1
|
Barreto E, Boehm MMA, Ogutcen E, Abrahamczyk S, Kessler M, Bascompte J, Dellinger AS, Bello C, Dehling DM, Duchenne F, Kaehler M, Lagomarsino LP, Lohmann LG, Maglianesi MA, Morlon H, Muchhala N, Ornelas JF, Perret M, Salinas NR, Smith SD, Vamosi JC, Varassin IG, Graham CH. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 2024; 99:1831-1847. [PMID: 38705863 DOI: 10.1111/brv.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.
Collapse
Affiliation(s)
- Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Mannfred M A Boehm
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, Canada
| | - Ezgi Ogutcen
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunner Straße 34, Salzburg, 5020, Austria
| | - Stefan Abrahamczyk
- Nees Institute for Biodiversity of Plant, University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany
- State Museum of Natural History Stuttgart, Botany Department, Rosenstein 1, Stuttgart, 70191, Germany
| | - Michael Kessler
- Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurestrasse 190, Zurich, 8057, Switzerland
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Carolina Bello
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Miriam Kaehler
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Laura P Lagomarsino
- Department of Biological Sciences, Shirley C. Tucker Herbarium, Louisiana State University, Life Science Annex Building A257, Baton Rouge, 70803, LA, USA
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, 05508-090, Brazil
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - María A Maglianesi
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José, 474-2050, Costa Rica
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, UMR 8197, 46 rue d'Ulm, Paris, 75005, France
| | - Nathan Muchhala
- Department of Biology, University of Missouri - St. Louis, St. Louis, 63121, MO, USA
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, 91073, Mexico
| | - Mathieu Perret
- Department of Plant Sciences, Conservatoire et Jardin Botaniques de Genève, University of Geneva, Chem. de l'Impératrice 1, 1292 Pregny-Chambésy, Geneva, Switzerland
| | - Nelson R Salinas
- Pfizer Plant Research Laboratory, New York Botanical Garden, 2900 Southern Blvd., Bronx, New York City, 10458, NY, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, 1900 Pleasant St, Boulder, 80302, CO, USA
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, T2N1N4, AB, Canada
| | - Isabela G Varassin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
2
|
Muñoz-Zuluaga JE, Monroy-Hurtado JA, Muñoz-Duque JD, Franco-Montoya LN, Tamayo-Arango L. Morphological description of the alimentary canal and adnexal glands in Amazilia tzacatl, Amazilia saucerottei, Amazilia amabilis and Anthrachotorax nigricollis species. Anat Histol Embryol 2024; 53:e12989. [PMID: 37864435 DOI: 10.1111/ahe.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The hummingbird family (Trochilidae) includes the smallest and most metabolically active vertebrates. They have a high energy demand because of their extraordinarily high metabolic rates during hovering while looking for food. The morphology of the digestive apparatus is related to the feeding habits of the species. The anatomy and histology of the digestive apparatus in these birds have not been thoroughly described except for their tongue. Therefore, this study aimed to describe the gross anatomy and histology of the alimentary canal and adnexal glands in four species from the hummingbird family: Amazilia tzacatl (n = 2), Amazilia saucerottei (n = 1), Amazilia amabilis (n = 1) and Anthracothorax nigricollis (n = 1). The alimentary canal was found to be very short. The epithelium of the oesophagus and crop showed variable degrees of keratinization and parakeratotic areas as normal conditions. A dorsal crop was observed as a differential characteristic of these birds. Like other birds, the ventricular mucosa in hummingbirds was covered and protected by the cuticle and showed a tunica muscularis constituted by three muscle layers. There was no isthmus between the proventriculus and ventriculus. The intestine presents a well-differentiated duodenum and jejunum. However, no ileum nor caeca were identified. The intestinal villi length, base width, crypt depth and area showed differences among the specimens studied among the small and large intestines. In addition, variations in thickness were observed in the smooth muscle tunica along the intestine. In all the studied species, the liver was composed of two lobes (right and left), and no gall bladder was observed during gross inspection or in histological sections. Finally, the pancreas was observed as a diffused organ forming islets related to all the small intestines. Some anatomical differences were observed among the studied species, mainly concerning Anthracothorax nigricollis. Hummingbirds showed very interesting and distinctive morphological characteristics. Hummingbirds possess unique and intriguing morphological characteristics. Future comparative studies related to the anatomy, histology and function of the digestive apparatus of hummingbirds are required. Expanding our understanding of the digestive morphophysiology in these bird species is crucial. However, it is necessary to conduct more comprehensive studies encompassing a wider range of hummingbird species and including a larger number of individuals to obtain more conclusive findings.
