1
|
Jian C, Ye C, Guo T, Hao J, Ding Y, Xiao X, Xie W, Zeng Z, Liu J. Emergence of aztreonam/avibactam and tigecycline-resistant Pseudomonas putida group Co-producing bla IMP-1, bla AFM-4 and bla OXA-1041 with a novel sequence type ST268 in Southwestern China. Microb Pathog 2024; 192:106668. [PMID: 38697232 DOI: 10.1016/j.micpath.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics. METHODS We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of blaIMP-1 and blaAFM-4 was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining. RESULTS Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced blaIMP-1, blaAFM-4, tmexCD-toprJ, and blaOXA-1041, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the blaIMP-1 and blaAFM-4 genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors. CONCLUSION We initially identified two P. putida ST268 strains co-producing blaIMP-1, blaAFM-4, blaOXA-1041, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.
Collapse
Affiliation(s)
- Chunxia Jian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Caihong Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Tongtong Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Xue Xiao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Wenchao Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| |
Collapse
|
2
|
Peng K, Li Y, Wang Q, Yang P, Wang Z, Li R. Integrative conjugative elements mediate the high prevalence of tmexCD3-toprJ1b in Proteus spp. of animal source. mSystems 2023; 8:e0042923. [PMID: 37707055 PMCID: PMC10654056 DOI: 10.1128/msystems.00429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/23/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The emergence and spread of tmexCD-toprJ have greatly weakened the function of tigecycline. Although studies have demonstrated the significance of Proteus as carriers for tmexCD-toprJ, the epidemic mechanism and characteristics of tmexCD-toprJ in Proteus remain unclear. Herein, we deciphered that the umuC gene in VRIII of SXT/R391 ICEs was a hotspot for the integration of tmexCD3-toprJ1b-bearing mobile genetic elements by genomic analysis. The mobilization and dissemination of tmexCD3-toprJ1b in Proteus were mediated by highly prevalent ICEs. Furthermore, the co-occurrence of tmexCD3-toprJ1b-bearing ICEs with other chromosomally encoded multidrug resistance gene islands warned that the chromosomes of Proteus are significant reservoirs of ARGs. Overall, our results provide significant insights for the prevention and control of tmexCD3-toprJ1b in Proteus.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangfan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pengbin Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Huang J, Zhao J, Yi M, Yuan Y, Xia P, Yang B, Liao J, Dang Z, Xia Y. Emergence of Tigecycline and Carbapenem-Resistant Citrobacter freundii Co-Carrying tmexCD1 -toprJ1, blaKPC-2, and blaNDM-1 from a Sepsis Patient. Infect Drug Resist 2023; 16:5855-5868. [PMID: 37692469 PMCID: PMC10492580 DOI: 10.2147/idr.s426148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This research aims to profile ten novel strains of carbapenem-resistant Enterobacteriaceae (CRE) co-carrying blaKPC and blaNDM. Methods Clinical CRE strains, along with corresponding medical records, were gathered. To ascertain the susceptibility of the strains to antibiotics, antimicrobial susceptibility tests were conducted. To validate the transferability and cost of fitness of plasmids, conjugation experiments and growth curves were employed. For determining the similarity between different strains, ERIC-PCR was utilised. Meanwhile, whole genome sequencing (WGS) was performed to characterise the features of plasmids and their evolutionary characteristics. Results During the course of this research, ten clinical CRE strains co-carrying blaKPC and blaNDM were gathered. It was discovered that five out of these ten strains exhibited resistance to tigecycline. A closer examination of the mechanisms underlying tigecycline resistance revealed that tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 existed concurrently within a single Citrobacter freundii strain (CF10). This strain, with a minimum inhibitory concentration (MIC) of 32 mg/L to tigecycline, was obtained from a sepsis patient. Furthermore, an investigation of genome evolution implied that CF10 belonged to a novel ST type 696, which lacked analogous strains. Aligning plasmids exposed that similar plasmids all had less than 70% coverage when compared to pCF10-tmexCD1, pCF10-KPC, and pCF10-NDM. It was also found that tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 were transferred by Tn5393, IS5, and Tn6296, respectively. Conclusion This research presents the first report of coexistence of tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 in a carbapenem and tigecycline-resistant C. freundii strain, CF10. Importance Tigecycline is considered a "last resort" antibiotic for treating CRE infections. The ongoing evolution of resistance mechanisms to both carbapenem and tigecycline presents an alarming situation. Moreover, the repeated reporting of both these resistance mechanisms within a single strain poses a significant risk to public health. The research revealed that the genes tmexCD1-toprJ1, blaKPC-2, and blaNDM-1, which cause carbapenem and tigecycline-resistance in the same strain, were located on mobile elements, suggesting a potential for horizontal transmission to other Gram-negative bacteria. The emergence of such a multi-resistant strain within hospitals should raise significant concern due to the scarcity of effective antimicrobial treatments for these "superbugs".
