1
|
Petermann YJ, Said B, Cathignol AE, Sariko ML, Thoma Y, Mpagama SG, Csajka C, Guidi M. State of the art of real-life concentration monitoring of rifampicin and its implementation contextualized in resource-limited settings: the Tanzanian case. JAC Antimicrob Resist 2024; 6:dlae182. [PMID: 39544428 PMCID: PMC11561919 DOI: 10.1093/jacamr/dlae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The unique medical and socio-economic situation in each country affected by TB creates different epidemiological contexts, thus providing exploitable loopholes for the spread of the disease. Country-specific factors such as comorbidities, health insurance, social stigma or the rigidity of the health system complicate the management of TB and the overall outcome of each patient. First-line TB drugs are administered in a standardized manner, regardless of patient characteristics other than weight. This approach does not consider patient-specific conditions such as HIV infection, diabetes mellitus and malnutrition, which can affect the pharmacokinetics of TB drugs, their overall exposure and response to treatment. Therefore, the 'one-size-fits-all' approach is suboptimal for dealing with the underlying inter-subject variability in the pharmacokinetics of anti-TB drugs, further complicated by the recent increased dosing regimen of rifampicin strategies, calling for a patient-specific methodology. In this context, therapeutic drug monitoring (TDM), which allows personalized drug dosing based on blood drug concentrations, may be a legitimate solution to address treatment failure. This review focuses on rifampicin, a critical anti-TB drug, and examines its suitability for TDM and the socio-economic factors that may influence the implementation of TDM in clinical practice in resource-limited settings, illustrated by Tanzania, thereby contributing to the advancement of personalized TB treatment.
Collapse
Affiliation(s)
- Yuan J Petermann
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bibie Said
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Annie E Cathignol
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Margaretha L Sariko
- Kilimanjaro Clinical Research Institute Kilimanjaro, Moshi, United Republic of Tanzania
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva & Lausanne, Switzerland
| | - Monia Guidi
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Nguyen TA, Chen RH, Hawkins BA, Hibbs DE, Kim HY, Wheate NJ, Groundwater PW, Stocker SL, Alffenaar JWC. Can we Predict Drug Excretion into Saliva? A Systematic Review and Analysis of Physicochemical Properties. Clin Pharmacokinet 2024; 63:1067-1087. [PMID: 39008243 PMCID: PMC11343830 DOI: 10.1007/s40262-024-01398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Saliva is a patient-friendly matrix for therapeutic drug monitoring (TDM) but is infrequently used in routine care. This is due to the uncertainty of saliva-based TDM results to inform dosing. This study aimed to retrieve data on saliva-plasma concentration and subsequently determine the physicochemical properties that influence the excretion of drugs into saliva to increase the foundational knowledge underpinning saliva-based TDM. METHODS Medline, Web of Science and Embase (1974-2023) were searched for human clinical studies, which determined drug pharmacokinetics in both saliva and plasma. Studies with at least ten subjects and five paired saliva-plasma concentrations per subject were included. For each study, the ratio of the area under the concentration-time curve between saliva and plasma was determined to assess excretion into saliva. Physicochemical properties of each drug (e.g. pKa, lipophilicity, molecular weight, polar surface area, rotatable bonds and fraction of drug unbound to plasma proteins) were obtained from PubChem and Drugbank. Drugs were categorised by their ionisability, after which saliva-to-plasma ratios were predicted with adjustment for protein binding and physiological pH via the Henderson-Hasselbalch equation. Spearman correlation analyses were performed for each drug category to identify factors predicting saliva excretion (α = 5%). Study quality was assessed by the risk of bias in non-randomised studies of interventions tool. RESULTS Overall, 42 studies including 40 drugs (anti-psychotics, anti-microbials, immunosuppressants, anti-thrombotic, anti-cancer and cardiac drugs) were included. The median saliva-to-plasma ratios were similar for drugs in the amphoteric (0.59), basic (0.43) and acidic (0.41) groups and lowest for drugs in the neutral group (0.21). Higher excretion of acidic drugs (n = 5) into saliva was associated with lower ionisation and protein binding (correlation between predicted versus observed saliva-to-plasma ratios: R2 = 0.85, p = 0.02). For basic drugs (n = 21), pKa predicted saliva excretion (Spearman correlation coefficient: R = 0.53, p = 0.02). For amphoteric drugs (n = 10), hydrogen bond donor (R = - 0.76, p = 0.01) and polar surface area (R = - 0.69, p = 0.02) were predictors. For neutral drugs (n = 10), protein binding (R = 0.84, p = 0.004), lipophilicity (R = - 0.65, p = 0.04) and hydrogen bond donor count (R = - 0.68, p = 0.03) were predictors. Drugs considered potentially suitable for saliva-based TDM are phenytoin, tacrolimus, voriconazole and lamotrigine. The studies had a low-to-moderate risk of bias. CONCLUSIONS Many commonly used drugs are excreted into saliva, which can be partly predicted by a drug's ionisation state, protein binding, lipophilicity, hydrogen bond donor count and polar surface area. The contribution of drug transporters and physiological factors to the excretion needs to be evaluated. Continued research on drugs potentially suitable for saliva-based TDM will aid in adopting this person-centred TDM approach to improve patient outcomes.