Collapse
Affiliation(s)
- John Edisson Muñoz-Zuluaga
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián Andrés Monroy-Hurtado
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián David Muñoz-Duque
- Grupo de Investigación Quirón, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Luz Natalia Franco-Montoya
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Lynda Tamayo-Arango
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
3
|
Bels V, Le Floch G, Kirchhoff F, Gastebois G, Davenport J, Baguette M. Food transport in Reptilia: a comparative viewpoint. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220542. [PMID: 37839442 PMCID: PMC10577028 DOI: 10.1098/rstb.2022.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Reptilia exploit a large diversity of food resources from plant materials to living mobile prey. They are among the first tetrapods that needed to drink to maintain their water homeostasis. Here were compare the feeding and drinking mechanisms in Reptilia through an empirical approach based on the available data to open perspectives in our understanding of the evolution of the various mechanisms determined in these Tetrapoda for exploiting solid and liquid food resources. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Vincent Bels
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Glenn Le Floch
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Florence Kirchhoff
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | | | - John Davenport
- School of Biological, Earth and Environmental Sciences, Distillery Fields, North Mall, University College Cork, Ireland T23 N73K
| | - Michel Baguette
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
- Station d'Ecologie Théorique et Expérimentale, CNRS UAR 2029, Route du CNRS, F-09200 Moulis, France
| |
Collapse
|
4
|
Barreto E, Lim MCW, Rojas D, Dávalos LM, Wüest RO, Machac A, Graham CH. Morphology and niche evolution influence hummingbird speciation rates. Proc Biol Sci 2023; 290:20221793. [PMID: 37072043 PMCID: PMC10113027 DOI: 10.1098/rspb.2022.1793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
How traits affect speciation is a long-standing question in evolution. We investigate whether speciation rates are affected by the traits themselves or by the rates of their evolution, in hummingbirds, a clade with great variation in speciation rates, morphology and ecological niches. Further, we test two opposing hypotheses, postulating that speciation rates are promoted by trait conservatism or, alternatively, by trait divergence. To address these questions, we analyse morphological (body mass and bill length) and niche traits (temperature and precipitation position and breadth, and mid-elevation), using a variety of methods to estimate speciation rates and correlate them with traits and their evolutionary rates. When it comes to the traits, we find faster speciation in smaller hummingbirds with shorter bills, living at higher elevations and experiencing greater temperature ranges. As for the trait evolutionary rates, we find that speciation increases with rates of divergence in the niche traits, but not in the morphological traits. Together, these results reveal the interplay of mechanisms through which different traits and their evolutionary rates (conservatism or divergence) influence the origination of hummingbird diversity.
Collapse
Affiliation(s)
- Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Departamento de Ecologia, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Marisa C. W. Lim
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Danny Rojas
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Cl. 18 #118-250, Cali, Valle del Cauca, Colombia
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - Rafael O. Wüest
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Antonin Machac
- Villum Center for Global Mountain Biodiversity and Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Theoretical Study, Charles University and the Czech Academy of Science, Jilska 1, 11000 Prague, Czechia
- Department of Ecology, Charles University, Vinicna 7, 12844 Prague, Czechia
| | - Catherine H. Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Krishnan A. Biomechanics illuminates form-function relationships in bird bills. J Exp Biol 2023; 226:297128. [PMID: 36912385 DOI: 10.1242/jeb.245171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of comparative biomechanics examines how form, mechanical properties and environmental interactions shape the function of biological structures. Biomechanics has advanced by leaps and bounds as rapid technological progress opens up new research horizons. In this Review, I describe how our understanding of the avian bill, a morphologically diverse multifunctional appendage, has been transformed by employing a biomechanical perspective. Across functions from feeding to excavating hollows in trees and as a vocal apparatus, the study of the bill spans both solid and fluid biomechanics, rendering it useful to understand general principles across disciplines. The different shapes of the bill across bird species result in functional and mechanical trade-offs, thus representing a microcosm of many broader form-function questions. Using examples from diverse studies, I discuss how research into bird bills has been shaped over recent decades, and its influence on our understanding of avian ecology and evolution. Next, I examine how bill material properties and geometry influence performance in dietary and non-dietary contexts, simultaneously imposing trade-offs on other functions. Following an examination of the interactions of bills with fluids and their role as part of the vocal apparatus, I end with a discussion of the sensory biomechanics of the bill, focusing specifically on the bill-tip mechanosensory organ. With these case studies, I highlight how this burgeoning and consequential field represents a roadmap for our understanding of the function and evolution of biological structures.