1
|
Levin AS, Freire MP, Oliveira MSD, Nastri ACS, Harima LS, Perdigão-Neto LV, Magri MM, Fialkovitz G, Figueiredo PHMF, Siciliano RF, Sabino EC, Carlotti DPN, Rodrigues DS, Nunes FLS, Ferreira JE. Correlating drug prescriptions with prognosis in severe COVID-19: first step towards resource management. BMC Med Inform Decis Mak 2022; 22:246. [PMID: 36131274 PMCID: PMC9490728 DOI: 10.1186/s12911-022-01983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Optimal COVID-19 management is still undefined. In this complicated scenario, the construction of a computational model capable of extracting information from electronic medical records, correlating signs, symptoms and medical prescriptions, could improve patient management/prognosis. METHODS The aim of this study is to investigate the correlation between drug prescriptions and outcome in patients with COVID-19. We extracted data from 3674 medical records of hospitalized patients: drug prescriptions, outcome, and demographics. The outcome evaluated was hospital outcome. We applied correlation analysis using a Logistic Regression algorithm for machine learning with Lasso and Matthews correlation coefficient. RESULTS We found correlations between drugs and patient outcomes (death/discharged alive). Anticoagulants, used very frequently during all phases of the disease, were associated with good prognosis only after the first week of symptoms. Antibiotics very frequently prescribed, especially early, were not correlated with outcome, suggesting that bacterial infections may not be important in determining prognosis. There were no differences between age groups. CONCLUSIONS In conclusion, we achieved an important result in the area of Artificial Intelligence, as we were able to establish a correlation between concrete variables in a real and extremely complex environment of clinical data from COVID-19. Our results are an initial and promising contribution in decision-making and real-time environments to support resource management and forecasting prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Anna S. Levin
- Department of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Infection Control, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
- Division of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maristela P. Freire
- Department of Infection Control, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Catharina S. Nastri
- Division of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leila S. Harima
- Clinical Director’s Office, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcello M. Magri
- Division of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel Fialkovitz
- Division of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro H. M. F. Figueiredo
- Núcleo de Vigilância Epidemiológica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ester C. Sabino
- Department of Infectious Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Danilo P. N. Carlotti
- Computer Science Department, Institute of Mathematics and Statistics, Universidade de São Paulo, São Paulo, Brazil
| | - Davi Silva Rodrigues
- Laboratory of Computer Applications for Health Care; School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
| | - Fátima L. S. Nunes
- Laboratory of Computer Applications for Health Care; School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
| | - João Eduardo Ferreira
- Computer Science Department, Institute of Mathematics and Statistics, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang Q, Liu F, Zeng M, Zhang J, Liu Y, Xin C, Mao Y, Song Z. Antifungal Activity of Sodium New Houttuyfonate Against Aspergillus fumigatus in vitro and in vivo. Front Microbiol 2022; 13:856272. [PMID: 35558127 PMCID: PMC9087332 DOI: 10.3389/fmicb.2022.856272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is an important pathogen causing invasive aspergillosis, which is associated with high morbidity and mortality in immunocompromised people. However, the treatment of A. fumigatus infection is a growing challenge, owing to the limited availability antifungal agents and the continual emergence of drug-resistant strains. Drug repurposing is a potential strategy to solve this current problem. Sodium new houttuyfonate (SNH), derived from houttuynin, extracted from Houttuynia cordata, has anti-bacterial and anti-Candida albicans effects. However, whether it has anti-A. fumigatus activity had not been reported. In this study, the antifungal properties of SNH against A. fumigatus, including the standard strain AF293, itraconazole resistant clinical strains, and voriconazole resistant clinical strains, were evaluated in vitro and in vivo. Moreover, the potential mechanism of SNH was characterized. SNH exhibited significant fungicidal activity toward various A. fumigatus strains. SNH also inhibited fungal growth, sporulation, conidial germination and pigment formation, and biofilm formation. Further investigations revealed that SNH interfered with the A. fumigatus cell steroid synthesis pathway, as indicated by transcriptomic and quantitative real-time polymerase chain reaction analyses, and inhibited ergosterol synthesis, as indicated by cell membrane stress assays and ergosterol quantification. Moreover, daily gastric gavage of SNH significantly decreased the fungal burden in mice with disseminated infection (kidney, liver, and lung) and local tissue damage. In addition, the application of SNH downregulated the production of IL-6 and IL-17A. Together, these findings provided the first confirmation that SNH may be a promising antifungal agent for the treatment of A. fumigatus infection.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fangyan Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Meng Zeng
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingyu Mao
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Zhou D, Wang R, Li X, Peng B, Yang G, Zhang KQ, Zhang Y, Xu J. Genetic Diversity and Azole Resistance Among Natural Aspergillus fumigatus Populations in Yunnan, China. MICROBIAL ECOLOGY 2022; 83:869-885. [PMID: 34279697 DOI: 10.1007/s00248-021-01804-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The emergence and spread of azole resistance alleles in clinical and environmental isolates of Aspergillus fumigatus is a global human health concern and endangers the "One Health" approach in our fight against antifungal resistance (AFR) in this pathogen. A major challenge to combat AFR in A. fumigatus is the massive aerial dispersal ability of its asexual spores. Our recent fine-scale survey of greenhouse populations of A. fumigatus near Kunming, Yunnan, China, suggested that the use of azole fungicides for plant protection was likely a major driver of the high-frequency azole-resistant A. fumigatus (ARAF) in greenhouses. Here, we investigated the potential spread of those ARAF and the structure of geographic populations of A. fumigatus by analyzing 452 isolates from 19 geographic locations across Yunnan. We found lower frequencies of ARAF in these outdoor populations than those in greenhouses near Kunming, but there were abundant new alleles and new genotypes, including those associated with azole resistance, consistent with multiple independent origins of ARAF across Yunnan. Interestingly, among the four ecological niches, the sediments of a large lake near Kunming were found to have the highest frequency of ARAF (~ 43%). While most genetic variations were observed within the 19 local populations, statistically significant genetic differentiations were found between many subpopulations within Yunnan. Furthermore, similar to greenhouse populations, these outdoor populations of A. fumigatus in Yunnan were significantly different from those in other parts of the world. Our results call for increased attention to local and regional studies of this fungal pathogen to help develop targeted control strategies against ARAF.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
- College of Life Science, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, 562400, Guizhou, People's Republic of China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
- College of Life Science, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
| | - Xiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
- College of Life Science, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
| | - Bin Peng
- College of Life Science, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
| | - Guangzhu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
- College of Life Science, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China.
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650032, Yunnan, People's Republic of China.
