1
|
Cozzi-Lepri A, Dunn D, Tostevin A, Marvig RL, Bennedbaek M, Sharma S, Kozal MJ, Gompels M, Pinto AN, Lundgren J, Baxter JD. Rate of response to initial antiretroviral therapy according to level of pre-existing HIV-1 drug resistance detected by next-generation sequencing in the strategic timing of antiretroviral treatment (START) study. HIV Med 2024; 25:212-222. [PMID: 37775947 PMCID: PMC10872720 DOI: 10.1111/hiv.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES The main objective of this analysis was to evaluate the impact of pre-existing drug resistance by next-generation sequencing (NGS) on the risk of treatment failure (TF) of first-line regimens in participants enrolled in the START study. METHODS Stored plasma from participants with entry HIV RNA >1000 copies/mL were analysed using NGS (llumina MiSeq). Pre-existing drug resistance was defined using the mutations considered by the Stanford HIV Drug Resistance Database (HIVDB v8.6) to calculate the genotypic susceptibility score (GSS, estimating the number of active drugs) for the first-line regimen at the detection threshold windows of >20%, >5%, and >2% of the viral population. Survival analysis was conducted to evaluate the association between the GSS and risk of TF (viral load >200 copies/mL plus treatment change). RESULTS Baseline NGS data were available for 1380 antiretroviral therapy (ART)-naïve participants enrolled over 2009-2013. First-line ART included a non-nucleoside reverse transcriptase inhibitor (NNRTI) in 976 (71%), a boosted protease inhibitor in 297 (22%), or an integrase strand transfer inhibitor in 107 (8%). The proportions of participants with GSS <3 were 7% for >20%, 10% for >5%, and 17% for the >2% thresholds, respectively. The adjusted hazard ratio of TF associated with a GSS of 0-2.75 versus 3 in the subset of participants with mutations detected at the >2% threshold was 1.66 (95% confidence interval 1.01-2.74; p = 0.05) and 2.32 (95% confidence interval 1.32-4.09; p = 0.003) after restricting the analysis to participants who started an NNRTI-based regimen. CONCLUSIONS Up to 17% of participants initiated ART with a GSS <3 on the basis of NGS data. Minority variants were predictive of TF, especially for participants starting NNRTI-based regimens.
Collapse
Affiliation(s)
| | - David Dunn
- Institute for Global Health, UCL, London, UK
| | | | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marc Bennedbaek
- Virus Research and Development Laboratory, Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Shweta Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Angie N Pinto
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jens Lundgren
- Copenhagen HIV Programme, Rigs Hospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John D Baxter
- Cooper Medical School of Rowan University and Cooper University Health Care, Camden, New Jersey, USA
| |
Collapse
|
2
|
Mbisa JL, Ledesma J, Kirwan P, Bibby DF, Manso C, Skingsley A, Murphy G, Brown A, Dunn DT, Delpech V, Geretti AM. Surveillance of HIV-1 transmitted integrase strand transfer inhibitor resistance in the UK. J Antimicrob Chemother 2021; 75:3311-3318. [PMID: 32728703 PMCID: PMC7566560 DOI: 10.1093/jac/dkaa309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background HIV treatment guidelines have traditionally recommended that all HIV-positive individuals are tested for evidence of drug resistance prior to starting ART. Testing for resistance to reverse transcriptase inhibitors and PIs is well established in routine care. However, testing for integrase strand transfer inhibitor (InSTI) resistance is less consistent. Objectives To inform treatment guidelines by determining the prevalence of InSTI resistance in a national cohort of recently infected individuals. Patients and methods Recent (within 4 months) HIV-1 infections were identified using a Recent Infection Testing Algorithm of new HIV-1 diagnoses in the UK. Resistance-associated mutations (RAMs) in integrase, protease and reverse transcriptase were detected by ultradeep sequencing, which allows for the sensitive estimation of the frequency of each resistant variant in a sample. Results The analysis included 655 randomly selected individuals (median age = 33 years, 95% male, 83% MSM, 78% white) sampled in the period 2014 to 2016 and determined to have a recent infection. These comprised 320, 138 and 197 samples from 2014, 2015 and 2016, respectively. None of the samples had major InSTI RAMs occurring at high variant frequency (≥20%). A subset (25/640, 3.9%) had major InSTI RAMs occurring only as low-frequency variants (2%–20%). In contrast, 47/588 (8.0%) had major reverse transcriptase inhibitor and PI RAMs at high frequency. Conclusions Between 2014 and 2016, major InSTI RAMs were uncommon in adults with recent HIV-1 infection, only occurring as low-frequency variants of doubtful clinical significance. Continued surveillance of newly diagnosed patients for evidence of transmitted InSTI resistance is recommended to inform clinical practice.