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Boehm MMA, Guevara‐Apaza D, Jankowski JE, Cronk QCB. Floral phenology of an Andean bellflower and pollination by buff-tailed sicklebill hummingbird. Ecol Evol 2022; 12:e8988. [PMID: 35784085 PMCID: PMC9168340 DOI: 10.1002/ece3.8988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Andean bellflowers comprise an explosive radiation correlated with shifts to specialized pollination. One diverse clade has evolved with extremely curved floral tubes and is predicted to be pollinated exclusively by one of two parapatric species of sicklebill hummingbirds (Eutoxeres). In this study, we focused on the floral biology of Centropogon granulosus, a bellflower thought to be specialized for pollination by Eutoxeres condamini, in a montane cloud forest site in southeastern Peru. Using camera traps and a pollination exclusion experiment, we documented E. condamini as the sole pollinator of C. granulosus. Visitation by E. condamini was necessary for fruit development. Flowering rates were unequivocally linear and conformed to the "steady-state" phenological type. Over the course of >1800 h of monitoring, we recorded 12 E. condamini visits totaling 42 s, indicating traplining behavior. As predicted by its curved flowers, C. granulosus is exclusively pollinated by buff-tailed sicklebill within our study area. We present evidence for the congruence of phenology and visitation as a driver of specialization in this highly diverse clade of Andean bellflowers.
Collapse
Affiliation(s)
- Mannfred M. A. Boehm
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - David Guevara‐Apaza
- Facultad de Ciencias BiológicasUniversidad San Antonio Abad del CuscoCuscoPeru
| | - Jill E. Jankowski
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Quentin C. B. Cronk
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
7
|
Márquez-Luna U, Lara C, Corcuera P, Valverde PL. Genetic relatedness and morphology as drivers of interspecific dominance hierarchy in hummingbirds. PeerJ 2022; 10:e13331. [PMID: 35469196 PMCID: PMC9034699 DOI: 10.7717/peerj.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
A dominance hierarchy is the set of ranks occupied by species within an assemblage. Species with a high position within the dominance hierarchy tend to dominate subordinate species in contests for access to resources. In hummingbirds, greater weight and wing disc loading have been associated with highest ranks within the dominance hierarchy. Nevertheless, the limit to which the difference between the weight of contending species represents a competitive advantage has not yet been determined. Here, we determined the dominance hierarchy of a hummingbird assemblage exploiting the most abundant floral resource (Palicourea padifolia, Rubiaceae) in a cloud forest of central Veracruz, Mexico. Specifically, we tested whether species weight and wing disc loading influence the dominance hierarchy. Additionally, we tested whether the flowers visited per foraging bout increases with species weight and dominance. We further tested whether weight, wing disc loading, and the genetic relatedness between contenders influenced the dominance relationships in species-pair interactions. Our results indicate that the hierarchy is positively influenced by weight. Hummingbirds visited similar number of flowers regardless their weight or their dominance. Nevertheless, the probability that the heaviest contender won contests was positively associated with the differences of weight and genetic relatedness between contenders. Contrarily, the probability that the contender with greatest wing disc loading won contests was positively associated with differences of weight and negatively associated with the relatedness between contenders. However, these models only explained between 22% and 34% of the variation, respectively. Our results demonstrate that the weight was the major contributor to high dominance values. However, future studies should include (1) the temporal variability of the weight and (2) experimental predictor variables such the burst power of the hummingbirds to evaluate its effects on the dynamics of dominance hierarchies in hummingbird assemblages. All the hummingbird species present in the studied assemblage have developed wide behavioral mechanisms that compensate their morphological differences, which allow them to coexist, even when they compete for the access to the same resource.
Collapse
Affiliation(s)
- Ubaldo Márquez-Luna
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe Ixtacuixtla, Tlaxcala, México
| | - Pablo Corcuera
- Departamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Pedro Luis Valverde
- Departamento de Biología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| |
Collapse
|
8
|
Rico-Guevara A, Echeverri-Mallarino L, Clark CJ. Oh, snap! A within-wing sonation in black-tailed trainbearers. J Exp Biol 2022; 225:274998. [PMID: 35393623 DOI: 10.1242/jeb.243219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
Vertebrates communicate through a wide variety of sounds, but few mechanisms of sound production, besides vocalization, are well understood. During high-speed dives, male trainbearer hummingbirds (Lesbia spp.) produce a repeated series of loud snaps. Hypotheses for these peculiar sounds include employing their elongated tails and/or their wings striking each other. Each snap to human ears seems like a single acoustic event, but sound recordings revealed that each snap is actually a couplet of impulsive, atonal sounds produced ∼13 ms apart. Analysis of high-speed videos refutes these previous hypotheses, and furthermore suggests that this sonation is produced by a within-wing mechanism- each instance of a sound coincided with a distinctive pair of deep wingbeats (with greater stroke amplitude, measured for one display sequence). Across many displays, we found a tight alignment between a pair of stereotyped deep wingbeats (in contrast to shallower flaps across the rest of the dive) and patterns of snap production, evidencing a 1:1 match between these sonations and stereotyped kinematics. Other birds including owls and poorwills are reported to produce similar sounds, suggesting that this mechanism of sound production could be somewhat common within birds, yet its physical acoustics remains poorly understood.
