1
|
Alexey R, Dariya S, Liudmyla I, Lilia V, Valeriy M, Dmytro L, Oleksandr B, Svitlana S, Sergii O, Elijah B, Mariia S, Yaroslav B, Pavel K. Structure-based virtual screening and biological evaluation of novel inhibitors of mycobacterium Z-ring formation. J Cell Biochem 2022; 123:852-862. [PMID: 35297088 DOI: 10.1002/jcb.30232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/07/2022]
Abstract
The major part of commercial prodrugs against Mycobacterium tuberculosis (Mtb) demonstrated a significant inhibitory effect on cell division and inhibition of bacterial growth in vitro. However, further implementation often failed to overcome the compensatory system of interchangeable cascades. This is the most common situation for the compounds, which hit the key enzymes activities involved in all basic stages of the cell cycle. We decided to find more compounds, which could affect a cytoskeleton complex playing important role in sensing the external signals, intracellular transport, and cell division. In general, the bacterial cytoskeleton is crucial for response to the environment and participates in cell-to-cell communication. In turn, filamentous temperature-sensitive Z (FtsZ) protein, a mycobacterial tubulin homolog, is essential for Z-ring formation and further bacteria cell division. We predicted the most preferable binding-sites and conducted a high-throughput virtual screening. Modeling results suggest that some compounds bind in a specific region on the surface Mtb FtsZ, which is absent in human, and other could hit GTPase activity of the FtsZ. Further in vitro studies confirmed that these novel molecules can efficiently bind to these pockets, demonstrating an effect on the polymerization state and kinetics mechanisms. The rescaling of the experiment on the cell line revealed that reported compounds are able to alter the polymerization level of the filamentous and, therefore, prevent mycobacteria reproduction.
Collapse
Affiliation(s)
- Rayevsky Alexey
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
| | - Samofalova Dariya
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- R&D Department, Life Chemicals Inc., Niagara-on-the-Lake, Ontario, Canada
| | - Ishchenko Liudmyla
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Vygovska Lilia
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Mazur Valeriy
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Labudzynskyi Dmytro
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Borysov Oleksandr
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Spivak Svitlana
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Ozheredov Sergii
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Stykhylias Mariia
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Blume Yaroslav
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Karpov Pavel
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| |
Collapse
|
2
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
3
|
Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant Staphylococcus aureus. J Bacteriol 2021; 203:e0020421. [PMID: 34031040 DOI: 10.1128/jb.00204-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen of acute clinical importance. Combination treatment with an FtsZ inhibitor potentiates the activity of penicillin binding protein (PBP)-targeting β-lactam antibiotics against MRSA. To explore the mechanism underlying this synergistic behavior, we examined the impact of treatment with the FtsZ inhibitor TXA707 on the spatial localization of the five PBP proteins expressed in MRSA. In the absence of drug treatment, PBP1, PBP2, PBP3, and PBP4 colocalize with FtsZ at the septum, contributing to new cell wall formation. In contrast, PBP2a localizes to distinct foci along the cell periphery. Upon treatment with TXA707, septum formation becomes disrupted, and FtsZ relocalizes away from midcell. PBP1 and PBP3 remain significantly colocalized with FtsZ, while PBP2, PBP4, and PBP2a localize away from FtsZ to specific sites along the periphery of the enlarged cells. We also examined the impact on PBP2a and PBP2 localization of treatment with β-lactam antibiotic oxacillin alone and in synergistic combination with TXA707. Significantly, PBP2a localizes to the septum in approximately 15% of the oxacillin-treated cells, a behavior that likely contributes to the β-lactam resistance of MRSA. Combination treatment with TXA707 causes both PBP2a and PBP2 to localize in malformed septum-like structures. Our collective results suggest that PBP2, PBP4, and PBP2a may function collaboratively in peripheral cell wall repair and maintenance in response to FtsZ inhibition by TXA707. Cotreatment with oxacillin appears to reduce the availability of PBP2a to assist in this repair, thereby rendering the MRSA cells more susceptible to the β-lactam. IMPORTANCE MRSA is a multidrug-resistant bacterial pathogen of acute clinical importance, infecting many thousands of individuals globally each year. The essential cell division protein FtsZ has been identified as an appealing target for the development of new drugs to combat MRSA infections. Through synergistic actions, FtsZ-targeting agents can sensitize MRSA to antibiotics like the β-lactams that would otherwise be ineffective. This study provides key insights into the mechanism underlying this synergistic behavior as well as MRSA resistance to β-lactam drugs. The results of this work will help guide the identification and optimization of combination drug regimens that can effectively treat MRSA infections and reduce the potential for future resistance.