Collapse
Affiliation(s)
- Thi A Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.
- Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| | - Ricky H Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Pharmacy, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Biology, Antimicrobial Discovery Centre, Northeastern University, Boston, MA, USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Hannah Y Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Nial J Wheate
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Sophie L Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
3
|
Davies Forsman L, Kim HY, Nguyen TA, Alffenaar JWC. Salivary Therapeutic Drug Monitoring of Antimicrobial Therapy: Feasible or Futile? Clin Pharmacokinet 2024; 63:269-278. [PMID: 38300489 PMCID: PMC10954910 DOI: 10.1007/s40262-024-01346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Personalised drug dosing through therapeutic drug monitoring (TDM) is important to maximise efficacy and to minimise toxicity. Hurdles preventing broad implementation of TDM in routine care include the need of sophisticated equipment and highly trained staff, high costs and lack of timely results. Salivary TDM is a non-invasive, patient-friendly alternative to blood sampling, which has the potential to overcome barriers with traditional TDM. A mobile UV spectrophotometer may provide a simple solution for analysing drug concentrations in saliva samples. Salivary TDM utilising point-of-care tests can support personalised dosing in various settings including low-resource as well as remote settings. In this opinion paper, we describe how hurdles of implementing traditional TDM may be mitigated by salivary TDM with new strategies for patient-friendly point-of-care testing.
Collapse
Affiliation(s)
- Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Solna, Sweden
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- Westmead Hospital, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Thi Anh Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia.
- Westmead Hospital, Sydney, Australia.
| |
Collapse
|
4
|
Algharably EA, Kreutz R, Gundert-Remy U. Infant Exposure to Antituberculosis Drugs via Breast Milk and Assessment of Potential Adverse Effects in Breastfed Infants: Critical Review of Data. Pharmaceutics 2023; 15:pharmaceutics15041228. [PMID: 37111713 PMCID: PMC10143885 DOI: 10.3390/pharmaceutics15041228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Infants of mothers treated for tuberculosis might be exposed to drugs via breast milk. The existing information on the exposure of breastfed infants lacks a critical review of the published data. We aimed to evaluate the quality of the existing data on antituberculosis (anti-TB) drug concentrations in the plasma and milk as a methodologically sound basis for the potential risk of breastfeeding under therapy. We performed a systematic search in PubMed for bedaquiline, clofazimine, cycloserine/terizidone, levofloxacin, linezolid, pretomanid/pa824, pyrazinamide, streptomycin, ethambutol, rifampicin and isoniazid, supplemented with update references found in LactMed®. We calculated the external infant exposure (EID) for each drug and compared it with the recommended WHO dose for infants (relative external infant dose) and assessed their potential to elicit adverse effects in the breastfed infant. Breast milk concentration data were mainly not satisfactory to properly estimate the EID. Most of the studies suffer from limitations in the sample collection, quantity, timing and study design. Infant plasma concentrations are extremely scarce and very little data exist documenting the clinical outcome in exposed infants. Concerns for potential adverse effects in breastfed infants could be ruled out for bedaquiline, cycloserine/terizidone, linezolid and pyrazinamide. Adequate studies should be performed covering the scenario in treated mothers, breast milk and infants.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Gundert-Remy