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
4
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Extensive Genetic Diversity and Widespread Azole Resistance in Greenhouse Populations of Aspergillus fumigatus in Yunnan, China. mSphere 2021; 6:6/1/e00066-21. [PMID: 33568450 PMCID: PMC8544883 DOI: 10.1128/msphere.00066-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is the main cause of invasive aspergillosis (IA) with a high annual global incidence and mortality rate. Recent studies have indicated an increasing prevalence of azole-resistant A. fumigatus (ARAF) strains, with agricultural use of azole fungicides as a potential contributor. China has an extensive agricultural production system and uses a wide array of fungicides for crop production, including in modern growth facilities such as greenhouses. Soils in greenhouses are among the most intensively cultivated. However, little is known about the occurrence and distribution of ARAF in greenhouse soils. Here, we investigated genetic variation and triazole drug susceptibility in A. fumigatus from greenhouses around metropolitan Kunming in Yunnan, southwest China. Abundant allelic and genotypic variations were found among 233 A. fumigatus strains isolated from nine greenhouses in this region. Significantly, ∼80% of the strains were resistant to at least one medical triazole drug, with >30% showing cross-resistance to both itraconazole and voriconazole. Several previously reported mutations associated with triazole resistance in the triazole target gene cyp51A were also found in our strains, with a strong positive correlation between the frequency of mutations at the cyp51A promoter and that of voriconazole resistance. Phylogenetic analyses of cyp51A gene sequences showed evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in these greenhouses. Evidence for multiple origins of azole resistance and the widespread distributions of genetically very diverse triazole-resistant strains of A. fumigatus in greenhouses calls for significant attention from public health agencies. IMPORTANCE The origin and prevalence of azole-resistant Aspergillus fumigatus have been attracting increasing attention from biologists, clinicians, and public health agencies. Current evidence suggests agricultural fungicide use as a major cause. In southwest China, greenhouses are used to produce large amounts of fruits, flowers, and vegetables for consumers throughout China as well as those in other countries, primarily in southeast Asia. Here, we found a very high frequency (∼80%) of triazole-resistant A. fumigatus in our sample, the highest reported so far, with a significant proportion of these strains resistant to both tested agricultural fungicides and medical triazole drugs. In addition, we found novel allelic and genotypic diversities and evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in greenhouse populations in this region. Our study calls for a systematic evaluation of the effects of azole fungicide usage in greenhouses on human health.
Collapse
|
6
|
Nywening AV, Rybak JM, Rogers PD, Fortwendel JR. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ Microbiol 2020; 22:4934-4952. [PMID: 33047482 PMCID: PMC7828461 DOI: 10.1111/1462-2920.15274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The ubiquitous fungal pathogen Aspergillus fumigatus is the primary cause of opportunistic mould infections in humans. Aspergilli disseminate via asexual conidia passively travelling through air currents to germinate within a broad range of environs, wherever suitable nutrients are found. Though the average human inhales hundreds of conidia daily, A. fumigatus invasive infections primarily affect the immunocompromised. At-risk individuals can develop often fatal invasive disease for which therapeutic options are limited. Regrettably, the global insurgence of isolates resistant to the triazoles, the frontline antifungal class used in medicine and agriculture to control A. fumigatus, is complicating the treatment of patients. Triazole antifungal resistance in A. fumigatus has become recognized as a global, yet poorly comprehended, problem. Due to a multitude of factors, the magnitude of resistant infections and their contribution to treatment outcomes are likely underestimated. Current studies suggest that human drug-resistant infections can be either environmentally acquired or de novo host selected during patient therapy. While much concerning development of resistance is yet unknown, recent investigations have revealed assorted underlying mechanisms enabling triazole resistance within individual clinical and environmental isolates. This review will provide an overview of triazole resistance as it is currently understood, as well as highlight some of the prominent biological mechanisms associated with clinical and environmental resistance to triazoles in A. fumigatus.
Collapse
Affiliation(s)
- Ashley V Nywening
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
- College of Graduate Health Sciences, Integrated Biomedical Sciences Program, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Phillip David Rogers
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
7
|
|
8
|
Epidemiology and Antifungal Susceptibility Profile of Aspergillus Species: Comparison between Environmental and Clinical Isolates from Patients with Hematologic Malignancies. J Clin Microbiol 2019; 57:JCM.02023-18. [PMID: 31018982 PMCID: PMC6595445 DOI: 10.1128/jcm.02023-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/16/2019] [Indexed: 02/03/2023] Open
Abstract
Global data on the epidemiology and susceptibility of Aspergillus are crucial in the management of invasive aspergillosis. Here, we aimed to determine the characteristics of clinical and environmental Aspergillus isolates, focusing mainly on hematologic malignancy patients. Global data on the epidemiology and susceptibility of Aspergillus are crucial in the management of invasive aspergillosis. Here, we aimed to determine the characteristics of clinical and environmental Aspergillus isolates, focusing mainly on hematologic malignancy patients. We prospectively collected all consecutive cases and clinical isolates of culture-positive proven/probable invasive aspergillosis patients from January 2016 to April 2018 and sampled the air inside and outside the hospital. Cryptic species-level identification of Aspergillus, antifungal susceptibilities, and cyp51 gene sequencing were performed, and clinical data were analyzed. This study was conducted as part of the Catholic Hematology Hospital Fungi Epidemiology (CAFÉ) study. A total of 207 proven/probable invasive aspergillosis and 102 clinical and 129 environmental Aspergillus isolates were included in this analysis. The incidence of proven/probable invasive aspergillosis was 1.3 cases/1,000 patient-days during the study period. Cryptic Aspergillus species accounted for 33.8%, with no differences in proportions between the clinical and environmental isolates. Section Nigri presented a high proportion (70.5%) of cryptic species, mainly from A. tubingensis and A. awamori: the former being dominant in environmental samples, and the latter being more common in clinical isolates (P < 0.001). Of 91 A. fumigatus isolates, azole-resistant A. fumigatus was found in 5.3% of all A. fumigatus isolates. Three isolates presented the TR34/L98H mutation of the cyp51A gene. Patients with invasive aspergillosis caused by azole-resistant A. fumigatus showed 100% all-cause mortality at 100 days. This study demonstrates the significant portion of cryptic Aspergillus species and clinical implications of azole resistance and underscores the comparison between clinical and environmental isolates.