Collapse
Affiliation(s)
- Jean L Mbisa
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Juan Ledesma
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Peter Kirwan
- National Infection Service, Public Health England, London, UK
| | - David F Bibby
- National Infection Service, Public Health England, London, UK
| | - Carmen Manso
- National Infection Service, Public Health England, London, UK
| | | | - Gary Murphy
- National Infection Service, Public Health England, London, UK
| | - Alison Brown
- National Infection Service, Public Health England, London, UK
| | - David T Dunn
- Institute for Global Health, University College London, London, UK
| | - Valerie Delpech
- National Infection Service, Public Health England, London, UK.,National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, UK
| | - Anna Maria Geretti
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Mbisa JL, Kirwan P, Tostevin A, Ledesma J, Bibby DF, Brown A, Myers R, Hassan AS, Murphy G, Asboe D, Pozniak A, Kirk S, Gill ON, Sabin C, Delpech V, Dunn DT. Determining the Origins of Human Immunodeficiency Virus Type 1 Drug-resistant Minority Variants in People Who Are Recently Infected Using Phylogenetic Reconstruction. Clin Infect Dis 2020; 69:1136-1143. [PMID: 30534981 PMCID: PMC6743824 DOI: 10.1093/cid/ciy1048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Drug-resistant minority variants (DRMinVs) detected in patients who recently acquired human immunodeficiency virus type 1 (HIV-1) can be transmitted, generated de novo through virus replication, or technical errors. The first form is likely to persist and result in treatment failure, while the latter two could be stochastic and transient. METHODS Ultradeep sequencing of plasma samples from 835 individuals with recent HIV-1 infection in the United Kingdom was performed to detect DRMinVs at a mutation frequency between 2% and 20%. Sequence alignments including >110 000 HIV-1 partial pol consensus sequences from the UK HIV Drug Resistance Database (UK-HDRD), linked to epidemiological and clinical data from the HIV and AIDS Reporting System, were used for transmission cluster analysis. Transmission clusters were identified using Cluster Picker with a clade support of >90% and maximum genetic distances of 4.5% or 1.5%, the latter to limit detection to likely direct transmission events. RESULTS Drug-resistant majority variants (DRMajVs) were detected in 66 (7.9%) and DRMinVs in 84 (10.1%) of the recently infected individuals. High levels of clustering to sequences in UK-HDRD were observed for both DRMajV (n = 48; 72.7%) and DRMinV (n = 63; 75.0%) sequences. Of these, 43 (65.2%) with DRMajVs were in a transmission cluster with sequences that harbored the same DR mutation compared to only 3 (3.6%) sequences with DRMinVs (P < .00001, Fisher exact test). Evidence of likely direct transmission of DRMajVs was observed for 25/66 (37.9%), whereas none were observed for the DRMinVs (P < .00001). CONCLUSIONS Using a densely sampled HIV-infected population, we show no evidence of DRMinV transmission among recently infected individuals.
Collapse
Affiliation(s)
- Jean L Mbisa
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Peter Kirwan
- National Infection Service, Public Health England, London, United Kingdom
| | - Anna Tostevin
- Institute for Global Health, University College London, London, United Kingdom
| | - Juan Ledesma
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David F Bibby
- National Infection Service, Public Health England, London, United Kingdom
| | - Alison Brown
- National Infection Service, Public Health England, London, United Kingdom
| | - Richard Myers
- National Infection Service, Public Health England, London, United Kingdom
| | - Amin S Hassan
- HIV/STI Group, Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gary Murphy
- National Infection Service, Public Health England, London, United Kingdom
| | - David Asboe
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Anton Pozniak
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Stuart Kirk
- University College London Hospital, London, United Kingdom
| | - O Noel Gill
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - Caroline Sabin
- National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom.,Institute for Global Health, University College London, London, United Kingdom
| | - Valerie Delpech
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, London, United Kingdom
| | - David T Dunn
- Institute for Global Health, University College London, London, United Kingdom
| | | |
Collapse
|
4
|
Himmel DM, Arnold E. Non-Nucleoside Reverse Transcriptase Inhibitors Join Forces with Integrase Inhibitors to Combat HIV. Pharmaceuticals (Basel) 2020; 13:ph13060122. [PMID: 32545407 PMCID: PMC7345359 DOI: 10.3390/ph13060122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the treatment of acquired immune deficiency syndrome (AIDS), the diarylpyrimidine (DAPY) analogs etravirine (ETR) and rilpivirine (RPV) have been widely effective against human immunodeficiency virus (HIV) variants that are resistant to other non-nucleoside reverse transcriptase inhibitors (NNRTIs). With non-inferior or improved efficacy, better safety profiles, and lower doses or pill burdens than other NNRTIs in the clinic, combination therapies including either of these two drugs have led to higher adherence than other NNRTI-containing treatments. In a separate development, HIV integrase strand transfer inhibitors (INSTIs) have shown efficacy in treating AIDS, including raltegravir (RAL), elvitegravir (EVG), cabotegravir (CAB), bictegravir (BIC), and dolutegravir (DTG). Of these, DTG and BIC perform better against a wide range of resistance mutations than other INSTIs. Nevertheless, drug-resistant combinations of mutations have begun to emerge against all DAPYs and INSTIs, attributable in part to non-adherence. New dual therapies that may promote better adherence combine ETR or RPV with an INSTI and have been safer and non-inferior to more traditional triple-drug treatments. Long-acting dual- and triple-therapies combining ETR or RPV with INSTIs are under study and may further improve adherence. Here, highly resistant emergent mutations and efficacy data on these novel treatments are reviewed. Overall, ETR or RPV, in combination with INSTIs, may be treatments of choice as long-term maintenance therapies that optimize efficacy, adherence, and safety.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Himmel Sci Med Com, L.L.C., Bala Cynwyd, PA 19004, USA