Collapse
Affiliation(s)
- Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Laura Echeverri-Mallarino
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Código Postal 11001, Bogotá DC, Colombia
| | - Christopher J Clark
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521, USA
| |
Collapse
|
9
|
Claudino RM, Antonini Y, Martins C, Beirão MV, Braga EM, Azevedo CS. Is bigger always better? Neither body size nor aggressive behavior predicts specialization of hummingbirds in a rocky outcrop. J Zool (1987) 2022. [DOI: 10.1111/jzo.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R. M. Claudino
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo de Vida Silvestre Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Y. Antonini
- Departamento de Biodiversidade Evolução e Meio Ambiente Universidade Federal de Ouro Preto Ouro Preto Brazil
| | - C. Martins
- Departamento de Biodiversidade Evolução e Meio Ambiente Universidade Federal de Ouro Preto Ouro Preto Brazil
| | - M. V. Beirão
- Departamento de Biodiversidade Evolução e Meio Ambiente Universidade Federal de Ouro Preto Ouro Preto Brazil
| | - E. M. Braga
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo de Vida Silvestre Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - C. S. Azevedo
- Departamento de Biodiversidade Evolução e Meio Ambiente Universidade Federal de Ouro Preto Ouro Preto Brazil
| |
Collapse
|
10
|
Menezes JCT, Palaoro AV. Flight hampers the evolution of weapons in birds. Ecol Lett 2022; 25:624-634. [PMID: 35199923 DOI: 10.1111/ele.13964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 12/01/2022]
Abstract
Birds are a remarkable example of how sexual selection can produce diverse ornaments and behaviours. Specialised fighting structures like deer's antlers, in contrast, are mostly absent among birds. Here, we investigated if the birds' costly mode of locomotion-powered flight-helps explain the scarcity of weapons among members of this clade. Our simulations of flight energetics predicted that the cost of bony spurs-a specialised avian weapon-should increase with time spent flying. Bayesian phylogenetic comparative analyses using a global spur dataset corroborated this prediction. First, extant species with flight-efficient wings (which presumably fly more frequently) tend to have fewer or no bony spurs. Second, this association likely arose because flying more leads to more frequent evolutionary loss of spurs. Together, these findings suggest that, much like pneumatic bones, absence of weaponry may be another feature of the avian body plan that allows birds to efficiently explore the aerial habitat.
Collapse
Affiliation(s)
- João C T Menezes
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alexandre V Palaoro
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, SP, Brazil.,Programa de Pós-Graduação em Ecologia, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Cuban D, Hewes AE, Sargent AJ, Groom DJE, Rico-Guevara A. On the feeding biomechanics of nectarivorous birds. J Exp Biol 2022; 225:274052. [PMID: 35048977 DOI: 10.1242/jeb.243096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nectar-feeding birds employ unique mechanisms to collect minute liquid rewards hidden within floral structures. In recent years, techniques developed to study drinking mechanisms in hummingbirds have prepared the groundwork for investigating nectar feeding across birds. In most avian nectarivores, fluid intake mechanisms are understudied or simply unknown beyond hypotheses based on their morphological traits, such as their tongues, which are semi-tubular in sunbirds, frayed-tipped in honeyeaters and brush-tipped in lorikeets. Here, we use hummingbirds as a case study to identify and describe the proposed drinking mechanisms to examine the role of those peculiar traits, which will help to disentangle nectar-drinking hypotheses for other groups. We divide nectar drinking into three stages: (1) liquid collection, (2) offloading of aliquots into the mouth and (3) intraoral transport to where the fluid can be swallowed. Investigating the entire drinking process is crucial to fully understand how avian nectarivores feed; nectar-feeding not only involves the collection of nectar with the tongue, but also includes the mechanisms necessary to transfer and move the liquid through the bill and into the throat. We highlight the potential for modern technologies in comparative anatomy [such as microcomputed tomography (μCT) scanning] and biomechanics (such as tracking BaSO4-stained nectar via high-speed fluoroscopy) to elucidate how disparate clades have solved this biophysical puzzle through parallel, convergent or alternative solutions.