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Rao PS, Modi N, Nguyen NTT, Vu DH, Xie YL, Gandhi M, Gerona R, Metcalfe J, Heysell SK, Alffenaar JWC. Alternative Methods for Therapeutic Drug Monitoring and Dose Adjustment of Tuberculosis Treatment in Clinical Settings: A Systematic Review. Clin Pharmacokinet 2023; 62:375-398. [PMID: 36869170 PMCID: PMC10042915 DOI: 10.1007/s40262-023-01220-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Quantifying exposure to drugs for personalized dose adjustment is of critical importance in patients with tuberculosis who may be at risk of treatment failure or toxicity due to individual variability in pharmacokinetics. Traditionally, serum or plasma samples have been used for drug monitoring, which only poses collection and logistical challenges in high-tuberculosis burden/low-resourced areas. Less invasive and lower cost tests using alternative biomatrices other than serum or plasma may improve the feasibility of therapeutic drug monitoring. METHODS A systematic review was conducted to include studies reporting anti-tuberculosis drug concentration measurements in dried blood spots, urine, saliva, and hair. Reports were screened to include study design, population, analytical methods, relevant pharmacokinetic parameters, and risk of bias. RESULTS A total of 75 reports encompassing all four biomatrices were included. Dried blood spots reduced the sample volume requirement and cut shipping costs whereas simpler laboratory methods to test the presence of drug in urine can allow point-of-care testing in high-burden settings. Minimal pre-processing requirements with saliva samples may further increase acceptability for laboratory staff. Multi-analyte panels have been tested in hair with the capacity to test a wide range of drugs and some of their metabolites. CONCLUSIONS Reported data were mostly from small-scale studies and alternative biomatrices need to be qualified in large and diverse populations for the demonstration of feasibility in operational settings. High-quality interventional studies will improve the uptake of alternative biomatrices in guidelines and accelerate implementation in programmatic tuberculosis treatment.
Collapse
Affiliation(s)
- Prakruti S Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Nisha Modi
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nam-Tien Tran Nguyen
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Dinh Hoa Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yingda L Xie
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roy Gerona
- Maternal-Fetal Medicine Division, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, CA, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- Pharmacy School, The University of Sydney, Pharmacy Building (A15), Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney at Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Sidamo T, Rao PS, Aklillu E, Shibeshi W, Park Y, Cho YS, Shin JG, Heysell SK, Mpagama SG, Engidawork E. Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multidrug-Resistant Tuberculosis. Infect Drug Resist 2022; 15:6839-6852. [PMID: 36465811 PMCID: PMC9717595 DOI: 10.2147/idr.s389442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study aimed to explore the population pharmacokinetic modeling (PopPK) of levofloxacin (LFX) and moxifloxacin (MXF), as well as the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24 h and the in vitro minimum inhibitory concentration (AUC0-24/MIC) in Ethiopian multidrug resistant tuberculosis (MDR-TB) patients. METHODS Steady state-plasma concentration of the drugs in MDR-TB patients were determined using optimized liquid chromatography-tandem mass spectrometry. PopPK and simulations were run at various doses, and pharmacokinetic parameters were estimated. The effect of covariates on the PK parameters and PTA for maximum mycobacterial kill and resistance prevention was also investigated. RESULTS LFX and MXF both fit in a one-compartment model with adjustments. Serum-creatinine (Cr) influenced (p = 0.01) the clearance of LFX, whereas body mass index (BMI) influenced (p = 0.01) the apparent volume of distribution (V) of MXF. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L with the simulated 750 mg, 1000 mg, and 1500 mg doses were 29%, 62%, and 95%, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no change in the PTA for maximum bacterial kill when the MXF dose was increased (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention was improved. CONCLUSION The standard doses of LFX and MXF may not provide adequate drug exposure. PopPK of LFX is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Cr and BMI are likely important covariates for dose optimization in Ethiopian patients.