- Correspondence: ; Tel.: +1-848-391-5973
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
5
|
Nguyen T, Fofana DB, Lê MP, Charpentier C, Peytavin G, Wirden M, Lambert-Niclot S, Desire N, Grude M, Morand-Joubert L, Flandre P, Katlama C, Descamps D, Calvez V, Todesco E, Marcelin AG. Prevalence and clinical impact of minority resistant variants in patients failing an integrase inhibitor-based regimen by ultra-deep sequencing. J Antimicrob Chemother 2019; 73:2485-2492. [PMID: 29873733 DOI: 10.1093/jac/dky198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background Integrase strand transfer inhibitors (INSTIs) are recommended by international guidelines as first-line therapy in antiretroviral-naive and -experienced HIV-1-infected patients. Objectives This study aimed at evaluating the prevalence at failure of INSTI-resistant variants and the impact of baseline minority resistant variants (MiRVs) on the virological response to an INSTI-based regimen. Methods Samples at failure of 134 patients failing a raltegravir-containing (n = 65), an elvitegravir-containing (n = 20) or a dolutegravir-containing (n = 49) regimen were sequenced by Sanger sequencing and ultra-deep sequencing (UDS). Baseline samples of patients with virological failure (VF) (n = 34) and of those with virological success (VS) (n = 31) under INSTI treatment were sequenced by UDS. Data were analysed using the SmartGene platform, and resistance was interpreted according to the ANRS algorithm version 27. Results At failure, the prevalence of at least one INSTI-resistant variant was 39.6% by Sanger sequencing and 57.5% by UDS, changing the interpretation of resistance in 17/134 (13%) patients. Among 53 patients harbouring at least one resistance mutation detected by both techniques, the most dominant INSTI resistance mutations were N155H (45%), Q148H/K/R (23%), T97A (19%) and Y143C (11%). There was no difference in prevalence of baseline MiRVs between patients with VF and those with VS. MiRVs found at baseline in patients with VF were not detected at failure either in majority or minority mutations. Conclusions UDS is more sensitive than Sanger sequencing at detecting INSTI MiRVs at treatment failure. The presence of MiRVs at failure could be important to the decision to switch to other INSTIs. However, there was no association between the presence of baseline MiRVs and the response to INSTI-based therapies in our study.
Collapse
Affiliation(s)
- T Nguyen
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| | - D B Fofana
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Laboratoire de virologie, F-75012 Paris, France
| | - M P Lê
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Département de Pharmaco-Toxicologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - C Charpentier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - G Peytavin
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Département de Pharmaco-Toxicologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - M Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| | - S Lambert-Niclot
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Laboratoire de virologie, F-75012 Paris, France
| | - N Desire
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| | - M Grude
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), F-75013 Paris, France
| | - L Morand-Joubert
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Laboratoire de virologie, F-75012 Paris, France
| | - P Flandre
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), F-75013 Paris, France
| | - C Katlama
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de maladies infectieuses, F-75013 Paris, France
| | - D Descamps
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - V Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| | - E Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| | - A G Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, F-75013 Paris, France
| |
Collapse
|
6
|
Inzaule SC, Hamers RL, Bertagnolio S, Siedner MJ, Rinke de Wit TF, Gupta RK. Pretreatment HIV drug resistance in low- and middle-income countries. Future Virol 2019. [DOI: 10.2217/fvl-2018-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pretreatment HIV drug resistance (PDR) has been increasing with scale-up of antiretroviral therapy (ART) in low- and middle-income countries. Delay in responding to rising levels of PDR is projected to fuel a worldwide increase in mortality, HIV incidence and ART costs. Strategies to curb the rise in PDR include using antiretrovirals (ARVs) with high-genetic barrier to resistance in first-line therapy and for prophylaxis in HIV exposed infants, enhancing HIV drug resistance surveillance in populations initiating, receiving ART, and in those on pre-exposure prophylaxis, universal access and effective use of viral-load tests, improving adherence and retention and minimizing ART programmatic quality gaps. In this review, we assess the drivers of PDR, and potential strategies to mitigate its rise in prevalence and impact in low- and middle-income countries.