Collapse
Affiliation(s)
- Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Miao Yi
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yaling Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiajia Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zijun Dang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Ge H, Qiao J, Zheng J, Xu H, Liu R, Zhao J, Chen R, Li C, Guo X, Zheng B. Emergence and clonal dissemination of KPC-3-producing Pseudomonas aeruginosa in China with an IncP-2 megaplasmid. Ann Clin Microbiol Antimicrob 2023; 22:31. [PMID: 37120531 PMCID: PMC10149002 DOI: 10.1186/s12941-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A β-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Zheng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Li Y, Xu L, Li Y, Wang M, He T, Bai L, Li R, Wang Z. Genomic and functional analysis of high-level tigecycline resistant Klebsiella michiganensis co-carrying tet(X4) and tmexCD2-toprJ2 from pork. Int J Food Microbiol 2023; 391-393:110138. [PMID: 36821986 DOI: 10.1016/j.ijfoodmicro.2023.110138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Tigecycline plays an important role in the clinical treatment of infections caused by multidrug-resistant pathogens. The emergence of plasmid-mediated tigecycline resistance genes tet(X) and tmexCD1-tmexJ1 has been reported in a variety of animal and animal-derived foods, and have the potential spread to humans, seriously limiting the choice of clinical medication. Herein, three ST92 Klebsiella michiganensis isolates co-harboring tet(X4) and tmexCD2-toprJ2 were collected from pork samples in Jiangsu Province, China. These K. michiganensis isolates were all multidrug-resistant isolates. Genome analysis showed that tmexCD2-toprJ2 and tet(X4) were located on IncFIB(K) and IncX1 plasmids, respectively. The IncFIB(K) plasmid pMX581-77k is a novel tmexCD2-toprJ2-bearing plasmid. Worryingly, there were only a small number of SNPs between K. michiganensis isolated from pork in this study and K. michiganensis from human sources, with the possibility of clonal transmission. In addition, tet(X4) and tmexCD2-toprJ2 in K. michiganensis were able to stabilize in the absence of antibiotics. The growth curve indicated that the tmexCD2-toprJ2-positive plasmid imposed a burden on the growth of host bacteria. Interestingly, we found that the high-level resistance phenotype to tigecycline in these K. michiganensis isolates was mainly mediated by tet(X4). However, both tet(X4) and tmexCD2-toprJ2 expression were significantly elevated when host bacteria were exposed to tigecycline. This study systematically investigated K. michiganensis co-carrying tet(X4) and tmexCD2-toprJ2, emphasizing the importance for continuous surveillance of tigecycline-resistant K. michiganensis in animal-derived foods.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuhan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mianzhi Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao He
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Ma X, Li J, Chen B, Li X, Ling Z, Feng S, Cao S, Zuo Z, Deng J, Huang X, Cai D, Wen Y, Zhao Q, Wang Y, Zhong Z, Peng G, Jiang Y, Gu Y. Analysis of microbial diversity in the feces of Arborophila rufipectus. Front Microbiol 2023; 13:1075041. [PMID: 36817108 PMCID: PMC9932278 DOI: 10.3389/fmicb.2022.1075041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Intestinal microbiota composition plays a crucial role in modulating the health of the host. This evaluation indicator is very sensitive and profoundly impacts the protection of endangered species. Currently, information on the gut microbiota of wild birds remains scarce. Therefore, this study aimed to describe the gut microbial community structure and potentially, the pathogen composition of wild Arborophila rufipectus. Methods To guarantee comprehensive data analysis, we collected fecal samples from wild A. rufipectus and Lophura nycthemera in their habitats for two quarters. The 16S rRNA gene was then sequenced using high-throughput sequencing technology to examine the intestinal core microbiota, microbial diversity, and potential pathogens with the aim of determining if the composition of the intestinal microflora varies seasonally. Results and Discussion The gut microbiota of A. rufipectus and L. nycthemera primarily comprised four phyla: Proteobacteria (45.98%), Firmicutes (35.65%), Bacteroidetes (11.77%), and Actinobacteria (3.48%), which accounted for 96.88% of the total microbial composition in all samples. At the genus level, core microorganisms were found, including Shigella (10.38%), Clostridium (6.16%), Pseudomonas (3.03%), and Rickettsiella (1.99%). In these genera, certain microbial species have been shown to be pathogenic. This study provides important indicators for analyzing the health status of A. rufipectus and formulating protective measures.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junshu Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Benping Chen
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenwen Ling
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Shenglin Feng
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaozhang Jiang
- Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China,*Correspondence: Yaozhang Jiang, ; Yu Gu,
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yaozhang Jiang, ; Yu Gu,
| |
Collapse
|
7
|