Collapse
|
9
|
Comparison of the Sensititre YeastOne and CLSI M38-A2 Microdilution Methods in Determining the Activity of Amphotericin B, Itraconazole, Voriconazole, and Posaconazole against Aspergillus Species. J Clin Microbiol 2018; 56:JCM.00780-18. [PMID: 30093391 DOI: 10.1128/jcm.00780-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
This study compared the YeastOne and reference CLSI M38-A2 broth microdilution methods for antifungal susceptibility testing of Aspergillus species. The MICs of antifungal agents were determined for 100 Aspergillus isolates, including 54 Aspergillus fumigatus (24 TR34/L98H isolates), 23 A. flavus, 13 A. terreus, and 10 A. niger isolates. The overall agreement (within 2 2-fold dilutions) between the two methods was 100%, 95%, 92%, and 90% for voriconazole, posaconazole, itraconazole, and amphotericin B, respectively. The voriconazole geometric mean (GM) MICs were nearly identical for all isolates using both methods, whereas the itraconazole and posaconazole GM MICs obtained using the YeastOne method were approximately 1 dilution lower than those obtained using the reference method. In contrast, the amphotericin B GM MIC obtained using the YeastOne method was 3.3-fold higher than that observed using the reference method. For the 24 A. fumigatus TR34/L98H isolates assayed, the categorical agreement (classified according to the CLSI epidemiological cutoff values) was 100%, 87.5%, and 83.3% for itraconazole, voriconazole, and posaconazole, respectively. For four A. niger isolates, the itraconazole MICs were >8 μg/ml using the M38-A2 method due to trailing growth, whereas the corresponding itraconazole MICs obtained using the YeastOne method were all ≤0.25 μg/ml without trailing growth. These data suggest that the YeastOne method can be used as an alternative for azole susceptibility testing of Aspergillus species and for detecting the A. fumigatus TR34/L98H isolates but that this method fails to detect A. niger isolates exhibiting trailing growth with itraconazole. Additionally, for isolates with azole MICs that approach or that are at susceptibility breakpoints or with high amphotericin B MICs detected using the YeastOne method, further MIC confirmation using the reference CLSI method is needed.
Collapse
|
10
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
11
|
Lewis RE, Verweij PE. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus. J Infect Dis 2017; 216:S466-S473. [PMID: 28911046 DOI: 10.1093/infdis/jix222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance.
Collapse
Affiliation(s)
- Russell E Lewis
- Infectious Diseases Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Li SX, Song YJ, Jiang L, Zhao YJ, Guo H, Li DM, Zhu KJ, Zhang H. Synergistic Effects of Tetrandrine with Posaconazole Against Aspergillus fumigatus. Microb Drug Resist 2017; 23:674-681. [PMID: 28080217 DOI: 10.1089/mdr.2016.0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shui-Xiu Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Yan-Jun Song
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Ling Jiang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Ya-Jing Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Hui Guo
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia
| | - Kun-Ju Zhu
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Hong Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
14
|
Camplesi M, Silva HM, Arantes AM, Costa CR, Ataides FS, Silva TC, Reis MDPCD, Silva MDRR. Invasive fungal infection in patients with hematologic disorders in a Brazilian tertiary care hospital. Rev Soc Bras Med Trop 2017; 50:80-85. [PMID: 28327806 DOI: 10.1590/0037-8682-0191-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: Invasive fungal infections (IFIs) are an important complication in immunocompromised individuals, particularly neutropenic patients with hematological malignancies. In this study, we aimed to verify the epidemiology and diagnosis of IFIs in patients with hematologic problems at a tertiary hospital in Goiânia-GO, Brazil. METHODS: Data from 117 patients, involving 19 cases of IFIs, were collected. The collected data included diagnosis methods, demographics, clinical characteristics, and in vitro susceptibility to different antifungal agents. Among the 19 cases, 12 were classified as proven IFI and 7 as probable invasive aspergillosis with detection of galactomannan in blood and presence of lung infiltrates in radiographic images. Logistic regression analysis showed that the proven and probable IFIs were associated with increased risk of death. Statistical analysis demonstrated that age, sex, and underlying disease were not independently associated with risk of death in IFI patients. RESULTS: Most bloodstream isolates of Candida spp. exhibited low minimum inhibitory concentrations (MICs) to all antifungal agents tested. Voriconazole and amphotericin had the lowest MICs for Aspergillus spp. and Fusarium spp., but Fusarium spp. showed the least susceptibility to all antifungals tested. Amphotericin B, fluconazole, and itraconazole were found to be inactive in vitro against Acremonium kiliense; but this fungus was sensitive to voriconazole. CONCLUSIONS: Considering the high number of IFI cases, with crude mortality rate of 6%, we could conclude that IFIs remain a common infection in patients with hematological malignancies and underdiagnosed ante mortem. Thus, IFIs should be monitored closely.
Collapse
Affiliation(s)
- Milton Camplesi
- Departamento de Biomedicina, Universidade Paulista, Goiânia, GO, Brasil
| | - Hildene Meneses Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | - Carolina Rodrigues Costa
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Fábio Silvestre Ataides
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Thaisa Cristina Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Maysa de Paula Costa Dos Reis
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Maria do Rosário Rodrigues Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
15
|
Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in CandidaandAspergillus. Mycoses 2016; 59:198-219. [DOI: 10.1111/myc.12469] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Santos Gonçalves
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Ana Carolina Remondi Souza
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Anuradha Chowdhary
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases; Canisius Wilhelmina Hospital; Nijmegen the Netherlands
- Department of Medical Microbiology; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| |
Collapse
|
16
|
Deo SS, Virassamy B, Halliday C, Clancy L, Chen S, Meyer W, Sorrell TC, Gottlieb DJ. Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells. Cytotherapy 2015; 18:65-79. [PMID: 26552765 DOI: 10.1016/j.jcyt.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND AIMS Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. METHODS Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. RESULTS Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. CONCLUSIONS We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically.