Collapse
Affiliation(s)
- Seth C Inzaule
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
| | - Raph L Hamers
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
- Eijkman-Oxford Clinical Research Unit, and Faculty of Medicine Universitas Indonesia, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Silvia Bertagnolio
- HIV/AIDS Department & Global Hepatitis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva, 27, Switzerland
| | - Mark J Siedner
- Massachusetts General Hospital, Harvard University, 02114 Boston, MA, USA
- Department of Medicine, University of Cambridge, Cambridge, CB2 OXY, UK
| | - Tobias F Rinke de Wit
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
- Joep Lange Institute, 1105 BM, North Holland, The Netherlands
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, CB2 OXY, UK
- Africa Health Research Institute, 719 Umbilo Road, Durban, KZN, South Africa
| |
Collapse
|
7
|
Dessilly G, Goeminne L, Vandenbroucke AT, Dufrasne FE, Martin A, Kabamba-Mukabi B. First evaluation of the Next-Generation Sequencing platform for the detection of HIV-1 drug resistance mutations in Belgium. PLoS One 2018; 13:e0209561. [PMID: 30596682 PMCID: PMC6312258 DOI: 10.1371/journal.pone.0209561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction The WHO urges action against the threat posed by HIV drug resistance. It is well known that the sensitivity of Next-Generation Sequencing (NGS) is greater than that of Sanger Sequencing (SS). The objective of this study was to evaluate the performance of the novel NGS HIV-1 drug resistance monitoring system. Materials & methods NGS analyses were performed on 67 plasma samples from HIV-1 infected patients using the Sentosa SQ HIV Genotyping Assay from Vela-Dx. This kit was used on a semi-automated Ion Torrent-based platform. Sequences were compared to those obtained by SS. Samples were analysed in the same and in separate runs. Quality controls (QC) were added to control sequencing processes of protease (PRO), reverse transcriptase (RT) and integrase (INT) regions. Results Of the 41 analysed samples, 33 (80.5%) had identical drug resistance interpretation reports. Discrepant results were observed for eight samples. Five of them were only detected by NGS and had drug resistance mutations (DRMs) with an allelic frequency below the limit of detection of the SS method (between 6.3 to 20.5%). Two DRMs were only identified using the SS method. The sequences were similar in 98.2% of cases (counting variants as mismatches) and homologous in 99.9% if missed variants. Duplicated samples in a single run were similar in 95.7% (99.9%) of cases. Duplicated samples in two different runs were 98% (100%) homologous. QC results were manually assessed with a score of 340/340 for detection of DRMs in PRO and RT and 100% for INT sequencing. Conclusions This is the first preliminary evaluation in Belgium employing the Sentosa SQ HIV Genotyping Assay. The NGS appears to be a promising tool for the detection of DRMs in HIV-1 patients and showed a higher sensitivity compared to SS. Large studies assessing the clinical relevance of low frequency DRMs are needed.
Collapse
Affiliation(s)
- Géraldine Dessilly
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
- * E-mail:
| | - Léonie Goeminne
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
| | - Anne-thérèse Vandenbroucke
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
| | - Francois E. Dufrasne
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
| | - Benoît Kabamba-Mukabi
- Université catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Brussels, Belgium
- Université catholique de Louvain (UCLouvain), Cliniques Universitaires Saint-Luc, Clinical Laboratory Department, Brussels, Belgium
| |
Collapse
|
8
|
Inzaule SC, Hamers RL, Noguera-Julian M, Casadellà M, Parera M, Kityo C, Steegen K, Naniche D, Clotet B, Rinke de Wit TF, Paredes R. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: a multi-country nested case-control study. Lancet HIV 2018; 5:e638-e646. [PMID: 30282603 DOI: 10.1016/s2352-3018(18)30177-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Implementation of ultrasensitive HIV drug resistance tests for routine clinical use is hampered by uncertainty about the clinical relevance of drug-resistant minority variants. We assessed different detection thresholds for pretreatment drug resistance to predict an increased risk of virological failure. METHODS We did a case-control study nested within a prospective multicountry cohort. Our study included patients from 12 clinical sites in Kenya, Nigeria, South Africa, Uganda, and Zambia. We defined cases as patients with virological failure (ie, those who had either viral load ≥400 copies per mL at 12 months or had switched to second-line antiretroviral therapy [ART] as a result of virological failure before 12 months) and controls as those with viral suppression (viral load <400 copies per mL at 12 months) on first-line non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy. We assessed pretreatment drug resistance with Illumina MiSeq next-generation sequencing, using the International Antiviral Society (IAS)-USA mutation list or the Stanford HIV Drug Resistance Database (HIVDB) genotypic sensitivity score. We calculated diagnostic accuracy measures and assessed the odds of virological failure using conditional logistic regression for 1%, 5%, and 10% pretreatment drug resistance detection thresholds, compared with the conventional 20% or more used in Sanger-based sequencing. FINDINGS Paired viral load results before ART and at month 12 of follow-up were available from 1896 participants. We identified 178 patients with virological failure and selected 338 matched controls. We excluded 117 patients from pretreatment drug resistance analysis; therefore, 152 cases of virological failure and 247 controls were included in the final analysis. With the IAS-USA mutation list, at a detection threshold of 20% or more in patients with pretreatment drug resistance, the adjusted odds ratio (OR) for virological failure was 9·2 (95% CI 4·2-20·1) compared with those without pretreatment drug resistance. Lowering the threshold resulted in adjusted ORs of virological failure of 6·8 (95% CI 3·3-13·9) at the 10% threshold, 7·6 (3·4-17·1) at the 5% threshold, and 4·5 (2·0-10·2) at the 1% threshold. Lowering the detection threshold from 20% improved the sensitivity (ie, ability to identify cases) from 12% (n=18) to 13% (n=19) at detection threshold 10%, to 15% (n=23) at detection threshold 5%, and to 