Collapse
|
4
|
Oh S, Trifonov L, Yadav VD, Barry CE, Boshoff HI. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Front Cell Infect Microbiol 2021; 11:611304. [PMID: 33791235 PMCID: PMC8005628 DOI: 10.3389/fcimb.2021.611304] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
More than two decades have elapsed since the publication of the first genome sequence of Mycobacterium tuberculosis (Mtb) which, shortly thereafter, enabled methods to determine gene essentiality in the pathogen. Despite this, target-based approaches have not yielded drugs that have progressed to clinical testing. Whole-cell screening followed by elucidation of mechanism of action has to date been the most fruitful approach to progressing inhibitors into the tuberculosis drug discovery pipeline although target-based approaches are gaining momentum. This review discusses scaffolds that have been identified over the last decade from screens of small molecule libraries against Mtb or defined targets where mechanism of action investigation has defined target-hit couples and structure-activity relationship studies have described the pharmacophore.
Collapse
Affiliation(s)
- Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lena Trifonov
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
5
|
Haranahalli K, Tong S, Kim S, Awwa M, Chen L, Knudson SE, Slayden RA, Singleton E, Russo R, Connell N, Ojima I. Structure-activity relationship studies on 2,5,6-trisubstituted benzimidazoles targeting Mtb-FtsZ as antitubercular agents. RSC Med Chem 2021; 12:78-94. [PMID: 34046600 PMCID: PMC8132993 DOI: 10.1039/d0md00256a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Filamenting temperature sensitive protein Z (FtsZ) is an essential bacterial cell division protein and a promising target for the development of new antibacterial therapeutics. As a part of our ongoing SAR studies on 2,5,6-trisubstituted benzimidazoles as antitubercular agents targeting Mtb-FtsZ, a new library of compounds with modifications at the 2 position was designed, synthesized and evaluated for their activity against Mtb-H37Rv. This new library of trisubstituted benzimidazoles exhibited MIC values in the range of 0.004-50 μg mL-1. Compounds 6b, 6c, 20f and 20g showed excellent growth inhibitory activities ranging from 0.004-0.08 μg mL-1. This SAR study has led to the discovery of a remarkably potent compound 20g (MIC 0.0039 μg mL-1; normalized MIC 0.015 μg mL-1). Our 3DQSAR model predicted 20g as the most potent compound in the library.
Collapse
Affiliation(s)
- Krupanandan Haranahalli
- Institute of Chemical Biology and Drug Discovery, Stony Brook University Stony Brook NY USA
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| | - Simon Tong
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| | - Saerom Kim
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| | - Monaf Awwa
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| | - Lei Chen
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| | - Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado 80523-1682 USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins Colorado 80523-1682 USA
| | - Eric Singleton
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University Newark New Jersey 07103 USA
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University Newark New Jersey 07103 USA
| | - Nancy Connell
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University Newark New Jersey 07103 USA
- Department of Physiology, Rutgers University Newark New Jersey 07103 USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University Stony Brook NY USA
- Department of Chemistry, Stony Brook University Stony Brook NY USA
| |
Collapse
|
6
|
Han H, Wang Z, Li T, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides. FEBS J 2020; 288:1091-1106. [PMID: 32681661 DOI: 10.1111/febs.15489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
7
|
Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 99:103774. [DOI: 10.1016/j.bioorg.2020.103774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
|
8
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
9
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Ferrer-González E, Fujita J, Yoshizawa T, Nelson JM, Pilch AJ, Hillman E, Ozawa M, Kuroda N, Al-Tameemi HM, Boyd JM, LaVoie EJ, Matsumura H, Pilch DS. Structure-Guided Design of a Fluorescent Probe for the Visualization of FtsZ in Clinically Important Gram-Positive and Gram-Negative Bacterial Pathogens. Sci Rep 2019; 9:20092. [PMID: 31882782 PMCID: PMC6934700 DOI: 10.1038/s41598-019-56557-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Addressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor. Crystallographic studies have enabled us to identify the optimal position for tethering the fluorophore that facilitates the high-affinity FtsZ binding of BOFP. Fluorescence anisotropy studies demonstrate that BOFP binds the FtsZ proteins from the Gram-positive pathogens Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae with Kd values of 0.6–4.6 µM. Significantly, BOFP binds the FtsZ proteins from the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii with an even higher affinity (Kd = 0.2–0.8 µM). Fluorescence microscopy studies reveal that BOFP can effectively label FtsZ in all the above Gram-positive and Gram-negative pathogens. In addition, BOFP is effective at monitoring the impact of non-fluorescent inhibitors on FtsZ localization in these target pathogens. Viewed as a whole, our results highlight the utility of BOFP as a powerful tool for identifying new broad-spectrum FtsZ inhibitors and understanding their mechanisms of action.
Collapse
Affiliation(s)
- Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-087, Japan.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Julia M Nelson
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Alyssa J Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Elani Hillman
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Hassan M Al-Tameemi
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan.