Collapse
Affiliation(s)
- Shivashni S Deo
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research, Sydney, Australia; Sydney Medical School, University of Sydney, Australia.
| | - Balaji Virassamy
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research, Sydney, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia
| | - Leighton Clancy
- Sydney Cellular Therapies Laboratory, Westmead Hospital, Sydney, Australia
| | - Sharon Chen
- Sydney Medical School, University of Sydney, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia
| | - Wieland Meyer
- Sydney Medical School, University of Sydney, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Australia
| | - Tania C Sorrell
- Sydney Medical School, University of Sydney, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Australia
| | - David J Gottlieb
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Sydney Cellular Therapies Laboratory, Westmead Hospital, Sydney, Australia; Blood and Marrow Transplant Unit, Department of Haematology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
17
|
Li SX, Song YJ, Zhang LL, Shi JP, Ma ZL, Guo H, Dong HY, Li YM, Zhang H. An in vitro and in vivo study on the synergistic effect and mechanism of itraconazole or voriconazole alone and in combination with tetrandrine against Aspergillus fumigatus. J Med Microbiol 2015; 64:1008-1020. [PMID: 26296880 DOI: 10.1099/jmm.0.000120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Shui-Xiu Li
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| | - Yan-Jun Song
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| | - Ling-Ling Zhang
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| | - Jian-Ping Shi
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
- Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Guangdong, PR China
| | - Zheng-Lai Ma
- Department of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Institute of Fetal-Preterm Labor Medicine, Medical College of Jinan University, Guangzhou, PR China
| | - Hui Guo
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
- Clinical Medicine Postdoctoral Mobile Station, Jinan University, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Guangdong, PR China
| | - Hui-Yu Dong
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| | - Yi-Ming Li
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| | - Hong Zhang
- First Affiliated Hospital and Institute of Mycology, Jinan University, Guangzhou, PR China
| |
Collapse
|
18
|
Talbot JJ, Kidd SE, Martin P, Beatty JA, Barrs VR. Azole resistance in canine and feline isolates of Aspergillus fumigatus. Comp Immunol Microbiol Infect Dis 2015; 42:37-41. [PMID: 26387063 DOI: 10.1016/j.cimid.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Azole resistance is an emerging cause of treatment failure in humans with aspergillosis. The aim of this study was to determine if azole resistance is emerging in Aspergillus fumigatus isolates from canine and feline sino-nasal aspergillosis cases. Susceptibilities of isolates collected between 1988 and 2014 from 46 dogs and 4 cats to itraconazole, posaconazole, voriconazole, fluconazole and ketoconazole were assessed using Sensititre YeastOne microdilution trays; and to enilconazole and clotrimazole, following the CLSI M38-A2 standard. For the majority of isolates MICs were high for ketoconazole, low for enilconazole and clotrimazole, and less than established epidemiological cut-off values for itraconazole, posaconazole and voriconazole. One canine isolate from 1992 had multiazole resistance and on Cyp51A gene sequencing a mutation associated with azole resistance (F46Y) was detected. There is no evidence of emerging azole resistance among A. fumigatus isolates from dogs and cats and topical azole therapy should be effective against most isolates.
Collapse
Affiliation(s)
- Jessica J Talbot
- Valentine Charlton Cat Centre, Faculty of Veterinary Science, University of Sydney, Camperdown 2006, NSW, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Frome Road, Adelaide 5000, SA, Australia
| | - Patricia Martin
- Veterinary Pathology Diagnostic Services, Faculty of Veterinary Science, University of Sydney, Camperdown 2006, NSW, Australia
| | - Julia A Beatty
- Valentine Charlton Cat Centre, Faculty of Veterinary Science, University of Sydney, Camperdown 2006, NSW, Australia
| | - Vanessa R Barrs
- Valentine Charlton Cat Centre, Faculty of Veterinary Science, University of Sydney, Camperdown 2006, NSW, Australia.
| |
Collapse
|
19
|
|
20
|
Multiple cyp51A-based mechanisms identified in azole-resistant isolates of Aspergillus fumigatus from China. Antimicrob Agents Chemother 2015; 59:4321-5. [PMID: 25896700 DOI: 10.1128/aac.00003-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022] Open
Abstract
Seventy-two A. fumigatus clinical isolates from China were investigated for azole resistance based on mutations of cyp51A. We identified four azole-resistant strains, among which we found three strains highly resistant to itraconazole, two of which exhibit the TR34/L98H/S297T/F495I mutation, while one carries only the TR34/L98H mutation. To our knowledge, the latter has not been found previously in China. The fourth multiazole-resistant isolate (with only moderate itraconazole resistance) carries a new G432A mutation.
Collapse
|
21
|
Lescar J, Meyer I, Akshita K, Srinivasaraghavan K, Verma C, Palous M, Mazier D, Datry A, Fekkar A. Aspergillus fumigatus harbouring the sole Y121F mutation shows decreased susceptibility to voriconazole but maintained susceptibility to itraconazole and posaconazole. J Antimicrob Chemother 2014; 69:3244-7. [DOI: 10.1093/jac/dku316] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 2014; 166:471-84. [PMID: 24749533 DOI: 10.1111/bjh.12896] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Mortality linked to invasive fungal diseases remains very high despite the availability of novel antifungals and new therapeutic strategies. Candida albicans and Aspergillus fumigatus account for most invasive mycosis produced by yeast or moulds, respectively. Other Candida non-albicans are increasingly being reported and newly emerging, as well as cryptic, filamentous fungi often cause disseminated infections in immunocompromised hosts. Management of invasive fungal infections is becoming a challenge as emerging fungal pathogens generally show poor response to many antifungals. The ability of reference antifungal susceptibility testing methods to detect emerging resistance patterns, together with the molecular characterization of antifungal resistance mechanisms, are providing useful information to optimize the effectiveness of antifungal therapy. The current status of antifungal resistance epidemiology with special emphasis on the molecular resistant mechanisms that have been described in the main pathogenic fungal species are reviewed.
Collapse
Affiliation(s)
- Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
23
|
Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2013; 69:1162-76. [PMID: 24379304 DOI: 10.1093/jac/dkt508] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics-pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | | | | | |
Collapse
|
24
|
Chi MH, Craven KD. Oxygen and an extracellular phase transition independently control central regulatory genes and conidiogenesis in Aspergillus fumigatus. PLoS One 2013; 8:e74805. [PMID: 24040343 PMCID: PMC3764054 DOI: 10.1371/journal.pone.0074805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022] Open
Abstract
Conidiogenesis is the primary process for asexual reproduction in filamentous fungi. As the conidia resulting from the conidiogenesis process are primarily disseminated via air currents and/or water, an outstanding question has been how fungi recognize aerial environments suitable for conidial development. In this study, we documented the somewhat complex development of the conidia-bearing structures, termed conidiophores, from several Aspergillus species in a subsurface (gel-phase) layer of solid media. A subset of the isolates studied was able to develop conidiophores in a gel-phase environment, but exposure to the aeriform environment was required for the terminal developmental transition from phialide cells to conidia. The remaining Aspergilli could not initiate the conidiogenesis process until they were exposed to the aeriform environment. Our observations of conidiophore development in high or low oxygen conditions in both aeriform and gel-phase environments revealed that oxygen and the aeriform state are positive environmental factors for inducing conidiogenesis in most of the aspergilli tested in this study. Transcriptional analysis using A. fumigatus strain AF293 confined to either the aeriform or gel-phase environments revealed that expression of a key regulatory gene for conidiophore development (AfubrlA) is facilitated by oxygen while expression of another regulatory gene controlling conidia formation from phialides (AfuabaA) was repressed regardless of oxygen levels in the gel-embedded environment. Furthermore, by comparing the developmental behavior of conidiation-defective mutants lacking genes controlling various regulatory checkpoints throughout the conidiogenesis pathway, we propose that this aerial response by the fungus requires both oxygen and the phase transition (solid to aeriform), with these environmental signals integrating into the upstream regulatory pathway and central regulatory pathway of conidiogenesis, respectively. Our findings provide not only novel insight into how fungi respond to an aerial environment to trigger development for airborne conidia production but also the relationship between environmental factors and conidiogenesis regulation in aspergilli.