17% (n=26) at detection threshold 1%, but caused a slight reduction in specificity (ie, ability to identify controls) from 98% (n=241) to 96% (n=238) at the 10% threshold, 96% (n=236) at the 5% threshold, and a larger reduction to 92% (n=227) at the 1% threshold. Diagnostic ORs were 5·4 (95% CI 2·1-13·9) at the 20% threshold, 3·8 (1·7-8·6) at the 10% threshold, 3·8 (1·8-8·1) at the 5% threshold, and 2·3 (1·2-4·2) at the 1% threshold. Use of the Stanford HIVDB genotypic sensitivity scores yielded similar ORs for virological failure, sensitivities, specificities, and diagnostic ORs. INTERPRETATION Ultrasensitive resistance testing for pretreatment drug resistance improved identification of people at risk of virological failure; however, this came with a reduction in our ability to identify people with viral suppression, especially at very low thresholds. Further modelling is needed to estimate the optimal trade-off for the 5% and 20% thresholds, balancing improved case finding against unnecessary regimen switching. FUNDING The Netherlands Ministry of Foreign Affairs, IrsiCaixa, and European Union.
Collapse
Affiliation(s)
- Seth C Inzaule
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Raph L Hamers
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands; Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, and Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Marc Noguera-Julian
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Maria Casadellà
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mariona Parera
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Kim Steegen
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa; National Health Laboratory Service, Johannesburg, South Africa
| | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Bonaventura Clotet
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Tobias F Rinke de Wit
- Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Roger Paredes
- Infectious Diseases Service & IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | | |
Collapse
|
9
|
Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J Clin Microbiol 2018; 56:JCM.00105-18. [PMID: 29618499 DOI: 10.1128/jcm.00105-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.
Collapse
|
10
|
Alves BM, Siqueira JD, Garrido MM, Botelho OM, Prellwitz IM, Ribeiro SR, Soares EA, Soares MA. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017; 9:v9120392. [PMID: 29257103 PMCID: PMC5744166 DOI: 10.3390/v9120392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.
Collapse
Affiliation(s)
- Brunna M Alves
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Juliana D Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marianne M Garrido
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Ornella M Botelho
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Isabel M Prellwitz
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Sayonara R Ribeiro
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Esmeralda A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.
| |
Collapse
|
11
|
Stella-Ascariz N, Arribas JR, Paredes R, Li JZ. The Role of HIV-1 Drug-Resistant Minority Variants in Treatment Failure. J Infect Dis 2017; 216:S847-S850. [PMID: 29207001 DOI: 10.1093/infdis/jix430] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) drug resistance genotyping is recommended to help in the selection of antiretroviral therapy and to prevent virologic failure. There are several ultrasensitive assays able to detect HIV-1 drug-resistance minority variants (DRMVs) not detectable by standard population sequencing-based HIV genotyping assays. Presence of these DRMVs has been shown to be clinically relevant, but its impact does not appear to be uniform across drug classes. In this review, we summarize key evidence for the clinical impact of DRMVs across drug classes for both antiretroviral treatment-naive and antiretroviral treatment-experienced patients, and highlight areas where more supporting evidence is needed.
Collapse
Affiliation(s)
| | - José Ramón Arribas
- HIV Unit, Internal Medicine Service, Hospital Universitario La Paz-IdiPAZ
| | - Roger Paredes
- HIV Unit and irsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona and Universitat de Vic-UCC, Spain
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
12
|
Trabaud MA, Icard V, Ramière C, Tardy JC, Scholtes C, André P. Comparison of HIV-1 drug-resistance genotyping by ultra-deep sequencing and sanger sequencing using clinical samples. J Med Virol 2017; 89:1912-1919. [PMID: 28590068 DOI: 10.1002/jmv.24872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022]
Abstract
Sanger population sequencing (SPS) is the reference technique to monitor HIV-1-infected patients' therapy. Ultra-deep sequencing (UDS), which allows quantitative detection of drug resistance mutations, may be an alternative method. The study aimed to compare reproducibility and predictions of UDS versus SPS in a routine setting. A control containing low-abundance variants was repeatedly tested and clinical plasma samples from 100 patients were prospectively assayed by SPS and UDS using the Roche 454 system. Complete analysis by UDS was available for 88% of samples with various viral loads and subtypes. Comparison of detection thresholds found that SPS sensitivity was variable. Variations found by UDS between 5% to >20% were detected by SPS in 25% to more than 80% of samples. At the 5% cut-off, disagreements were rare and in most cases UDS detected an additional protease secondary mutation, suggesting a possible resistance to a protease inhibitor according to the 2015 ANRS algorithm. Mutations found on reverse transcriptase by only UDS were often explained by previous therapy. UDS with a variant detection threshold at 5% might allow therapy management with minimal differences compared to population sequencing while providing additional information for further determination of pertinent cutoff values for specific resistance mutations.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Vinca Icard
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Christophe Ramière
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Caroline Scholtes
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Patrice André
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| |
Collapse
|
13
|
Multimethod Longitudinal HIV Drug Resistance Analysis in Antiretroviral-Therapy-Naive Patients. J Clin Microbiol 2017; 55:2785-2800. [PMID: 28659324 DOI: 10.1128/jcm.00634-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.