Collapse
Affiliation(s)
- Temesgen Sidamo
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Prakruti S Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Eleni Aklillu
- Department of Laboratory of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yumi Park
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan, Republic of Korea
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Clinical Efficacy and Safety Analysis of Levofloxacin for the Prevention of Infection after Traumatic Osteoarthrosis and Internal Fixation: Systematic Review and Meta-Analysis. Emerg Med Int 2022; 2022:8788365. [PMID: 36213001 PMCID: PMC9537031 DOI: 10.1155/2022/8788365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Levofloxacin has been widely used in clinical anti-infection treatment; however, its adverse reactions to levofloxacin were also obvious in patients. Herein we aimed to systematically evaluate the clinical efficacy and safety of systemic administration of levofloxacin in the prevention of postoperative infection after traumatic osteoarthrosis and internal fixation. Methods PubMed, Cochrane Library, OVID, EBSCO, CNKI, VIP database, and Wanfang Database were searched from December 1993 to December 2021. Meanwhile, China ADR Information Bulletin and WHO Pharmaceutical were searched manually. Newsletter and FDA Drug Safety Newsletter, also to retrieve the Websites of Chinese, Chinese, and drug regulatory authorities; To obtain data on adverse events in children with systemic administration of levofloxacin. The literature was screened according to inclusion and exclusion criteria. The risk of bias was evaluated for the included RCT literature. Results There was a statistical difference in the comparison of the incidence of fever between the experimental group and the control group (OR = 2.29, 95% CI (1.75,2.98),P < 0.00001, I2 = 0%, Z = 6.11); elevated white blood cell count (OR = 1.82, 95% CI (1.31,2.52),P=0.0003, I2 = 0%, Z = 3.60); incidence of wound infection (OR = 2.11, 95% CI (1.54,2.90),P < 0.00001, I2 = 0%, Z = 4.64); adverse drug reaction (OR = 1.82, 95% CI (1.21,2.74),P=0.004, I2 = 0%, Z = 2.86). Conclusion In the clinical use of levofloxacin, adverse drug reactions including fever, elevated white blood cell count, and wound infection should be concerned.
Collapse
|
8
|
HIV Prevalence among Injury Patients Compared to Other High-Risk Groups in Tanzania. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sixty-eight percent of persons infected with HIV live in Africa, but as few as 67% of those know their infection status. The emergency department (ED) might be a critical access point to HIV testing. This study sought to measure and compare HIV prevalence in an ED injury population with other clinical and nonclinical populations across Tanzania. Adults (≥18 years) presenting to Kilimanjaro Christian Medical Center ED with acute injury of any severity were enrolled in a trauma registry. A systematic review and meta-analysis was conducted to compare HIV prevalence in the trauma registry with other population groups. Further, 759 injury patients were enrolled in the registry; 78.6% were men and 68.2% consented to HIV counseling and testing. The HIV prevalence was 5.02% (tested), 6.25% (self-report), and 5.31% (both). The systematic review identified 79 eligible studies reporting HIV prevalence (tested) in 33 clinical and 12 nonclinical population groups. Notable groups included ED injury patients (3.53%, 95% CI), multiple injury patients (10.67%, 95% CI), and people who inject drugs (17.43%, 95% CI). These findings suggest that ED injury patients might be at higher HIV risk compared to the general population, and the ED is a potential avenue to increasing HIV testing among young adults, particularly men.
Collapse
|
9
|
Akkerman OW, Duarte R, Tiberi S, Schaaf HS, Lange C, Alffenaar JWC, Denholm J, Carvalho ACC, Bolhuis MS, Borisov S, Bruchfeld J, Cabibbe AM, Caminero JA, Carvalho I, Chakaya J, Centis R, Dalcomo MP, D Ambrosio L, Dedicoat M, Dheda K, Dooley KE, Furin J, García-García JM, van Hest NAH, de Jong BC, Kurhasani X, Märtson AG, Mpagama S, Torrico MM, Nunes E, Ong CWM, Palmero DJ, Ruslami R, Saktiawati AMI, Semuto C, Silva DR, Singla R, Solovic I, Srivastava S, de Steenwinkel JEM, Story A, Sturkenboom MGG, Tadolini M, Udwadia ZF, Verhage AR, Zellweger JP, Migliori GB. Clinical standards for drug-susceptible pulmonary TB. Int J Tuberc Lung Dis 2022; 26:592-604. [PMID: 35768923 PMCID: PMC9272737 DOI: 10.5588/ijtld.22.0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: The aim of these clinical standards is to provide guidance on 'best practice´ for diagnosis, treatment and management of drug-susceptible pulmonary TB (PTB).METHODS: A panel of 54 global experts in the field of TB care, public health, microbiology, and pharmacology were identified; 46 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all 46 participants.RESULTS: Seven clinical standards were defined: Standard 1, all patients (adult or child) who have symptoms and signs compatible with PTB should undergo investigations to reach a diagnosis; Standard 2, adequate bacteriological tests should be conducted to exclude drug-resistant TB; Standard 3, an appropriate regimen recommended by WHO and national guidelines for the treatment of PTB should be identified; Standard 4, health education and counselling should be provided for each patient starting treatment; Standard 5, treatment monitoring should be conducted to assess adherence, follow patient progress, identify and manage adverse events, and detect development of resistance; Standard 6, a recommended series of patient examinations should be performed at the end of treatment; Standard 7, necessary public health actions should be conducted for each patient. We also identified priorities for future research into PTB.CONCLUSION: These consensus-based clinical standards will help to improve patient care by guiding clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment for PTB.