Liu C, Du P, Yang P, Zheng J, Yi J, Lu M, Shen N. Emergence and Inter- and Intrahost Evolution of Pandrug-Resistant Klebsiella pneumoniae Coharboring tmexCD1-toprJ1, blaNDM-1, and blaKPC-2. Microbiol Spectr 2023; 11:e0278622. [PMID: 36719204 PMCID: PMC10100677 DOI: 10.1128/spectrum.02786-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Klebsiella pneumoniae is capable of acquiring various exogenous genetic elements and subsequently conferring high antimicrobial resistance. Recently, a plasmid-mediated RND family multidrug efflux pump gene cluster, tmexCD1-toprJ1, was discovered in K. pneumoniae. In this study, we analyzed tigecycline-resistant K. pneumoniae isolates from patients from surveillance from 2017 to 2021. In addition to phenotype detection, including growth curves, plasmid transferability and stability, hypermucoviscosity, biofilm formation, and serum survival, by whole-genome sequencing, we analyzed the phylogenetic relationships of the isolates harboring tmexCD1-toprJ1 and discovered the composition of plasmids carrying tmexCD1-toprJ1. In total, we discovered that 12 tigecycline-resistant isolates from 5 patients possessed tmexCD1-toprJ1, designated sequence type 22 (ST22) and ST3691. An ST11 isolate harbored a partial tmexD1, and a complete toprJ1 (tmexC1 was lost) was tigecycline sensitive. All the ST22 tigecycline-resistant isolates coharbored tmexCD1-toprJ1, blaNDM-1, and blaKPC-2. tmexCD1-toprJ1 was encoded by a novel IncU plasmid in ST22 and an IncFIB/HI1B plasmid in ST3691, which presented differences in mobility and stability. Interestingly, isolates from the same patients presented heteroresistance to tigecycline, not only among isolates from different specimens but also those from the same sample, which might be attributed to the differential expression of tmexCD1-toprJ1 due to the dynamic genetic heterogeneity caused by relocating tmexCD1-toprJ1 close to the replication origin of plasmid. Here, we reported the emergence of K. pneumoniae isolates coharboring tmexCD1-toprJ1, blaNDM-1, and blaKPC-2. The results highlight the impact of in vivo genetic heterogeneity of tmexCD1-toprJ1-carrying elements on the in vivo variation of tigecycline resistance, which might have notable influences on antimicrobial treatment. IMPORTANCE Pandrug-resistant (PDR) Klebsiella pneumoniae poses a great challenge to public health, and tigecycline is an essential choice for antimicrobial treatment. In this study, we reported the emergence of PDR K. pneumoniae coharboring tmexCD1-toprJ1, blaNDM-1, and blaKPC-2, which belongs to ST22 and ST3691. By whole-genome analysis, we reconstructed the evolutionary map of the ST22 ancestor to become the PDR superbug by acquiring multiple genetic elements encoding tmexCD1-toprJ1 or blaNDM-1. Importantly, the genetic contexts of tmexCD1-toprJ1 among the ST22 isolates are different and present with various mobilities and stabilities. Furthermore, we also discovered the heterogeneity of tigecycline resistance during long-term infection of ST22, which might be attributed to the differential expression of tmexCD1-toprJ1 due to the dynamic genetic heterogeneity caused by relocating tmexCD1-toprJ1 close to the replication origin of plasmid. This study tracks the inter- and intrahost microevolution of the superbug PDR K. pneumoniae and highlights the importance of timely monitoring of the variation of pathogens during antimicrobial treatment.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Ping Yang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
8
|
Li Q, Chen Q, Liang S, Wang W, Zhang B, Martín-Rodríguez AJ, Liang Q, Zhang F, Guo L, Xiong X, Hu R, Xiang L, Zhou Y. Coexistence of tmexCD3-toprJ1b tigecycline resistance genes with two novel bla VIM-2-carrying and bla OXA-10-carrying transposons in a Pseudomononas asiatica plasmid. Front Cell Infect Microbiol 2023; 13:1130333. [PMID: 36936768 PMCID: PMC10015498 DOI: 10.3389/fcimb.2023.1130333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Tigecycline and carbapenems are considered the last line of defense against microbial infections. The co-occurrence of resistance genes conferring resistance to both tigecycline and carbapenems in Pseudomononas asiatica was not investigated. Methods P. asiatica A28 was isolated from hospital sewage. Antibiotic susceptibility testing showed resistance to carbapenem and tigecycline. WGS was performed to analyze the antimicrobial resistance genes and genetic characteristics. Plasmid transfer by conjugation was investigated. Plasmid fitness costs were evaluated in Pseudomonas aeruginosa transconjugants including a Galleria mellonella infection model. Results Meropenem and tigecycline resistant P. asiatica A28 carries a 199, 972 bp long plasmid PLA28.4 which harbors seven resistance genes. Sequence analysis showed that the 7113 bp transposon Tn7389 is made up of a class I integron without a 5'CS terminal and a complete tni module flanked by a pair of 25bp insertion repeats. Additionally, the Tn7493 transposon, 20.24 kp long, with a complete 38-bp Tn1403 IR and an incomplete 30-bp Tn1403 IR, is made up of partial skeleton of Tn1403, a class I integron harboring bla OXA-10, and a Tn5563a transposon. Moreover, one tnfxB3-tmexC3.2-tmexD3b-toprJ1b cluster was found in the plasmid and another one in the the chromosome. Furthermore, plasmid PLA28.4 could be conjugated to P. aeruginosa PAO1, with high fitness cost. Discussion A multidrug-resistant plasmid carrying tmexCD3-toprJ1b and two novel transposons carrying bla VIM-2 and bla OXA-10 -resistant genes was found in hospital sewage, increasing the risk of transmission of antibiotic-resistant genes. These finding highlight the necessary of controlling the development and spread of medication resistance requires continuous monitoring and management of resistant microorganisms in hospital sewage.