Collapse
|
14
|
HIV-1 Drug Resistance by Ultra-Deep Sequencing Following Short Course Zidovudine, Single-Dose Nevirapine, and Single-Dose Tenofovir with Emtricitabine for Prevention of Mother-to-Child Transmission. J Acquir Immune Defic Syndr 2017; 73:384-389. [PMID: 27327263 PMCID: PMC5172515 DOI: 10.1097/qai.0000000000001116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Antiretroviral drug resistance following pMTCT strategies remains a significant problem. With rapid advancements in next generation sequencing technologies, there is more focus on HIV drug-resistant variants of low frequency, or the so-called minority variants. In South Africa, AZT monotherapy for pMTCT, similar to World Health Organization option A, has been used since 2008. In 2010, a single dose of co-formulated TDF/FTC was included in the strategy for prevention of resistance conferred by single-dose nevirapine (sd NVP). The study was conducted in KwaZulu-Natal, South Africa, among pMTCT participants who received AZT monotherapy from 14 weeks of gestation, intrapartum AZT and sd NVP, and postpartum sd TDF/FTC. Twenty-six specimens collected at 6 weeks post-delivery were successfully sequenced using 454 ultra-deep sequencing. Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance was detected in 17 of 26 (65%) patients, 2 (7%) had Thymidine analogue mutations, and 3 (11%) had K65R. Of the 17 patients with NNRTI resistance, 11 (65%) had high-level NNRTI resistance, whereas 6 (35%) had intermediate NNRTI resistance. The levels of NNRTI resistance are much higher than would be expected, given the inclusion of antepartum AZT and postpartum TDF/FTC. This high level of NNRTI resistance could impact future NNRTI-containing treatment for a large proportion of pMTCT-exposed women. The detection of Thymidine analogue mutations highlights the need to understand the clinical impact of these on AZT-containing antiretroviral treatment in women exposed to AZT monotherapy.
Collapse
|
15
|
Todesco E, Charpentier C, Bertine M, Wirden M, Storto A, Desire N, Grude M, Nguyen T, Sayon S, Yazdanpanah Y, Katlama C, Descamps D, Calvez V, Marcelin AG. Disparities in HIV-1 transmitted drug resistance detected by ultradeep sequencing between men who have sex with men and heterosexual populations. HIV Med 2017; 18:696-700. [PMID: 28444829 DOI: 10.1111/hiv.12508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Transmitted drug resistance (TDR) can impair the response to first-line antiretroviral therapy. In treatment-naïve patients chronically infected with HIV type 1 (HIV-1), it was previously shown through Sanger sequencing that TDR was more common in men who have sex with men (MSM) than in other transmission risk groups. We aimed to compare two HIV-1 transmission groups in terms of the presence of TDR mutations. METHODS We investigated, through Sanger sequencing and ultradeep sequencing (UDS), the presence of resistance mutations, both in majority (> 20%) and in minority (1-20%) proportions, in 70 treatment-naïve MSM and 70 treatment-naïve heterosexual patients who recently screened positive for HIV-1. RESULTS The global prevalence of TDR was not significantly different between the two groups, either by Sanger or by UDS. Nevertheless, a higher frequency of nucleoside reverse transcriptase inhibitor TDR was observed among heterosexual patients (P = 0.04). There was also a trend for a higher frequency of TDR among MSM infected with HIV-1 subtype B compared with MSM infected with HIV-1 non-B subtypes (P = 0.06). CONCLUSIONS Ultradeep sequencing UDS allowed sensitive monitoring of TDR, and highlighted some disparities between transmission groups.