Collapse
Affiliation(s)
- David Cuban
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, Ornithology Department, 4300 15th Avenue NE, Seattle, WA 98105, USA
| | - Amanda E Hewes
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, Ornithology Department, 4300 15th Avenue NE, Seattle, WA 98105, USA
| | - Alyssa J Sargent
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, Ornithology Department, 4300 15th Avenue NE, Seattle, WA 98105, USA
| | - Derrick J E Groom
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, Ornithology Department, 4300 15th Avenue NE, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Leimberger KG, Dalsgaard B, Tobias JA, Wolf C, Betts MG. The evolution, ecology, and conservation of hummingbirds and their interactions with flowering plants. Biol Rev Camb Philos Soc 2022; 97:923-959. [PMID: 35029017 DOI: 10.1111/brv.12828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023]
Abstract
The ecological co-dependency between plants and hummingbirds is a classic example of a mutualistic interaction: hummingbirds rely on floral nectar to fuel their rapid metabolisms, and more than 7000 plant species rely on hummingbirds for pollination. However, threats to hummingbirds are mounting, with 10% of 366 species considered globally threatened and 60% in decline. Despite the important ecological implications of these population declines, no recent review has examined plant-hummingbird interactions in the wider context of their evolution, ecology, and conservation. To provide this overview, we (i) assess the extent to which plants and hummingbirds have coevolved over millions of years, (ii) examine the mechanisms underlying plant-hummingbird interaction frequencies and hummingbird specialization, (iii) explore the factors driving the decline of hummingbird populations, and (iv) map out directions for future research and conservation. We find that, despite close associations between plants and hummingbirds, acquiring evidence for coevolution (versus one-sided adaptation) is difficult because data on fitness outcomes for both partners are required. Thus, linking plant-hummingbird interactions to plant reproduction is not only a major avenue for future coevolutionary work, but also for studies of interaction networks, which rarely incorporate pollinator effectiveness. Nevertheless, over the past decade, a growing body of literature on plant-hummingbird networks suggests that hummingbirds form relationships with plants primarily based on overlapping phenologies and trait-matching between bill length and flower length. On the other hand, species-level specialization appears to depend primarily on local community context, such as hummingbird abundance and nectar availability. Finally, although hummingbirds are commonly viewed as resilient opportunists that thrive in brushy habitats, we find that range size and forest dependency are key predictors of hummingbird extinction risk. A critical direction for future research is to examine how potential stressors - such as habitat loss and fragmentation, climate change, and introduction of non-native plants - may interact to affect hummingbirds and the plants they pollinate.
Collapse
Affiliation(s)
- Kara G Leimberger
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, 2100, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, U.K
| | - Christopher Wolf
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Matthew G Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| |
Collapse
|
13
|
Wang H, Wu Z, Zhao J, Wu J. Nectar Feeding by a Honey Bee's Hairy Tongue: Morphology, Dynamics, and Energy-Saving Strategies. INSECTS 2021; 12:insects12090762. [PMID: 34564203 PMCID: PMC8465255 DOI: 10.3390/insects12090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This paper reviews the interdisciplinary research on nectar feeding behaviour of honey bees ranging from morphology, dynamics, and energy-saving strategies, which collects a range of knowledge of feeding physiology of honey bees and may inspire the design paradigms of next-generation multifunctional microfluidic transporters. Abstract Most flower-visiting insects have evolved highly specialized morphological structures to facilitate nectar feeding. As a typical pollinator, the honey bee has specialized mouth parts comprised of a pair of galeae, a pair of labial palpi, and a glossa, to feed on the nectar by the feeding modes of lapping or sucking. To extensively elucidate the mechanism of a bee’s feeding, we should combine the investigations from glossa morphology, feeding behaviour, and mathematical models. This paper reviews the interdisciplinary research on nectar feeding behaviour of honey bees ranging from morphology, dynamics, and energy-saving strategies, which may not only reveal the mechanism of nectar feeding by honey bees but inspire engineered facilities for microfluidic transport.
Collapse
Affiliation(s)
- Hao Wang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China; (H.W.); (Z.W.)
| | - Zhigang Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China; (H.W.); (Z.W.)
| | - Jieliang Zhao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China; (H.W.); (Z.W.)