Collapse
Affiliation(s)
- Qin Li
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Qiao Chen
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Shuang Liang
- Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Bingying Zhang
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | | | - Qinghua Liang
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
- *Correspondence: Yingshun Zhou, ; Renjing Hu, ; Li Xiang,
| | - Li Xiang
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Yingshun Zhou, ; Renjing Hu, ; Li Xiang,
| | - Yingshun Zhou
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- Public Center of Experimental of Pathogen Biology Platform, Southwest Medical University, Luzhou, China
- *Correspondence: Yingshun Zhou, ; Renjing Hu, ; Li Xiang,
| |
Collapse
|
9
|
Dong N, Liu C, Hu Y, Lu J, Zeng Y, Chen G, Chen S, Zhang R. Emergence of an Extensive Drug Resistant Pseudomonas aeruginosa Strain of Chicken Origin Carrying blaIMP-45, tet(X6), and tmexCD3- toprJ3 on an Inc pRBL16 Plasmid. Microbiol Spectr 2022; 10:e0228322. [PMID: 36301093 PMCID: PMC9769874 DOI: 10.1128/spectrum.02283-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023] Open
Abstract
This study reports an extensively drug resistant Pseudomonas aeruginosa strain PA166-2 which was of chicken origin and carrying blaIMP-45, tet(X6) and tmexCD3-toprJ3 on a single plasmid. The strain was characterized by antimicrobial susceptibility testing, resistance gene screening, conjugation assay, whole-genome sequencing, and bioinformatics analysis. Strain PA166-2 was resistant to tigecycline and carbapenems. It belonged to ST313 and carried a plasmid pPA166-2-MDR, which belongs to the incompatibility group IncpRBL16. pPA166-2-MDR harbored a 78 Kb multidrug resistance (MDR) region carrying an array of antimicrobial resistance genes, including blaIMP-45, tet(X6), and tmexCD3-toprJ3. The gene blaIMP-45 was inserted into the backbone of plasmid pPA166-2-MDR within a class 1 integron, In786. tmexCD3-toprJ3 in plasmid pPA166-2-MDR was inserted in umuC, constituting the genetic context of ISCfr1-tnfxB3-tmexC3-tmexD3-toprJ3-△umuC. The genetic context of tet(X6) in this plasmid was identical to that of other reported plasmid-borne tet(X) variants, namely, tet(X6)-abh-guaA-ISVsa3. To the best of our knowledge, this is the first report of the cooccurrence of blaIMP-45, tet(X6), and tmexCD3-toprJ3 in one plasmid in Pseudomonas sp. The emergence of plasmid-mediated tigecycline resistance genes tmexCD3-toprJ3 and tet(X6), as well as carbapenemase genes from chickens expanded the global transmission of vital resistance genes. Findings from us and from others indicate that plasmids of the incompatibility group IncpRBL16 may serve as a reservoir for carbapenem and tigecycline resistance determinants. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes infections that are difficult to treat. This study reported, for the first time, the occurrence of last-resort antibiotic resistance determinants blaIMP-45, tet(X6), and tmexCD3-toprJ3 on a single plasmid in P. aeruginosa from chickens. The P. aeruginosa strain belonged to ST313 and was resistant to last-line antibiotics, namely, carbapenems and tigecycline. The plasmid carrying the last-line resistance genes belonged to the incompatibility group IncpRBL16, which was reported to contain different profiles of accessory modules and thus carried diverse collections of resistance genes. The emergence of plasmid-mediated tigecycline resistance genes tmexCD3-toprJ3 and tet(X6), as well as carbapenemase genes, from chickens expanded the global transmission of vital resistance genes. The results in this study highlighted that IncpRBL16 plasmids may serve as a reservoir for the dissemination of resistance genes. Control measures should be implemented to prevent the further dissemination of such strains.
Collapse
Affiliation(s)
- Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Soochow University, Suzhou, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
10
|
Dong N, Zeng Y, Wang Y, Liu C, Lu J, Cai C, Liu X, Chen Y, Wu Y, Fang Y, Fu Y, Hu Y, Zhou H, Cai J, Hu F, Wang S, Wang Y, Wu Y, Chen G, Shen Z, Chen S, Zhang R. Distribution and spread of the mobilised RND efflux pump gene cluster tmexCD-toprJ in clinical Gram-negative bacteria: a molecular epidemiological study. THE LANCET. MICROBE 2022; 3:e846-e856. [PMID: 36202114 DOI: 10.1016/s2666-5247(22)00221-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND TMexCD1-TOprJ1, which is associated with phenotypic resistance to multiple classes of antibiotics, is a transmissible resistance-nodulation-division (RND) family efflux pump. However, the prevalence and genomic and phenotypic characteristics of clinical isolates with this important resistance determinant are poorly understood. In this study, we aimed to survey tmexCD-toprJ among clinical Gram-negative isolates collected from hospitals in China between 1991 and 2020 and characterise tmexCD-toprJ-positive clinical isolates. METHODS We conducted online data retrieval and active nationwide surveillance in China to screen tmexCD-toprJ-positive strains. We characterised tmexCD-toprJ-positive clinical strains for their antimicrobial susceptibility, genetic and functional characteristics, and the potential inter-species transmission route of tmexCD-toprJ with whole genome sequencing and bioinformatics analyses. The function of tmexCD-toprJ in Pseudomonas sp and Proteus sp was investigated by tmexD gene knockdown using an isopropylthio-β-galactoside-inducible CRISPR interference system. FINDINGS Data retrieval obtained 53 strains carrying tmexCD-toprJ, comprising 32 Pseudomonas spp, 11 Klebsiella pneumoniae, one Aeromonas spp, one Citrobacter freundii, and one uncultured bacterium from diverse niches. 48 (0·64%) of 7517 clinical isolates from China, including seven Klebsiella spp, one Proteus mirabilis, and 40 Pseudomonas spp, carried tmexCD-toprJ. These isolates exhibited multidrug resistance phenotypes and co-harboured resistance genes, such as mcr and carbapenemases genes. tmexCD-toprJ was encoded on both plasmids and chromosomes in all Klebsiella spp that carried plasmid-borne tmexCD-toprJ (n=7), P mirabilis carried chromosome-borne tmexCD-toprJ, and Pseudomonas spp carried either plasmid-borne (n=19) or chromosome-borne (n=21) ones. tmexCD-toprJ had undergone clonal and horizontal transmission among clinical pathogens. Eight different types of genetic context of tmexCD-toprJ were identified, each of which was associated with different mobile elements, including IntI, IS6100, TnAs1-like, ISRor5, ISVsa3, ISCfr-like, Tn5393, and IS222-like, which might facilitate its transmission. Knockdown of tmexD led to a four times decrease in tigecycline minimum inhibitory concentrations in both Pseudomonas spp and Proteus spp. INTERPRETATION Our study provides evidence to suggest that tmexCD-toprJ contributes to the antimicrobial resistance phenotypes in different bacterial species. tmexCD-toprJ has disseminated among diverse species of clinical pathogens, which warrants timely monitoring in clinical pathogens. FUNDING National Natural Science Foundation of China, Guangdong Major Project of Basic and Applied Basic Research, Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Ning Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Yu Zeng
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Yao Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congcong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Jiayue Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Chang Cai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xue Liu
- International Cancer Center, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yongkui Chen
- International Cancer Center, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Yinfei Fang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Yulin Fu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanyan Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Jiachang Cai
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaolin Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Wu
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China
| | - Zhangqi Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang, University School of Medicine, Zhejiang, China.