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
12
|
Surineni G, Gao Y, Hussain M, Liu Z, Lu Z, Chhotaray C, Islam MM, Hameed HMA, Zhang T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MEDCHEMCOMM 2019; 10:49-60. [PMID: 30774854 PMCID: PMC6349066 DOI: 10.1039/c8md00389k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) has become one of the most significant public health problems in recent years. Antibiotic therapy remains the mainstay of TB control strategies, but the increasing resistance of mycobacterial species has heightened alarm, requiring the development of novel drugs in order to improve treatment outcomes. Here, as an effort to identify novel and effective antitubercular agents, we designed and synthesized a series of novel substituted benzimidazolallylidenehydrazinylmethylthiazole derivatives via a multi-component molecular hybridization approach with single molecular architecture. Our design strategy involved assembling the antitubercular pharmacophoric fragments benzimidazole, 2-aminothiazole and substituted α,β-unsaturated ketones via condensation reactions. All the newly synthesized compounds were fully characterized via NMR and mass spectral data and evaluated for in vitro biological activity against the H37Ra strain of Mycobacterium tuberculosis. From the biological evaluation data, we identified some effective compounds, of which 8g and 7e were the most active ones (both having MIC values of 2.5 μg mL-1). In addition, compound 8g exhibited a lower cytotoxicity profile. We conceive that compound 8g may serve as a chemical probe of interest for further lead optimization studies with the general aim of developing novel and effective antitubercular agents.
Collapse
Affiliation(s)
- Goverdhan Surineni
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Muzammal Hussain
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health (GIBH) , Chinese Academy of Sciences (CAS) , Guangzhou-510530 , China . ; ; Tel: (+86)20 3201 5270
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| |
Collapse
|
13
|
Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Tuberculosis (Edinb) 2018; 110:79-85. [DOI: 10.1016/j.tube.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
|
14
|
AlMatar M, Makky EA, Var I, Kayar B, Köksal F. Novel compounds targeting InhA for TB therapy. Pharmacol Rep 2018; 70:217-226. [DOI: 10.1016/j.pharep.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/26/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
|
15
|
Ojima I, Awasthi D, Wei L, Haranahalli K. Strategic incorporation of fluorine in the drug discovery of new-generation antitubercular agents targeting bacterial cell division protein FtsZ. J Fluor Chem 2017; 196:44-56. [PMID: 28555087 PMCID: PMC5445929 DOI: 10.1016/j.jfluchem.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article presents an account of our research on the discovery and development of new-generation fluorine-containing antibacterial agents against drug-resistant tuberculosis, targeting FtsZ. FtsZ is an essential protein for bacterial cell division and a highly promising therapeutic target for antibacterial drug discovery. Through design, synthesis and semi-HTP screening of libraries of novel benzimidazoles, followed by SAR studies, we identified highly potent lead compounds. However, these lead compounds were found to lack sufficient metabolic and plasma stabilities. Accordingly, we have performed extensive study on the strategic incorporation of fluorine into lead compounds to improve pharmacological properties. This study has led to the development of highly efficacious fluorine-containing benzimidazoles as potential drug candidates. We have also performed computational docking analysis of these novel FtsZ inhibitors to identify their putative binding site. Based on the structural data and docking analysis, a plausible mode-of-action for this novel class of FtsZ inhibitors is proposed.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Divya Awasthi
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Longfei Wei
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Krupanandan Haranahalli
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| |
Collapse
|
16
|
Haranahalli K, Tong S, Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 2016; 24:6354-6369. [PMID: 27189886 PMCID: PMC5157688 DOI: 10.1016/j.bmc.2016.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5years, but also includes significant findings in previous years.
Collapse
Affiliation(s)
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Knudson SE, Cummings JE, Bommineni GR, Pan P, Tonge PJ, Slayden RA. Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 101:8-14. [PMID: 27865404 DOI: 10.1016/j.tube.2016.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery. Lead diphenyl ethers were formulated in co-solvent and Self-Dispersing Lipid Formulations (SDLFs) and evaluated in a rapid murine Mtb infection model that assesses dissemination to and bacterial burden in the spleen. In vitro synergy studies were performed with the lead diphenyl ether compounds, SB-PT070 and SB-PT091, and rifampin (RIF), which demonstrated an additive effect, and that guided the in vivo studies. Combinatorial therapy in vivo studies with these compounds delivered in our Self-Micro Emulsifying Drug Delivery System (SMEDDS) resulted in an additional 1.4 log10 CFU reduction in the spleen of animals co-treated with SB-PT091 and RIF and an additional 1.7 log10 reduction in the spleen with animals treated with both SB-PT070 and RIF.
Collapse
Affiliation(s)
- Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gopal R Bommineni
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Pan Pan
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Peter J Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
18
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|