Collapse
Affiliation(s)
- E Todesco
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - C Charpentier
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - M Bertine
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - M Wirden
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A Storto
- Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - N Desire
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - M Grude
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - T Nguyen
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - S Sayon
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Y Yazdanpanah
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Infectious Diseases, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - C Katlama
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Infectious Diseases, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - D Descamps
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - V Calvez
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A G Marcelin
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
16
|
Bradley-Stewart A, Urcia C, MacLean A, Aitken C, Gunson R. HIV-1 integrase inhibitor resistance among treatment naïve patients in the West of Scotland. J Clin Virol 2017; 92:7-10. [PMID: 28494325 DOI: 10.1016/j.jcv.2017.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/14/2017] [Accepted: 04/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Transmitted integrase inhibitor resistance is rare, with only a small number of cases reported world-wide to date. OBJECTIVES The aim of this study was to assess whether transmitted integrase inhibitor resistance has occurred in Scotland and if so, could there be a case for performing genotypic integrase resistance testing at baseline. STUDY DESIGN The study population consisted of 106 treatment naïve, newly diagnosed, HIV positive patients. The patient samples were collected between October 2015 and March 2016 at the time of HIV diagnosis and prior to initiation of anti-retroviral therapy. The integrase region was amplified and sequenced. RESULTS We detected integrase inhibitor resistance (T66I/T) at baseline in one patient sample. This is a non-polymorphic mutation seen in patients receiving elvitegravir which confers high-level resistance to elvitegravir and intermediate resistance to raltegravir. A further 10 patients had accessory mutations which have minimal or no effect on susceptibility to integrase inhibitors. CONCLUSIONS Transmitted integrase inhibitor resistance remains rare. The results of the present study do not support performing integrase resistance testing at baseline.
Collapse
Affiliation(s)
- A Bradley-Stewart
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom.
| | - C Urcia
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - A MacLean
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - C Aitken
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - R Gunson
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| |
Collapse
|
17
|
Mulato A, Hansen D, Thielen A, Porter D, Stepan G, White K, Daeumer M, Cihlar T, Yant SR. Rapid In Vitro Evaluation of Antiretroviral Barrier to Resistance at Therapeutic Drug Levels. AIDS Res Hum Retroviruses 2016; 32:1237-1247. [PMID: 27356854 DOI: 10.1089/aid.2016.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Failure of combination antiretroviral (ARV) therapy in HIV-infected patients is often associated with the emergence of drug resistance-associated mutations (RAMs). To facilitate analysis of the barrier to resistance at therapeutically relevant ARV concentrations, we performed fixed-dose in vitro HIV-1 drug resistance selection assays using the immortalized MT-2 T-cell line and primary human CD4+ T cells with a panel of FDA-approved ARVs, each at their respective cell culture equivalent clinical trough concentration (CCE Cmin). At high multiples of its CCE Cmin, emtricitabine (FTC) selected for the rapid emergence of M184I/V, a result consistent with resistance emergence in vivo. While the rate of viral breakthrough in the presence of rilpivirine or efavirenz was delayed relative to FTC, both inhibitors selected for virus with known clinically relevant RAMs. No viral breakthrough was observed for the protease inhibitor atazanavir even at subtherapeutic drug concentrations, which is consistent with its previously characterized high in vivo barrier to resistance. Depending on assay conditions, treatment with integrase inhibitors elvitegravir and raltegravir resulted in breakthrough of both resistant and wild-type virus. The RAMs observed in drug selections were not detected above a 2% threshold by deep sequencing in the in vitro virus inoculum, and only rarely in isolates from treatment-naive HIV+ patients. These new viral breakthrough assays facilitate the analysis of multiple experimental replicates and conditions in parallel and provide a rapid quantitative means to evaluate drug resistance emergence at therapeutically relevant drug concentrations, which should facilitate the identification of new ARVs with a high barrier to resistance.
Collapse
|
18
|
Casadellà M, Paredes R. Deep sequencing for HIV-1 clinical management. Virus Res 2016; 239:69-81. [PMID: 27818211 DOI: 10.1016/j.virusres.2016.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
The emerging HIV-1 resistance epidemic is threatening the impressive global advances in HIV-1 infection treatment and prevention achieved in the last decade. Next-generation sequencing is improving our ability to understand, diagnose and prevent HIV-1 resistance, being increasingly cost-effective and more accessible. However, NGS still faces a number of limitations that need to be addressed to enable its widespread use. Here, we will review the main NGS platforms available for HIV-1 diagnosis, the factors affecting the clinical utility of NGS testing and the evidence supporting -or not- ultrasensitive genotyping over Sanger sequencing for routine HIV-1 diagnosis. Now that global HIV-1 eradication might be within our reach, making NGS accessible also to LMICs has become a priority. Reductions in sequencing costs, particularly in library preparation, and accessibility to low-cost, robust but simplified automated bioinformatic analyses of NGS data will remain essential to end the HIV-1 pandemic.
Collapse
Affiliation(s)
- Maria Casadellà
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain.