| |
Collapse
|
11
|
Xiao T, Peng K, Chen Q, Hou X, Huang W, Lv H, Yang X, Lei G, Li R. Coexistence of tmexCD-toprJ, blaNDM-1, and blaIMP-4 in One Plasmid Carried by Clinical Klebsiella spp. Microbiol Spectr 2022; 10:e0054922. [PMID: 35647621 PMCID: PMC9241619 DOI: 10.1128/spectrum.00549-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
In clinical practice, carbapenems and tigecycline are considered significant options for treating infections caused by multidrug-resistant Klebsiella spp. The continual evolution of resistance mechanisms to carbapenems and tigecycline is shattering the present condition. Meanwhile, convergence of the two resistance mechanisms in a single strain has been reported repeatedly, posing a significant threat to public health and safety. In this study, two carbapenem- and tigecycline-resistant Klebsiella species were obtained from patients and investigated using antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing, and bioinformatics analysis. In Klebsiella variicola FK2020ZBJ35, an untransferable multidrug IncFIB(Mar)/IncHI1B-like plasmid carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 was discovered, as was a similar plasmid carrying tmexCD1-toprJ1 and blaIMP-4 in Klebsiella quasipneumoniae 2019SCSN059. Genetic context analysis found that two distinct tmexCD-toprJ variants were detected in comparable mobile units with genetic array int-int-hp-hp-tnfxB-tmexCD-toprJ and integrated into separate genetic locations. blaIMP-4 and blaNDM-1 were carried by an integron In1377 and a truncated Tn3000, respectively. These findings revealed that the carbapenem and tigecycline resistance genes carried by the two strains were located on mobile elements and might potentially transmit horizontally to additional strains. Furthermore, our findings showed that IncFIB(Mar)/IncHI1B-like plasmids represent a significant reservoir of essential resistance genes that warrants continued monitoring. IMPORTANCE Tigecycline is an essential antibiotic that is used to treat infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The emergence of high-level tigecycline-resistant CRKP poses a serious hazard to human health. This work screened two tigecycline-resistant CRKP strains from clinical patients and found a type of plasmid that encoded carbapenemase and TmexCD-ToprJ in Klebsiella. Importantly, one plasmid cocarried tmexCD-toprJ, blaNDM-1, and blaIMP-4, hinting that this plasmid could be a critical vector for superbug development. Furthermore, we discovered that the carbapenem and tigecycline resistance genes are located in mobile units by genetic structure analysis. Our research tracks the formation of clinically super-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Tao Xiao
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Qi Chen
- Suining Center for Disease Control and Prevention, Suining, Sichuan Province, People’s Republic of China
| | - Xueqin Hou
- Guangyuan Center for Disease Control and Prevention, Guangyuan, Sichuan Province, People’s Republic of China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
12
|
Huang Z, Li Y, Cai C, Dong N. Isolation, Molecular Characterization, and Antimicrobial Resistance of Selected Culturable Bacteria From Crayfish (Procambarus clarkii). Front Microbiol 2022; 13:911777. [PMID: 35747368 PMCID: PMC9209738 DOI: 10.3389/fmicb.2022.911777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Red swamp crayfish (Procambarus clarkii) have become one of the favorite aquatic products in China. The modern farming mode which uses antibiotics to prevent diseases could impact the bacteria in crayfish intestines. Here, we determined the distribution and antimicrobial resistance phenotypes of the selected culturable bacteria in crayfish intestines and characterized an isolate with last-line antibiotic resistance determinant. Totally, 257 strains were isolated from 115 crayfish. These strains were highly diverse, with Citrobacter sp. (n = 94, 36.6%) and Aeromonas sp. (n = 88, 34.2%) being dominant. Other isolates belonged to genera Pseudomonas, Myroides, Morganella, Klebsiella, Acinetobacter, Proteus, Enterobacter, Kluyvera, and Escherichia. Most strains from crayfish were susceptible to all tested antibiotics. None of the isolates carried last-line antibiotic resistance genes except one Escherichia coli isolate with blaNDM-5 was detected, which is the first report of blaNDM-5-positive E. coli isolate from red swamp crayfish. Whole-genome sequencing suggested it belonged to ST48 and carried several resistance genes. blaNDM-5 was located within an Tn3000-like transposon linked to an external 5 bp sequence (ACTAT) on both sides on a IncHI1B/HI1A/FIA multi-replicon plasmid. This transposon was considered to be acquired by replicative transposition mediated by IS3000. The emergence of bacteria with last-line antibiotic resistance genes in crayfish poses serious threat to public health since crayfish could act as a reservoir for the transfer of resistance to humans.