- Correspondence:
| |
Collapse
|
14
|
Gómez RO, Lois-Milevicich J. Why the long beak? Phylogeny, convergence, feeding ecology, and evolutionary allometry shaped the skull of the Giant Cowbird Molothrus oryzivorus (Icteridae). J Morphol 2021; 282:1587-1603. [PMID: 34369611 DOI: 10.1002/jmor.21408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Cowbirds are a successful group of obligate brood parasites in the Neotropical passerine family Icteridae that offer an interesting model to explore the factors behind the evolution of the bird craniomandibular complex. The Giant Cowbird, Molothrus oryzivorus, stands out from its congeners, among other features, in diet (feeds mostly on fruit, nectar, and arthropods, instead on seeds), its larger body size, and longer, more robust beak with a much broader bony casque than in other cowbirds. In turn, Giant Cowbirds show a remarkable resemblance in these features to the distantly related caciques and oropendolas (some are its breeding hosts). However, the causes behind the latter resemblance and the distinctiveness among cowbirds have not yet been elucidated. We aim to explore the factors involved in the diverging morphology of the Giant Cowbird from its congeners and the convergence with caciques and oropendolas, surveying their skull and lower jaw under an explicit evolutionary framework. Using geometric morphometrics and comparative methods, we assessed the signal of phylogeny, convergence, feeding ecology, and size in skull shape. Our results indicated that evolution of the craniomandibular complex of icterids in general, and of the beak morphology in the Giant Cowbird in particular, are shaped by multiple factors, with phylogeny being largely overridden by changes in size (evolutionary allometry), primarily, and feeding ecology, secondarily. However, the evolution of a broad bony casque in the Giant Cowbird, otherwise a hallmark of caciques and oropendolas, does not appear to have primarily been ruled by evolutionary allometry. Instead, taking into account the unique extreme convergence between Giant Cowbirds and some of its caciques hosts, it might be consequence of selective regimes associated with parasite-host interactions acting on top of other evolutionary processes. This suggests chick mimicry as a reasonable explanation for this peculiar morphology that would require further investigation.
Collapse
Affiliation(s)
- Raúl O Gómez
- CONICET-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Ciudad Universitaria, Buenos Aires, Argentina
| | - Jimena Lois-Milevicich
- Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética y Evolución (IEGEBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
15
|
Sargent AJ, Groom DJE, Rico-Guevara A. Locomotion and Energetics of Divergent Foraging Strategies in Hummingbirds: A Review. Integr Comp Biol 2021; 61:736-748. [PMID: 34113992 DOI: 10.1093/icb/icab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hummingbirds have two main foraging strategies: territoriality (defending a patch of flowers) and traplining (foraging over routine circuits of isolated patches). Species are often classified as employing one or the other. Not only have these strategies been inconsistently defined within the behavioral literature, but this simple framework also neglects the substantial evidence for flexible foraging behavior displayed by hummingbirds. Despite these limitations, research on hummingbird foraging has explored the distinct avenues of selection that proponents of either strategy presumably face: trapliners maximizing foraging efficiency, and territorialists favoring speed and maneuverability for resource defense. In earlier studies, these functions were primarily examined through wing disc loading (ratio of body weight to the circular area swept out by the wings, WDL) and predicted hovering costs, with trapliners expected to exhibit lower WDL than territorialists and thus lower hovering costs. While these pioneering models continue to play a role in current research, early studies were constrained by modest technology, and the original expectations regarding WDL have not held up when applied across complex hummingbird assemblages. Current technological advances have allowed for innovative research on the biomechanics/energetics of hummingbird flight, such as allometric scaling relationships (e.g., wing area-flight performance) and the link between high burst lifting performance and territoriality. Providing a predictive framework based on these relationships will allow us to reexamine previous hypotheses, and explore the biomechanical trade-offs to different foraging strategies, which may yield divergent routes of selection for quintessential territoriality and traplining. With a biomechanical and morphofunctional lens, here we examine the locomotor and energetic facets that dictate hummingbird foraging, and provide (a) predictions regarding the behavioral, biomechanical, and morphofunctional associations with territoriality and traplining; and (b) proposed methods of testing them. By pursuing these knowledge gaps, future research could use a variety of traits to help clarify the operational definitions of territoriality and traplining, to better apply them in the field.