Collapse
Affiliation(s)
- Myoung-Hwan Chi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Kelly D. Craven
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Azole-resistant strains of Aspergillus have been reported from European and Asian countries at varying frequencies. Based on the limited rates of isolation of Aspergillus from clinical samples in routine practice and the limited number of the screening studies carried out so far, the true prevalence of triazole resistance and the rate of multiazole-resistant strains remain partly unknown. Also, available data are mostly for A. fumigatus (complex), thus the situation for non-fumigatus Aspergilli is less clear. In general, exposure of Aspergillus to antifungal agents via medical or environmental (agricultural) use of these compounds appears to have the possible major impact on acquisition of triazole resistance. Azole resistance in Aspergillus remains to be further elucidated by continued surveillance studies. Based on the possible association with agricultural azole use, environmental sampling appears significant as well.
Collapse
Affiliation(s)
- Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey.
| |
Collapse
|
26
|
Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One 2012; 7:e50034. [PMID: 23226235 PMCID: PMC3511431 DOI: 10.1371/journal.pone.0050034] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 01/10/2023] Open
Abstract
Azole compounds are the primary therapy for patients with diseases caused by Aspergillus fumigatus. However, prolonged treatment may cause resistance to develop, which is associated with treatment failure. The azole target cyp51A is a hotspot for mutations that confer phenotypic resistance, but in an increasing number of resistant isolates the underlying mechanism remains unknown. Here, we report the discovery of a novel resistance mechanism, caused by a mutation in the CCAAT-binding transcription factor complex subunit HapE. From one patient, four A. fumigatus isolates were serially collected. The last two isolates developed an azole resistant phenotype during prolonged azole therapy. Because the resistant isolates contained a wild type cyp51A gene and the isolates were isogenic, the complete genomes of the last susceptible isolate and the first resistant isolate (taken 17 weeks apart) were sequenced using Illumina technology to identify the resistance conferring mutation. By comparing the genome sequences to each other as well as to two A. fumigatus reference genomes, several potential non-synonymous mutations in protein-coding regions were identified, six of which could be confirmed by PCR and Sanger sequencing. Subsequent sexual crossing experiments showed that resistant progeny always contained a P88L substitution in HapE, while the presence of the other five mutations did not correlate with resistance in the progeny. Cloning the mutated hapE gene into the azole susceptible akuB(KU80) strain showed that the HapE P88L mutation by itself could confer the resistant phenotype. This is the first time that whole genome sequencing and sexual crossing strategies have been used to find the genetic basis of a trait of interest in A. fumigatus. The discovery may help understand alternate pathways for azole resistance in A. fumigatus with implications for the molecular diagnosis of resistance and drug discovery.
Collapse
|
27
|
Arendrup M, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST Technical Note on Aspergillus and amphotericin B, itraconazole, and posaconazole. Clin Microbiol Infect 2012; 18:E248-50. [DOI: 10.1111/j.1469-0691.2012.03890.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Bowyer P, Mosquera J, Anderson M, Birch M, Bromley M, Denning DW. Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol Lett 2012; 332:10-9. [PMID: 22509997 DOI: 10.1111/j.1574-6968.2012.02575.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
Azoles are currently the mainstay of antifungal treatment both in agricultural and in clinical settings. Although the target site of azole action is well studied, the basis of azole resistance and the ultimate mode of action of the drug in fungi are poorly understood. To gain a deeper insight into these aspects of azole action, restriction-mediated plasmid integration (REMI) was used to create azole sensitive and resistant strains of the clinically important fungus Aspergillus fumigatus. Four azole sensitive insertions and four azole-resistant insertions were characterized. Three phenotypes could be re-created in wild-type AF210 by reintegration of rescued plasmid and a further four could be confirmed by complementation of the mutant phenotype with a copy of the wild-type gene predicted to be disrupted by the original insertional event. Six insertions were in genes not previously associated with azole sensitivity or resistance. Two insertions occur in transporter genes that may affect drug efflux, whereas others may affect transcriptional regulation of sterol biosynthesis genes and NADH metabolism in the mitochondrion. Two insertions are in genes of unknown function.
Collapse
Affiliation(s)
- Paul Bowyer
- Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
29
|
van der Linden JWM, Snelders E, Kampinga GA, Rijnders BJA, Mattsson E, Debets-Ossenkopp YJ, Kuijper EJ, Van Tiel FH, Melchers WJG, Verweij PE. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg Infect Dis 2012; 17:1846-54. [PMID: 22000354 PMCID: PMC3311118 DOI: 10.3201/eid1710.110226] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prevalence and spread of azole resistance in clinical Aspergillus fumigatus isolates in the Netherlands are currently unknown. Therefore, we performed a prospective nationwide multicenter surveillance study to determine the effects of resistance on patient management strategies and public health. From June 2007 through January 2009, all clinical Aspergillus spp. isolates were screened for itraconazole resistance. In total, 2,062 isolates from 1,385 patients were screened; the prevalence of itraconazole resistance in A. fumigatus in our patient cohort was 5.3% (range 0.8%-9.5%). Patients with a hematologic or oncologic disease were more likely to harbor an azole-resistant isolate than were other patient groups (p<0.05). Most patients (64.0%) from whom a resistant isolate was identified were azole naive, and the case-fatality rate of patients with azole-resistant invasive aspergillosis was 88.0%. Our study found that multiazole resistance in A. fumigatus is widespread in the Netherlands and is associated with a high death rate for patients with invasive aspergillosis.