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain; Universitat de Vic - Central de Catalunya, Vic, Catalonia, Spain; HIV-1 Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| |
Collapse
|
19
|
Gantner P, Morand-Joubert L, Sueur C, Raffi F, Fagard C, Lascoux-Combe C, Salmon D, Amiel C, Lambert-Niclot S, Fofana DB, Viard JP, Fafi-Kremer S, Rouzioux C, Avettand-Fenoel V, Ghosn J. Drug resistance and tropism as markers of the dynamics of HIV-1 DNA quasispecies in blood cells of heavily pretreated patients who achieved sustained virological suppression. J Antimicrob Chemother 2015; 71:751-61. [PMID: 26676973 DOI: 10.1093/jac/dkv395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/21/2015] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES The objective of this study was to address the dynamics of archived resistant quasispecies in cell-associated HIV-1 DNA over time in heavily ART-experienced patients with currently suppressed plasma HIV-1 RNA. METHODS Longitudinal ultra-deep sequencing (UDS) analysis of reverse transcriptase, protease and V3 Env regions was performed on blood-cell-associated HIV-1 DNA samples. Drug-resistance-associated mutations (DRAMs) and tropism were interpreted using the ANRS and Geno2Pheno algorithms. We analysed frozen blood cells from patients enrolled in the INNOVE and ANRS 123 ETOILE studies who achieved sustained viral suppression after salvage optimized ART (SOT). RESULTS Samples were available at baseline and 6 and ≥12 months after SOT initiation in 10 patients. V3 loop sequences displayed wide intra-individual dynamics over time. Viral variants harbouring DRAMs exhibited three non-exclusive scenarios. First, when SOT exerted the same selective pressure as previous failing regimens, some viral quasispecies still harboured the same DRAMs at the same level as at the time of virological failure. Thus, as DRAMs were mostly associated with the same viral variant, variants with a complete resistance pattern remained archived. Second, some viral variants harbouring DRAMs were no longer detected over time when SOT consisted of new antiretroviral classes or had resistance profiles distinct from those of previous failing regimens. Third, variants with new DRAMs associated with SOT emerged in blood cells during follow-up despite sustained virological control. CONCLUSIONS Using longitudinal UDS analysis and focusing on DRAMs and tropism as markers, we demonstrated that, despite sustained virological control, archived HIV-1 DNA quasispecies continued to evolve.
Collapse
Affiliation(s)
- Pierre Gantner
- Université Paris Descartes, EA 7327, Université Paris Descartes PRES Sorbonne Paris-Cité, Paris, France Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurence Morand-Joubert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), F75013 Paris, France/Department of Virology, Hôpital Saint-Antoine, APHP, Paris, France
| | - Charlotte Sueur
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Catherine Fagard
- Univ. Bordeaux, ISPED, Centre INSERM U897- Epidemiologie-Biostatistique, F-33000 Bordeaux, France/INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
| | - Caroline Lascoux-Combe
- APHP, Service des Maladies Infectieuses et Tropicales, Hôpital Saint Louis, Paris, France
| | - Dominique Salmon
- APHP, Service de Médecine Interne, Hôpital Cochin, Paris, France/Université Paris Descartes, Paris, France
| | - Corinne Amiel
- UPMC Univ Paris 06, Centre d'Immunologie et de Maladies Infectieuses (CIMI) UMRS CR7, Persistent Viral Infection (PVI) Team, INSERM U1135, Paris, France/APHP, Virology Laboratory, Tenon Hospital, Paris, France
| | - Sidonie Lambert-Niclot
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Djeneba Bocar Fofana
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), F75013 Paris, France/Department of Virology, Hôpital Saint-Antoine, APHP, Paris, France
| | - Jean-Paul Viard
- Université Paris Descartes, EA 7327, Université Paris Descartes PRES Sorbonne Paris-Cité, Paris, France APHP, Unité Fonctionnelle de Thérapeutique en Immuno-Infectiologie, Centre Hospitalier Universitaire Hôtel-Dieu, Paris, France
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine Rouzioux
- Université Paris Descartes, EA 7327, Université Paris Descartes PRES Sorbonne Paris-Cité, Paris, France APHP, Laboratoire de Microbiologie Clinique, Centre Hospitalier Universitaire Necker Enfants Malades, Paris, France
| | - Véronique Avettand-Fenoel
- Université Paris Descartes, EA 7327, Université Paris Descartes PRES Sorbonne Paris-Cité, Paris, France APHP, Laboratoire de Microbiologie Clinique, Centre Hospitalier Universitaire Necker Enfants Malades, Paris, France
| | - Jade Ghosn
- Université Paris Descartes, EA 7327, Université Paris Descartes PRES Sorbonne Paris-Cité, Paris, France APHP, Unité Fonctionnelle de Thérapeutique en Immuno-Infectiologie, Centre Hospitalier Universitaire Hôtel-Dieu, Paris, France
| |
Collapse
|
20
|
Porter DP, Daeumer M, Thielen A, Chang S, Martin R, Cohen C, Miller MD, White KL. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses 2015; 7:6360-70. [PMID: 26690199 PMCID: PMC4690866 DOI: 10.3390/v7122943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.
Collapse
Affiliation(s)
| | - Martin Daeumer
- Seq-IT GmbH & Co. KG, Pfaffplatz 10, 67655 Kaiserslautern, Germany.
| | | | - Silvia Chang
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Ross Martin
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Cal Cohen
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Michael D Miller
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Kirsten L White
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| |
Collapse
|
21
|
HIV-1 genotypic drug resistance testing: digging deep, reaching wide? Curr Opin Virol 2015; 14:16-23. [DOI: 10.1016/j.coviro.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022]
|