Collapse
Affiliation(s)
- A J Sargent
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - D J E Groom
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA.,Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - A Rico-Guevara
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| |
Collapse
|
16
|
Alcantara Viana JV, Massufaro Giffu M, Hachuy‐Filho L. The silence of prey: Hummingbirds do not respond to potential ambush predators on flowers. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- João Vitor Alcantara Viana
- Laboratório de Ecologia da Polinização e Interações Departamento de Botânica Instituto de Biociências de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho” Botucatu São PauloBrazil
- Programa de Pós‐graduação em Ecologia Laboratório de Interações Multitróficas e Biodiversidade Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas Campinas São PauloBrazil
| | - Murilo Massufaro Giffu
- Laboratório de Ecologia da Polinização e Interações Departamento de Botânica Instituto de Biociências de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho” Botucatu São PauloBrazil
- Programa de Pós‐graduação em Zoologia Laboratório de Ecologia da Polinização e Interações Departamento de Zoologia Instituto de Biociências de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho” Botucatu São Paulo Brazil
| | - Leandro Hachuy‐Filho
- Laboratório de Ecologia da Polinização e Interações Departamento de Botânica Instituto de Biociências de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho” Botucatu São PauloBrazil
| |
Collapse
|
17
|
Rico-Guevara A, Hurme KJ, Elting R, Russell AL. Bene"fit" Assessment in Pollination Coevolution: Mechanistic Perspectives on Hummingbird Bill-Flower Matching. Integr Comp Biol 2021; 61:681-695. [PMID: 34050734 DOI: 10.1093/icb/icab111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the reasons why flowering plants became the most diverse group of land plants is their association with animals to reproduce. The earliest examples of this mutualism involved insects foraging for food from plants and, in the process, pollinating them. Vertebrates are latecomers to these mutualisms, but birds, in particular, present a wide variety of nectar-feeding clades that have adapted to solve similar challenges. Such challenges include surviving on small caloric rewards widely scattered across the landscape, matching their foraging strategy to nectar replenishment rate, and efficiently collecting this liquid food from well-protected chambers deep inside flowers. One particular set of convergent traits among plants and their bird pollinators has been especially well studied: the match between the shape and size of bird bills and ornithophilous flowers. Focusing on a highly specialized group, hummingbirds, we examine the expected benefits from bill-flower matching, with a strong focus on the benefits to the hummingbird and how to quantify them. Explanations for the coevolution of bill-flower matching include (1) that the evolution of traits by bird-pollinated plants, such as long and thin corollas, prevents less efficient pollinators (e.g., insects) from accessing the nectar and (2) that increased matching, as a result of reciprocal adaptation, benefits both the bird (nectar extraction efficiency) and the plant (pollen transfer). In addition to nectar-feeding, we discuss how interference and exploitative competition also play a significant role in the evolution and maintenance of trait matching. We present hummingbird-plant interactions as a model system to understand how trait matching evolves and how pollinator behavior can modify expectations based solely on morphological matching, and discuss the implications of this behavioral modulation for the maintenance of specialization. While this perspective piece directly concerns hummingbird-plant interactions, the implications are much broader. Functional trait matching is likely common in coevolutionary interactions (e.g., in predator-prey interactions), yet the physical mechanisms underlying trait matching are understudied and rarely quantified. We summarize existing methods and present novel approaches that can be used to quantify key benefits to interacting partners in a variety of ecological systems.
Collapse
Affiliation(s)
- Alejandro Rico-Guevara
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Division of Ornithology, Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Kristiina J Hurme
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA
| | - Rosalee Elting
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Division of Ornithology, Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Avery L Russell
- Department of Biology, Missouri State University, 910 S John Q Hammons Pkwy, Springfield, MO 65897, USA
| |
Collapse
|
18
|
Affiliation(s)
- Jules Evens
- 821 NW 11th Ave. #615, Portland, OR 97209 USA (JE); ; 3106 NW Luray Terrace, Portland, OR 97210 USA (CH)
| | - Christopher Harper
- 821 NW 11th Ave. #615, Portland, OR 97209 USA (JE); ; 3106 NW Luray Terrace, Portland, OR 97210 USA (CH)
| |
Collapse
|
19
|
Abstract
Many flower visitors engage in floral larceny, a suite of so-called ’illegitimate’ visits in which foragers take nectar without providing pollination services. The data on prevalence of illegitimate visits among hummingbirds, as well as the total proportion of foraging and diet that such visits comprise is broadly lacking. Here, we report the occurrence of nectar larceny in the two currently recognized species of trainbearers and analyze the proportion of plant visits categorized by mode of interaction as: robbing, theft, and/or pollination. We augment our original field observations using a trove of data from citizen science databases. Although it is difficult to distinguish primary vs. secondary robbing and theft vs. pollination, we conservatively estimate that ca. 40% of the recorded nectar foraging visits involve nectar robbing. Males appear to engage in robbing marginally more than females, but further studies are necessary to confidently examine the multi-way interactions among sex, species, mode of visitation, and other factors. Our results also indicate that the suggested relationship between serrations on bill tomia and traits such as nectar robbing or territorial defense may be complicated. We discuss the significance of these findings in the context of recent developments in study of nectar foraging, larceny, and pollination from both avian and plant perspectives.