Collapse
Affiliation(s)
- O W Akkerman
- TB Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, the Netherlands, Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R Duarte
- Centro Hospitalar de Vila Nova de Gaia/Espinho; Instituto de Ciencias Biomédicas de Abel Saalazar, Universidade do Porto, Instituto de Saúde Publica da Universidade do Porto, Unidade de Investigação Clínica, ARS Norte, Porto, Portugal
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Division of Infection, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany, German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany, Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany, The Global Tuberculosis Program, Texas Children´s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - J Denholm
- Victorian Tuberculosis Program, Melbourne Health, Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - M S Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Borisov
- Moscow Research and Clinical Center for Tuberculosis Control, Moscow, Russia
| | - J Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden, Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - J A Caminero
- Department of Pneumology, University General Hospital of Gran Canaria "Dr Negrin", Las Palmas, Spain, ALOSA (Active Learning over Sanitary Aspects) TB Academy, Spain
| | - I Carvalho
- Pediatric Department, Vila Nova de Gaia Outpatient Tuberculosis Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - J Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences. Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - M P Dalcomo
- Reference Center Helio Fraga, FIOCRUZ, Brazil
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K E Dooley
- Center for Tuberculosis Research, Johns Hopkins, Baltimore, MD
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - N A H van Hest
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, Municipal Public Health Service Groningen, Groningen, The Netherlands
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - X Kurhasani
- UBT-Higher Education Institution Prishtina, Kosovo
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - S Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzani, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, México City, Mexico
| | - E Nunes
- Department of Pulmonology of Central Hospital of Maputo, Maputo, Mozambique, Faculty of Medicine of Eduardo Mondlane University, Maputo, Mozambique
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, National University of Singapore Institute for Health Innovation & Technology (iHealthtech), Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - D J Palmero
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Research Center for Care and Control of Infectious Disease (RC3iD), Universitas Padjadjaran, Bandung, Indonesia
| | - A M I Saktiawati
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - C Semuto
- Research, Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - D R Silva
- Instituto Vaccarezza, Hospital Muñiz, Buenos Aires, Argentina
| | - R Singla
- National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | - I Solovic
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Faculty of Health, Catholic University, Ružomberok, Vyšné Hágy, Slovakia
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - J E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - A Story
- Institute of Epidemiology and Healthcare, University College London, London, UK, Find and Treat, University College Hospitals NHS Foundation Trust, London, UK
| | - M G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - A R Verhage
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J P Zellweger
- TB Competence Center, Swiss Lung Association, Berne, Switzerland
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
10
|
Heysell SK, Mpagama SG, Ogarkov OB, Conaway M, Ahmed S, Zhdanova S, Pholwat S, Alshaer MH, Chongolo AM, Mujaga B, Sariko M, Saba S, Rahman SMM, Uddin MKM, Suzdalnitsky A, Moiseeva E, Zorkaltseva E, Koshcheyev M, Vitko S, Mmbaga BT, Kibiki GS, Pasipanodya JG, Peloquin CA, Banu S, Houpt ER. Pharmacokinetic-Pharmacodynamic Determinants of Clinical Outcomes for Rifampin-Resistant Tuberculosis: A Multisite Prospective Cohort Study. Clin Infect Dis 2022; 76:497-505. [PMID: 35731948 PMCID: PMC9907514 DOI: 10.1093/cid/ciac511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION NCT03559582.