Collapse
|
30
|
Epidemiological cutoff values for azoles and Aspergillus fumigatus based on a novel mathematical approach incorporating cyp51A sequence analysis. Antimicrob Agents Chemother 2012; 56:2524-9. [PMID: 22330922 DOI: 10.1128/aac.05959-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological cutoff values (ECV) are commonly used to separate wild-type isolates from isolates with reduced susceptibility to antifungal drugs, thus setting the foundation for establishing clinical breakpoints for Aspergillus fumigatus. However, ECVs are usually determined by eye, a method which lacks objectivity, sensitivity, and statistical robustness and may be difficult, in particular, for extended and complex MIC distributions. We therefore describe and evaluate a statistical method of MIC distribution analysis for posaconazole, itraconazole, and voriconazole for 296 A. fumigatus isolates utilizing nonlinear regression analysis, the normal plot technique, and recursive partitioning analysis incorporating cyp51A sequence data. MICs were determined by using the CLSI M38-A2 protocol (CLSI, CLSI document M38-A2, 2008) after incubation of the isolates for 48 h and were transformed into log(2) MICs. We found a wide distribution of MICs of all azoles, some ranging from 0.02 to 128 mg/liter, with median MICs of 32 mg/liter for itraconazole, 4 mg/liter for voriconazole, and 0.5 mg/liter for posaconazole. Of the isolates, 65% (192 of 296) had mutations in the cyp51A gene, and the majority of the mutants (90%) harbored tandem repeats in the promoter region combined with mutations in the cyp51A coding region. MIC distributions deviated significantly from normal distribution (D'Agostino-Pearson omnibus normality test P value, <0.001), and they were better described with a model of the sum of two Gaussian distributions (R(2), 0.91 to 0.96). The normal plot technique revealed a mixture of two populations of MICs separated by MICs of 1 mg/liter for itraconazole, 1 mg/liter for voriconazole, and 0.125 mg/liter for posaconazole. Recursive partitioning analysis confirmed these ECVs, since the proportions of isolates harboring cyp51A mutations associated with azole resistance were less than 20%, 20 to 30%, and >70% when the MICs were lower than, equal to, and higher than the above-mentioned ECVs, respectively.
Collapse
|
31
|
Hadrich I, Makni F, Neji S, Abbes S, Cheikhrouhou F, Trabelsi H, Sellami H, Ayadi A. Invasive Aspergillosis: Resistance to Antifungal Drugs. Mycopathologia 2012; 174:131-41. [DOI: 10.1007/s11046-012-9526-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/23/2012] [Indexed: 11/29/2022]
|
32
|
Bertuzzi M, Bignell EM. Sensory perception in fungal pathogens: Applications of the split-ubiquitin Membrane Yeast Two-Hybrid (MYTH) technique. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH, Meis JF. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J Antimicrob Chemother 2011; 67:362-6. [DOI: 10.1093/jac/dkr443] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature. Antimicrob Agents Chemother 2011; 56:10-6. [PMID: 22005994 DOI: 10.1128/aac.05088-11] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nine consecutive isogenic Aspergillus fumigatus isolates cultured from a patient with aspergilloma were investigated for azole resistance. The first cultured isolate showed a wild-type phenotype, but four azole-resistant phenotypes were observed in the subsequent eight isolates. Four mutations were found in the cyp51A gene of these isolates, leading to the substitutions A9T, G54E, P216L, and F219I. Only G54 substitutions were previously proved to be associated with azole resistance. Using a Cyp51A homology model and recombination experiments in which the mutations were introduced into a susceptible isolate, we show that the substitutions at codons P216 and F219 were both associated with resistance to itraconazole and posaconazole. A9T was also present in the wild-type isolate and thus considered a Cyp51A polymorphism. Isolates harboring F219I evolved further into a pan-azole-resistant phenotype, indicating an additional acquisition of a non-Cyp51A-mediated resistance mechanism. Review of the literature showed that in patients who develop azole resistance during therapy, multiple resistance mechanisms commonly emerge. Furthermore, the median time between the last cultured wild-type isolate and the first azole-resistant isolate was 4 months (range, 3 weeks to 23 months), indicating a rapid induction of resistance.
Collapse
|
35
|
Alanio A, Cordonnier C, Bretagne S. Azole Resistance in Aspergillus fumigatus—Current Epidemiology and Future Perspectives. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0061-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Mayr A, Lass-Flörl C. Epidemiology and antifungal resistance in invasive Aspergillosis according to primary disease: review of the literature. Eur J Med Res 2011; 16:153-7. [PMID: 21486729 PMCID: PMC3352071 DOI: 10.1186/2047-783x-16-4-153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/22/2011] [Indexed: 11/10/2022] Open
Abstract
Aspergilli, less susceptible to antifungals emerge and resistance to azoles have been found mainly in Aspergillus fumigatus; this has launched a new phase in handling aspergillosis. Resistant strains have currently been reported from Belgium, Canada, China, Denmark, France, Norway, Spain, Sweden, The Netherlands, UK and the USA. Centres in the UK (Manchester) and The Netherlands (Nijmegen) have described particularly high frequencies (15 and 10% respectively), and a significant increase in azole resistance in recent years. The reason of this high incidence may be due to long term azole therapy in patients with chronic aspergillosis in Manchester, and due to high use of agricultural azoles in Nijmegen. The primary underlying mechanism of resistance is as a result of alterations in the cyp51A target gene, with a variety of mutations found in clinical isolates and one genotype identified in the environmental (LH98). Reports on well documented in vitro and in vivo resistance to echinocandins are rare for Aspergillus species and resistance may be under-diagnosed as susceptibility testing is less frequently performed due to technical reasons.
Collapse
Affiliation(s)
| | - C Lass-Flörl
- Division of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
37
|
Rudramurthy SM, de Valk HA, Chakrabarti A, Meis JFGM, Klaassen CHW. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites. PLoS One 2011; 6:e16086. [PMID: 21264229 PMCID: PMC3022034 DOI: 10.1371/journal.pone.0016086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the molecular epidemiology of this fungus has not been well studied. We evaluated the use of microsatellites for high resolution genotyping of A. flavus from India and a possible connection between clinical presentation and genotype of the involved isolate. METHODOLOGY/PRINCIPAL FINDINGS A panel of nine microsatellite markers were selected from the genome of A. flavus NRRL 3357. These markers were used to type 162 clinical isolates of A. flavus. All nine markers proved to be polymorphic displaying up to 33 alleles per marker. Thirteen isolates proved to be a mixture of different genotypes. Among the 149 pure isolates, 124 different genotypes could be recognized. The discriminatory power (D) for the individual markers ranged from 0.657 to 0.954. The D value of the panel of nine markers combined was 0.997. The multiplex multicolor approach was instrumental in rapid typing of a large number of isolates. There was no correlation between genotype and the clinical presentation of the infection. CONCLUSIONS/SIGNIFICANCE There is a large genotypic diversity in clinical A. flavus isolates from India. The presence of more than one genotype in clinical samples illustrates the possibility that persons may be colonized by multiple genotypes and that any isolate from a clinical specimen is not necessarily the one actually causing infection. Microsatellites are excellent typing targets for discriminating between A. flavus isolates from various origins.