Collapse
Affiliation(s)
- Zixian Huang
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Chang Cai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
- *Correspondence: Ning Dong,
| |
Collapse
|
13
|
Loucif L, Chelaghma W, Cherak Z, Bendjama E, Beroual F, Rolain JM. Detection of NDM-5 and MCR-1 antibiotic resistance encoding genes in Enterobacterales in long-distance migratory bird species Ciconia ciconia, Algeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152861. [PMID: 34998768 DOI: 10.1016/j.scitotenv.2021.152861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
β-lactams and colistin resistance in Enterobacterales is a global public health issue. In this study we aimed to investigate the occurrence and genetic determinants of Extended-Spectrum β-lactamases, carbapenemases and mcr-encoding-genes in Enterobacterales isolates recovered from the migratory bird species Ciconia ciconia in an Algerian city. A total of 62 faecal samples from white storks were collected. Samples were then subjected to selective isolation of β-lactams and colistin-resistant-Enterobacterales. The representative colonies were identified using Matrix-Assisted Laser Desorption-Ionisation Time-of-Flight Mass Spectrometry. Susceptibility testing was performed using the disk-diffusion method. ESBL, carbapenemases, and colistin resistance determinants were searched for by PCR and sequencing. The clonality relationships of the obtained isolates were investigated by multilocus sequence typing assays. Mating experiments were carried out to evaluate the transferability of the carbapenemase and mcr-genes. Forty-two isolates were identified as follows: Escherichia coli (n = 33), Klebsiella pneumoniae (n = 4), Proteus mirabilis (n = 4) and Citrobacter freundii (n = 1). Molecular analysis showed that twelve isolates carried the blaESBL genes alone, fifteen E. coli isolates were positive for the blaOXA-48 gene, six isolates were NDM-5-carriers (two P. mirabilis, two K. pneumoniae and two E. coli) and eight E. coli strains were positive for the mcr-1 gene. MLST results showed a high clonal diversity, where NDM-5-producing strains were assigned to two sequence types (ST167 for E. coli and ST198 for K. pneumoniae), whereas the mcr-1 positive E. coli isolates belonged to ST58, ST224, ST453, ST1286, ST2973, ST5542, ST9815 and the international high-risk resistant lineage ST101. To the best of our knowledge, this is the first report of blaNDM-5 gene in white storks and also the first describing the mcr-1 gene in white storks in Algeria. This study underlines the important role of migratory white storks as carriers of high-level drug-resistant bacteria, allowing their possible implication as indicators and sentinels for antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria.
| | - Widad Chelaghma
- Département de Biologie, Université Abou Bekr Belkaid-, Tlemcen 13000, Algeria
| | - Zineb Cherak
- Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra 07000, Algeria
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Ferhat Beroual
- Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille 13000, France
| |
Collapse
|
14
|
Peng K, Yin Y, Li Y, Qin S, Liu Y, Yang X, Wang Z, Li R. QitanTech Nanopore Long-Read Sequencing Enables Rapid Resolution of Complete Genomes of Multi-Drug Resistant Pathogens. Front Microbiol 2022; 13:778659. [PMID: 35401428 PMCID: PMC8985760 DOI: 10.3389/fmicb.2022.778659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/21/2022] [Indexed: 11/15/2022] Open
Abstract
Advancement of novel sequencing technologies facilitates modern life science and medicine unprecedentedly. Exploring complete genome sequences of bacteria by long-read sequencing technology is significant for microbial genomics research. However, third-generation long-read sequencing technologies are available with limited choices, which generate technological barrier to scientific research. Recently, a novel QitanTech nanopore long-read sequencing technology has emerged in China, but the potential application and performance were unexplored. Herein, we comprehensively evaluated the feasibility of the emerging sequencing technology in assembling complete genomes of MDR pathogens. The results showed that 500 Mbp QitanTech nanopore sequencing data could be generated within 8 h in one flow cell with the standard library preparation method. The mean read length, longest read length, and mean read-level accuracy of QitanTech sequencing data were 6,041 bp, 57,037 bp, and 81.50% (LAST)/81.40% (Minimap2), respectively. Two routine assembly strategies including long-read assembly and hybrid assembly enable the achievement of complete bacterial genomes. The accuracy of assembled draft bacterial genomes with QitanTech long-read data could be improved up to 99.9% dramatically by polishing using accurate short-read data. Furthermore, the assembled bacterial genomes cover accurate structures of complex resistance plasmids harboring critical resistance genes such as tet(X), tmexCD-toprJ, and blaVIM–2, even the complex fusion MDR plasmid generated from homologous recombination. In conclusion, QitanTech nanopore sequencing, as a nanopore long-read sequencing technology launched in China, could be a good option for investigation of complex bacterial genomes. More potential applications based on this novel platform warrant investigations.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yi Yin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yan Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Shangshang Qin