Collapse
Affiliation(s)
- Scott K Heysell
- Correspondence: Scott K. Heysell, 345 Crispell Drive, MR-6; Charlottesville, VA 29908, USA ()
| | | | - Oleg B Ogarkov
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Mark Conaway
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Shahriar Ahmed
- International Center for Diarrheal Diseases Research, Bangladesh, Dhaka, Bangladesh
| | - Svetlana Zhdanova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Mohammad H Alshaer
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Anna M Chongolo
- Kibong’oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | - Buliga Mujaga
- Kilimanjaro Clinical Research Institute and Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Margaretha Sariko
- Kilimanjaro Clinical Research Institute and Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Sabrina Saba
- International Center for Diarrheal Diseases Research, Bangladesh, Dhaka, Bangladesh
| | - S M Mazidur Rahman
- International Center for Diarrheal Diseases Research, Bangladesh, Dhaka, Bangladesh
| | | | - Alexey Suzdalnitsky
- Irkutsk Regional Tuberculosis Referral Hospital, Irkutsk, Russian Federation
| | - Elena Moiseeva
- Irkutsk Regional Tuberculosis Referral Hospital, Irkutsk, Russian Federation
| | - Elena Zorkaltseva
- Irkutsk State Medical Academy of Postgraduate Education–Branch of Russian Medical Academy of Continuing Professional Education, Irkutsk, Russian Federation
| | - Mikhail Koshcheyev
- Irkutsk Regional Tuberculosis Referral Hospital, Irkutsk, Russian Federation
| | - Serhiy Vitko
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute and Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Gibson S Kibiki
- Kilimanjaro Clinical Research Institute and Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jotam G Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc, Dallas, Texas, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
11
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
12
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Said BN, Heysell SK, Yimer G, Aarnoutse RE, Kibiki GS, Mpagama S, Mbelele PM. Pharmacodynamic biomarkers for quantifying the mycobacterial effect of high doses of rifampin in patients with rifampin-susceptible pulmonary tuberculosis. Int J Mycobacteriol 2021; 10:457-462. [PMID: 34916467 PMCID: PMC7612567 DOI: 10.4103/ijmy.ijmy_178_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Suboptimal drug exposure in patients with drug-susceptible tuberculosis (DS-TB) can drive treatment failure. Pharmacodynamics (PD) biomarkers such as the plasma TB drug-activity (TDA) assay may guide dose finding studies and predict microbiological outcomes differently than conventional indices. Methods A study was nested from phase 2b randomized double-blind controlled trial of Tanzanian patients who received a 600 mg, 900 mg, or 1200 mg with a standard dose for DS-TB. Serum at 6 weeks collected over 24-h at 2-h intervals was collected for rifampin area under the concentration-time curve relative to minimum inhibitory concentration (AUC0-24/MIC) or peak concentration and MIC (Cmax/MIC). TDA was the ratio of time-to-positive growth of the patient's Mycobacterium tuberculosis isolates with and without coculture of patient's plasma collected at Cmax. Spearman's rank correlation (r) between PD parameters and culture convention on both liquid and solid culture media. Results Among 10 patients, 600 mg (3), 900 mg (3), and 1200 mg (4) of rifampin dosages. The mean ± standard deviation (SD) of AUC0-24/MIC for patients on 600 mg was 168 ± 159 mg·h/L, on 900 mg was 169 ± 166 mg·h/L, and on 1200 mg was 308 ± 238 mg·h/L. The mean-TDA (SD) was 2.56 (±0.75), 1.5 (±0.59), and 2.29 (±1.08) for patients on 600 mg, 900 mg, and 1200 mg rifampin doses, respectively. Higher TDA values correlated with faster time to culture convention on both liquid (r = -0.55, P = 0.099) and solid media (r = -0.65, P = 0.04). Conclusions TDA and rifampin AUC0-24/MIC did not trend as expected with rifampin dose, but TDA better predicted the time to sputum culture conversion. TDA may provide additional discrimination in predicting treatment response for some regimens distinct from plasma exposure relative to MIC or mg/kg dose.
Collapse
Affiliation(s)
- Bibie N Said
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro, Tanzania; Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Charlottesville, Virginia, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Getnet Yimer
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Charlottesville, Virginia; Global One Health initiative, Office of International Affairs, The Ohio State University, Columbus, Ohio, USA
| | - Rob E Aarnoutse
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the, Netherlands
| | - Gibson S Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Tumaini University, Moshi, Tanzania
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro; Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|