Collapse
Affiliation(s)
- Shivaprakash M. Rudramurthy
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Hanneke A. de Valk
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Arunaloke Chakrabarti
- Mycology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacques F. G. M. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Li D, Agrellos OA, Calderone R. Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol 2010; 13:424-30. [PMID: 20542727 DOI: 10.1016/j.mib.2010.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 01/10/2023]
Abstract
Signal transduction in human pathogenic fungi, like in other microorganisms, regulates a number of adaptive transcriptional responses to a variety of environmental cues. Among signal relay proteins, sensor, histidine kinase proteins (HK) are auto-phosphorylated upon perception of an environmental cue, and initiate a phosphorelay that results in transcriptional regulation of genes associated with specific stress signals or multiple stress cues. Human pathogenic fungi utilize HK proteins to adapt to stress, grow, sporulate, undergo morphogenesis, mate, sense anti-fungal drugs, and cause disease. While much is known about HK and RR proteins functionally, the MAPK pathways and downstream transcription factors and gene targets are largely unstudied in human pathogenic fungi. However, as HK proteins are broadly conserved and not apparently in humans, we suggest that they offer exploitation as new targets in anti-fungal drug discovery.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
39
|
Lass-Flörl C. In vitro susceptibility testing in Aspergillus species: an update. Future Microbiol 2010; 5:789-99. [PMID: 20441550 DOI: 10.2217/fmb.10.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aspergillus species are the most common causes of invasive mold infections in immunocompromised patients. The introduction of new antifungal agents and recent reports of resistance emerging during treatment of Aspergillus infections have highlighted the need for in vitro susceptibility testing. Various testing procedures have been proposed, including macro- and micro-dilution, disk diffusion, Etest (AB Biodisk, Sweden) and other commercial tests. Although Aspergillus species are generally susceptible to various compounds, intrinsic and acquired resistance has been documented. Amphotericin B has limited activity against Aspergillus terreus and Aspergillus nidulans. Not surprisingly, continued use of azole-based drugs has the undesirable consequence of elevating the resistance of subsequent isolates from these patients. Several species in the Aspergillus fumigatus complex appear to be resistant to azoles; there is evidence of in vitro and in vivo correlation. Each in vitro susceptibility testing method has its own advantages and disadvantages. Etest is easy to perform and use on a daily basis, yet it is expensive. Disk diffusion is the most attractive alternative method to date, yet we lack sufficient data for aspergilli. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical Laboratory Standard Institute (CLSI) have produced reproducible reference testing methods. This article reviews the available methods for antifungal susceptibility testing in Aspergillus spp. as well as the scant data regarding the clinical implications of in vitro testing.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Department of Hygiene, Microbiology & Social Medicine, Division of Hygiene & Clinical Microbiology, Innsbruck Medical University, Fritz Pregl Str 3, 6020 Innsbruck, Austria.
| |
Collapse
|
40
|
Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J Clin Microbiol 2010; 48:3251-7. [PMID: 20592159 DOI: 10.1128/jcm.00536-10] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical breakpoints have not been established for mold testing. Wild-type (WT) MIC distributions (organisms in a species/drug combination with no detectable acquired resistance mechanisms) were defined in order to establish epidemiologic cutoff values (ECVs) for five Aspergillus spp. and itraconazole, posaconazole, and voriconazole. Also, we have expanded prior ECV data for Aspergillus fumigatus. The number of available isolates varied according to the species/triazole combination as follows: 1,684 to 2,815 for A. fumigatus, 323 to 592 for A. flavus, 131 to 143 for A. nidulans, 366 to 520 for A. niger, 330 to 462 for A. terreus, and 45 to 84 for A. versicolor. CLSI broth microdilution MIC data gathered in five independent laboratories in Europe and the United States were aggregated for the analyses. ECVs expressed in microg/ml were as follows (percentages of isolates for which MICs were equal to or less than the ECV are in parentheses): A. fumigatus, itraconazole, 1 (98.8%); posaconazole, 0.5 (99.2%); voriconazole, 1 (97.7%); A. flavus, itraconazole, 1 (99.6%); posaconazole, 0.25 (95%); voriconazole, 1 (98.1%); A. nidulans, itraconazole, 1 (95%); posaconazole, 1 (97.7%); voriconazole, 2 (99.3%); A. niger, itraconazole, 2 (100%); posaconazole, 0.5 (96.9%); voriconazole, 2 (99.4%); A. terreus, itraconazole, 1 (100%); posaconazole, 0.5 (99.7%); voriconazole, 1 (99.1%); A. versicolor, itraconazole, 2 (100%); posaconazole, 1 (not applicable); voriconazole, 2 (97.5%). Although ECVs do not predict therapy outcome as clinical breakpoints do, they may aid in detection of azole resistance (non-WT MIC) due to cyp51A mutations, a resistance mechanism in some Aspergillus spp. These ECVs should be considered for inclusion in the future CLSI M38-A2 document revision.
Collapse
|
41
|
Arendrup MC, Mavridou E, Mortensen KL, Snelders E, Frimodt-Møller N, Khan H, Melchers WJG, Verweij PE. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS One 2010; 5:e10080. [PMID: 20404915 PMCID: PMC2852403 DOI: 10.1371/journal.pone.0010080] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/09/2010] [Indexed: 11/18/2022] Open
Abstract
Four sequential Aspergillus fumigatus isolates from a patient with chronic granulomatous disease (CGD) eventually failing azole-echinocandin combination therapy were investigated. The first two isolates (1 and 2) were susceptible to antifungal azoles, but increased itraconazole, voriconazole and posaconazole MICs were found for the last two isolates (3 and 4). Microsatellite typing showed that the 4 isolates were isogenic, suggesting that resistance had been acquired during azole treatment of the patient. An immunocompromised mouse model confirmed that the in vitro resistance corresponded with treatment failure. Mice challenged with the resistant isolate 4 failed to respond to posaconazole therapy, while those infected by susceptible isolate 2 responded. Posaconazole-anidulafungin combination therapy was effective in mice challenged with isolate 4. No mutations were found in the Cyp51A gene of the four isolates. However, expression experiments of the Cyp51A showed that the expression was increased in the resistant isolates, compared to the azole-susceptible isolates. The microscopic morphology of the four isolates was similar, but a clear alteration in radial growth and a significantly reduced growth rate of the resistant isolates on solid and in broth medium was observed compared to isolates 1 and 2 and to unrelated wild-type controls. In the mouse model the virulence of isolates 3 and 4 was reduced compared to the susceptible ones and to wild-type controls. For the first time, the acquisition of azole resistance despite azole-echinocandin combination therapy is described in a CGD patient and the resistance demonstrated to be directly associated with significant change of virulence.