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Zhiqiang Wang,
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Ruichao Li,
| |
Collapse
|
15
|
Liu C, Wu Y, Fang Y, Sang Z, Huang L, Dong N, Zeng Y, Lu J, Zhang R, Chen G. Emergence of an ST1326 (CG258) Multi-Drug Resistant Klebsiella pneumoniae Co-harboring mcr-8.2, ESBL Genes, and the Resistance-Nodulation-Division Efflux Pump Gene Cluster tmexCD1-toprJ1 in China. Front Microbiol 2022; 13:800993. [PMID: 35369441 PMCID: PMC8969419 DOI: 10.3389/fmicb.2022.800993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 01/29/2023] Open
Abstract
CG258 is the dominant carbapenemase-producing Klebsiella pneumoniae clone worldwide and treatment of infections caused by this clone relies largely on the last-line antibiotics, colistin, and tigecycline. However, the emergence and global dissemination of mcr and tmexCD1-toprJ1 genes have significantly compromised their clinical applications. CG258 K. pneumoniae carrying both mcr and tmexCD1-toprJ1 have not been reported. A colistin-resistant strain T698-1 belonging to ST1326, a member of CG258, was isolated from the intestinal sample of a patient and characterized by the antimicrobial susceptibility testing, conjugation assay, WGS and bioinformatics analysis. It was resistant to colistin, tetracycline, aminoglycoside, fluoroqinolone, phenicols, sulfonamide, and some β-lactams, and positive for mcr-8.2, tmexCD1-toprJ1, and ESBL genes (blaDHA–1 and blaCTX–M–15). The tmexCD1-toprJ1 gene cluster was located in an multi-drug resistant (MDR) region flanked by TnAs1 elements on an IncHI1B/FIB plasmid. The genetic context of tmexCD1-toprJ1 was slightly distinct from previously reported Tn5393-like structures, with an IS26 element disrupting the upstream Tn5393 and its adjacent genetic elements. The mcr-8.2 gene was inserted into the backbone of an IncFII/FIA plasmid with the genetic context of ISEcl1-mcr-8.2-orf-ISKpn26. To our knowledge, this is the first report of co-occurrence of mcr-8.2 and tmexCD1-toprJ1 in a CG258 K. pneumoniae strain. Though this strain is tigecycline sensitive, the acquisition of colistin and tigecycline resistance determinants by the endemic CG258 K. pneumoniae clone still poses a serious public health concern. CG258, which became resistant to multiple last resort antibiotics, would be the next emerging superbug.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yinfei Fang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zi Sang
- Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People’s Hospital, Dali, China
| | - Ling Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Clinical Laboratory Medicine, Maternal and Child Health Hospital of Linping District, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- *Correspondence: Gongxiang Chen,
| |
Collapse
|
16
|
Chen F, Wang P, Yin Z, Yang H, Hu L, Yu T, Jing Y, Guan J, Wu J, Zhou D. VIM-encoding Inc pSTY plasmids and chromosome-borne integrative and mobilizable elements (IMEs) and integrative and conjugative elements (ICEs) in Pseudomonas. Ann Clin Microbiol Antimicrob 2022; 21:10. [PMID: 35264204 PMCID: PMC8905914 DOI: 10.1186/s12941-022-00502-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiahong Wu
- Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
17
|
Sun S, Wang Q, Jin L, Guo Y, Yin Y, Wang R, Bi L, Zhang R, Han Y, Wang H. Identification of multiple transfer units and novel subtypes of tmexCD-toprJ gene clusters in clinical carbapenem-resistant Enterobacter cloacae and Klebsiella oxytoca. J Antimicrob Chemother 2021; 77:625-632. [PMID: 34893837 DOI: 10.1093/jac/dkab434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Tigecycline is a last-resort antibiotic used to treat lethal infections caused by carbapenem-resistant Enterobacterales; however, plasmid-borne tigecycline resistance tmexCD-toprJ gene clusters can confer tigecycline resistance. The aim of the study was to identify novel subtypes and the spread of tmexCD-toprJ. METHODS Five non-duplicate isolates of different species, carrying tmexCD-toprJ gene clusters or novel subtypes, were isolated from patients across China between November 2018 and June 2019. WGS was performed using Illumina and Nanopore platforms. A phylogenetic tree was constructed using a dataset of 77 sequences carrying the tmexCD-toprJ gene clusters, 72 of which were downloaded from NCBI with a blastn identity cut-off of 95%. RESULTS We detected six different transfer units and two novel subtypes (tmexC1D1.2-toprJ1 and tmexC2D2.2-toprJ2) of the tmexCD-toprJ gene clusters. Among the six transfer units, three were mediated by IS26, while the rest were presumably mediated by Tn5393, hypothetical integrases (xerD-hp clusters-umuC-integrases-tnfxB2-tmexC2D2-toprJ2-umuC) and hypothetical units (hp-hp-hp-tnfxB2-tmexC2D2.2-toprJ2-ΔTn5393-Tn6292). Moreover, two tmexCD-toprJ-like gene clusters co-located on the same plasmid with blaNDM in five isolates. Phylogenetic analysis revealed that tmexCD-toprJ gene clusters may have originated in Pseudomonas spp., being mainly distributed in Pseudomonas spp. and Klebsiella spp. (64/77). Most tmexCD-toprJ gene clusters in Enterobacterales were located on plasmids, indicating that the gene clusters have a high inter-species transfer risk after transfer to Enterobacterales. CONCLUSIONS In summary, to the best of our knowledge, this is the first report of tmexCD-toprJ gene clusters being isolated from Enterobacter cloacae and Klebsiella oxytoca, revealing that these multiple transfer units should be further studied because of their clinical significance.
