating broad protective antibodies. In this review, we discuss recent advances on the contribution of TFH and GC responses to the breadth of antibody responses.
Collapse
Affiliation(s)
- Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
31
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|