Collapse
|
42
|
Use of a high-resolution melt assay to characterize codon 54 of the cyp51A gene of Aspergillus fumigatus on a Rotor-Gene 6000 instrument. Antimicrob Agents Chemother 2010; 54:2248-51. [PMID: 20194699 DOI: 10.1128/aac.01712-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high-resolution melt (HRM) assay using a Rotor-Gene 6000 instrument was developed to characterize the codon for glycine 54 in the cyp51A genes from 13 reference isolates and 12 clinical isolates of Aspergillus fumigatus. Mutations in this codon confer reduced susceptibility to itraconazole and posaconazole. The assay is simple to perform, and a result of "wild type" or "mutant" is available after approximately 1 h following DNA extraction using commercially available reagents and conventional primers.
Collapse
|
43
|
Lass-Flörl C, Perkhofer S, Mayr A. In vitro susceptibility testing in fungi: a global perspective on a variety of methods. Mycoses 2010; 53:1-11. [PMID: 20078786 DOI: 10.1111/j.1439-0507.2009.01813.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Candida and Aspergillus species are the most common causes of invasive fungal infections in immunocompromised patients. The introduction of new antifungal agents and recent reports of resistance emerging during treatment have highlighted the need for in vitro susceptibility testing. For some drugs, there is a supporting in vitro-in vivo correlation available from studies of clinical efficacy. Both intrinsic and emergent antifungal drug resistance are encountered. Various testing procedures have been proposed, including macrodilution and microdilution, agar diffusion, disk diffusion and Etest. Early recognition of infections caused by pathogens that are resistant to one or more antifungals is highly warranted to optimise treatment and patient outcome.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
44
|
Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and -resistant strains of Aspergillus fumigatus. Int J Antimicrob Agents 2009; 35:146-51. [PMID: 20015618 DOI: 10.1016/j.ijantimicag.2009.09.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 12/31/2022]
Abstract
Aminocandin (IP960; HMR3270; NXL201) is a new echinocandin with broad-spectrum in vitro activity against Aspergillus and Candida spp. We compared the activity of aminocandin with that of amphotericin B (AmB), itraconazole (ITC) and caspofungin (CAS) in murine models of disseminated aspergillosis against three strains of A. fumigatus, two of which were fully susceptible (AF293 and A1163) and one was resistant to ITC (AF91). Mice were rendered temporarily neutropenic or persistently neutropenic with cyclophosphamide and were infected intravenously 3 days later. Temporarily neutropenic mice were treated with either intraperitoneal (i.p.) AmB (5mg/kg/dose), oral (p.o.) ITC (25mg/kg/dose), intravenous (i.v.) aminocandin (0.25-10mg/kg/dose), i.p. aminocandin (1mg/kg/dose) or solvent control for 9 days. Mice were euthanised 11 days post infection and the kidneys and liver were removed for quantitative culture. Following infection with AF293, only aminocandin 5mg/kg i.v. yielded 100% survival. Aminocandin 1mg/kg i.v., AmB 5mg/kg i.p. or ITC 25mg/kg p.o. were equivalent (P>0.05). Aminocandin 5mg/kg was superior to aminocandin 0.25mg/kg (P<0.0001) as well as all controls (P<0.0001) in reducing mortality. Following infection with AF91, only aminocandin at 5mg/kg and 1mg/kg i.v. yielded 100% survival, which was superior to ITC, aminocandin 0.25mg/kg and controls (all P<0.0001). In the persistently neutropenic model with A1163, aminocandin, CAS and micafungin (2-10mg/kg) were all effective at prolonging survival, with some impact on reducing culture burdens, even with alternate-day dosing (4mg/kg). The only fungicidal regimen was aminocandin 5mg/kg, which sterilised 40% and 50% of mice following infection with AF293 and AF91, respectively. Aminocandin at doses of > or =1mg/kg is highly effective in reducing mortality and organ burden in disseminated infection caused by ITC-susceptible and -resistant A. fumigatus.
Collapse
|
45
|
Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole-resistance in Aspergillus: Proposed nomenclature and breakpoints. Drug Resist Updat 2009; 12:141-7. [DOI: 10.1016/j.drup.2009.09.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/08/2009] [Indexed: 11/24/2022]
|
46
|
Azole resistance in aspergillosis: The next threat? CURRENT FUNGAL INFECTION REPORTS 2009. [DOI: 10.1007/s12281-009-0033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Evaluation of Oral Itraconazole Administration in Captive Humboldt Penguins (Spheniscus humboldti). J Zoo Wildl Med 2009; 40:508-18. [DOI: 10.1638/2009-0045.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
|
49
|
In vitro activities of fluconazole, itraconazole and voriconazole against otomycotic fungal pathogens. J Laryngol Otol 2009; 123:978-81. [PMID: 19454132 DOI: 10.1017/s0022215109005489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine the causative pathogens of otomycosis, and to evaluate the in vitro activity of antifungal agents against these pathogens. MATERIALS AND METHODS A total of 96 fungal isolate were taken from 92 patients suspected of otomycosis. The in vitro activity of fluconazole, itraconazole and voriconazole against otomycotic pathogens was tested using the E-test method. RESULTS The most common pathogen was Aspergillus fumigatus (40.6 per cent), followed by A niger (35.4 per cent), A flavus (12.5 per cent) and Candida albicans (11.5 per cent). All Aspergillus species were found to be resistant to fluconazole (minimum inhibitory concentration > or =256 microg/ml). The mean minimum inhibitory concentrations of voriconazole for A fumigatus, A niger, A flavus and C albicans were significantly lower than those of itraconazole for the same pathogens. CONCLUSION This study found that the most common otomycotic fungal pathogen was A fumigatus, and that voriconazole had more potent in vitro activity than itraconazole against all Aspergillus species as well as against C albicans.
Collapse
|
50
|
Avian Aspergillus fumigatus strains resistant to both itraconazole and voriconazole. Antimicrob Agents Chemother 2009; 53:2199-201. [PMID: 19258265 DOI: 10.1128/aac.01492-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro susceptibilities of 59 avian Aspergillus fumigatus strains to amphotericin B, itraconazole, and voriconazole were determined using the standard microdilution broth method (CLSI M38-A2). Four isolates showed acquired resistance to itraconazole and voriconazole, harboring implications for the treatment of aspergillosis in both birds and humans.
Collapse
|