Collapse
Affiliation(s)
- Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lei Bi
- Department of Clinical Laboratory, Zibo Central Hospital, Shandong, China
| | - Renfei Zhang
- Department of Clinical Laboratory, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, China
| | - Yungang Han
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Henan, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
18
|
Plasmids Shape the Current Prevalence of tmexCD1-toprJ1 among Klebsiella pneumoniae in Food Production Chains. mSystems 2021; 6:e0070221. [PMID: 34609171 PMCID: PMC8547460 DOI: 10.1128/msystems.00702-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of novel antimicrobial resistance genes conferring resistance to last-resort antimicrobials poses a serious challenge to global public health security. Recently, one plasmid-mediated RND family multidrug resistance efflux pump gene cluster named tmexCD1-toprJ1, which confers resistance to tigecycline, was identified in bacteria of animal and human origins. However, the comprehensive landscape of the genomic epidemiology of this novel resistance determinant remained unclear. To fill this knowledge gap, we isolated 25 tmexCD1-toprJ1-positive bacteria from 682 samples collected along the pork production chain, including swine farms, slaughterhouses, and retail pork, and characterized the positive strains systematically using antimicrobial susceptibility testing, conjugation assays, single-molecule sequencing, and genomic analyses. We found that tmexCD1-toprJ1-positive bacteria were most prevalent in slaughterhouses (7.32%), followed by retail pork (0.72%). Most of the positive strains were Klebsiella pneumoniae (23/25), followed by Proteus mirabilis (2/25). IncFIB(Mar)/IncHI1B hybrid plasmids were mainly vectors for tmexCD1-toprJ1 and dominated the horizontal dissemination of tmexCD1-toprJ1 among K. pneumoniae isolates. However, in this study, we identified the IncR plasmid as a tmexCD1-toprJ1-positive plasmid with a broad host range, which evidenced that the widespread prevalence of tmexCD1-toprJ1 is possible due to such kinds of plasmids in the future. In addition, we found diversity and heterogeneity of translocatable units containing tmexCD1-toprJ1 in the plasmids. We also investigated the genetic features of tmexCD1-toprJ1 in online databases, which led to the proposal of the umuC gene as the potential insertion site of tmexCD1-toprJ1. Collectively, this study enriches the epidemiological and genomic characterization of tmexCD1-toprJ1 and provides a theoretical basis for preventing an increase in tmexCD1-toprJ1 prevalence. IMPORTANCE Tigecycline, the first member of the glycylcycline class of antibacterial agents, is frequently used to treat complicated infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria. The emergence of a novel plasmid-mediated efflux pump, TmexCD1-ToprJ1, conferring resistance to multiple antimicrobials, including tigecycline, poses a huge risk to human health. In this study, we investigated the prevalence of tmexCD1-toprJ1-positive strains along the food production chain and found that tmexCD1-toprJ1 was mainly distributed in IncFIB(Mar)/HI1B hybrid plasmids of K. pneumoniae. We also observed a potential risk of transmission of such plasmids along the pork processing chain, which finally may incur a threat to humans. Furthermore, the IncFIB(Mar)/HI1B tmexCD1-toprJ1-positive plasmids with a limited host range and specific insertion sites of tmexCD1-toprJ1 are strong evidence to prevent a fulminant epidemic of tmexCD1-toprJ1 among diverse pathogens. The mobilization and dissemination of tmexCD1-toprJ1, especially when driven by plasmids, deserve sustained attention and investigations.
Collapse
|
19
|
Wang CZ, Gao X, Lv LC, Cai ZP, Yang J, Liu JH. Novel tigecycline resistance gene cluster tnfxB3-tmexCD3-toprJ1b in Proteus spp. and Pseudomonas aeruginosa, co-existing with tet(X6) on an SXT/R391 integrative and conjugative element. J Antimicrob Chemother 2021; 76:3159-3167. [PMID: 34508611 DOI: 10.1093/jac/dkab325] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a novel MDR efflux pump gene cluster tnfxB3-tmexCD3-toprJ1b carried by Proteus spp. and Pseudomonas aeruginosa strains from chickens. METHODS Antimicrobial susceptibility testing, conjugation and WGS were performed to characterize tnfxB3-tmexCD3-toprJ1b-positive isolates. Cloning and reverse transcription-quantitative PCR were performed to investigate the function of tnfxB3-tmexCD3-toprJ1b. RESULTS The WGS data revealed that a novel efflux pump gene cluster, tnfxB3-tmexCD3-toprJ1b, was identified on the chromosome of the Proteus cibarius strain SDQ8C180-2T, where an SXT/R391-family integrative and conjugative element (ICE) was found to co-carry tet(X6) and tnfxB3-tmexCD3-toprJ1b. Further retrospective analysis found two other tnfxB3-tmexCD3-toprJ1b variants in a Proteus mirabilis isolate and a P. aeruginosa isolate, respectively. tmexCD3-toprJ1b and its variants increased the MICs of tigecycline (8-fold) and other antibiotics (2-8-fold) in Escherichia coli host strains. The TNfxB3 protein down-regulated the expression of the tmexCD3-toprJ1b operon. Moreover, genetic-context analyses showed that tnfxB3-tmexCD3-toprJ1b together with adjacent integrase genes appeared to compose a transferable module 'int1-like+int2-like+hp1+hp2+ISCfr1+tnfxB3-tmexCD3-toprJ1b', which was inserted into the umuC-like gene of this ICE. Further analysis of the tnfxB3-tmexCD3-toprJ1b-harbouring sequences deposited in GenBank revealed similar transferable modules inserted into umuC-like genes in plasmids or chromosomes of Klebsiella pneumoniae, Pseudomonas spp. and Aeromonas spp., implying that these modules could be transferred across different bacterial species. CONCLUSIONS To the best of our knowledge, this is the first identification of a novel tigecycline gene cluster, tmexCD3-toprJ1b, which co-exists with tet(X6) within an ICE. More attention should be paid to the co-transfer of these two tigecycline resistance determinants via an ICE to other Gram-negative bacteria.
Collapse
Affiliation(s)
- Cheng-Zhen Wang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xun Gao
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Lu-Chao Lv
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhong-Peng Cai
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jun Yang
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|