Collapse
Affiliation(s)
- Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Botany Department, The Field Museum of Natural History, Chicago, IL, USA
| | - Ivory Nguyen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip B. Fenberg
- School of Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
20
|
Wei J, Huo Z, Gorb SN, Rico-Guevara A, Wu Z, Wu J. Sucking or lapping: facultative feeding mechanisms in honeybees ( Apis mellifera). Biol Lett 2020; 16:20200449. [PMID: 32780979 PMCID: PMC7480147 DOI: 10.1098/rsbl.2020.0449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Nectarivorous insects generally adopt suction or lapping to extract nectar from flowers and it is believed that each species exhibits one specific feeding pattern. In recent literature, large groups of nectarivores are classified as either 'suction feeders', imbibing nectar through their proboscis, or 'lappers', using viscous dipping. Honeybees (Apis mellifera) are the well-known lappers by virtue of their hairy tongues. Surprisingly, we found that honeybees also employ active suction when feeding on nectar with low viscosity, defying their classification as lappers. Further experiments showed that suction yielded higher uptake rates when ingesting low-concentration nectar, while lapping resulted in faster uptake when ingesting nectar with higher sugar content. We found that the optimal concentration of suction mode in honeybees coincided with the one calculated for other typical suction feeders. Moreover, we found behavioural flexibility in the drinking mode: a bee is able to switch between lapping and suction when offered different nectar concentrations. Such volitional switching in bees can enhance their feeding capabilities, allowing them to efficiently exploit the variety of concentrations presented in floral nectars, enhancing their adaptability to a wide range of energy sources.
Collapse
Affiliation(s)
- Jiangkun Wei
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Zixin Huo
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoology Department, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Zhigang Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
21
|
Sookias RB, Dilkes D, Sobral G, Smith RMH, Wolvaardt FP, Arcucci AB, Bhullar BAS, Werneburg I. The craniomandibular anatomy of the early archosauriform Euparkeria capensis and the dawn of the archosaur skull. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200116. [PMID: 32874620 PMCID: PMC7428278 DOI: 10.1098/rsos.200116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 05/15/2023]
Abstract
Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian-Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform Euparkeria capensis from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor. Euparkeria has been widely used as an outgroup in phylogenetic analyses and when investigating patterns of trait evolution among archosaurs. Although described monographically in 1965, subsequent years have seen great advances in the understanding of early archosaurs and in imaging techniques. Here, the cranium and mandible of Euparkeria are fully redescribed and documented using all fossil material and computed tomographic data. Details previously unclear are fully described, including vomerine dentition, the epiptergoid, number of premaxillary teeth and palatal arrangement. A new diagnosis and cranial and braincase reconstruction is provided, and an anatomical network analysis is performed on the skull of Euparkeria and compared with other amniotes. The modular composition of the cranium suggests a flexible skull well adapted to feeding on agile food, but with a clear tendency towards more carnivorous behaviour, placing the taxon at the interface between ancestral diapsid and crown archosaur ecomorphology, corresponding to increases in brain size, visual sensitivity, upright locomotion and metabolism around this point in archosauriform evolution. The skull of Euparkeria epitomizes a major evolutionary transition, and places crown archosaur morphology in an evolutionary context.
Collapse
Affiliation(s)
- Roland B. Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David Dilkes
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Gabriela Sobral
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - Roger M. H. Smith
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
- Iziko South African Museum, PO Box 61, Cape Town, South Africa
| | - Frederik P. Wolvaardt
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | - Andrea B. Arcucci
- IMIBIO CONICET Universidad Nacional de San Luis, Av Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Bhart-Anjan S. Bhullar
- Department of Earth and Planetary Sciences, 210 Whitney Ave., Yale University, New Haven, CT 06511, USA
- Yale Peabody Museum of Natural History, 170 Whitney Ave., New Haven, CT 06511, USA
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard-Karls-Universität, Sigwartstraße 10, 72076 Tübingen, Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany
| |
Collapse
|
22
|
Puga-Caballero A, Arizmendi MDC, Sánchez-González LA. Phylogenetic and phenotypic filtering in hummingbirds from urban environments in Central Mexico. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10055-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|