1
|
Chen J, Xia B, Liu Y, Sun W, Liu F, Pang J, Cheng H. Clinical outcomes and safety of polymyxin B versus tigecycline combination therapy for pneumonia of carbapenem-resistant Klebsiella pneumoniae: a retrospective cohort study. Ann Med 2024; 56:2397087. [PMID: 39239861 PMCID: PMC11382689 DOI: 10.1080/07853890.2024.2397087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
PURPOSE Infection by carbapenem-resistant Klebsiella pneumoniae (CRKP) has high mortality. There is no clear optimal therapeutic choice for pneumonia caused by CRKP. The aim of this study was to compare the clinical outcomes and safety of the standard doses of polymyxin B-based regimens vs tigecycline-based regimens and to identify risk factors for mortality. METHODS This retrospective cohort study included patients with pneumonia caused by CRKP between January 1, 2020 and December 31, 2022. The primary outcomes were 7-day bacterial eradication rate and 14- and 28-day all-cause mortality. The secondary outcome was incidence of acute kidney injury. RESULTS Seventy-three patients were included in this study, 29 in the polymyxin B-based combination therapy group and 44 in tigecycline-based combination therapy group. There were no significant differences between the two groups in terms of the 7-day bacterial eradication rate (31.03% vs 20.45%, p = 0.409), the 14-day all-cause mortality (37.93% vs 22.73%, p = 0.160), and the incidence of acute kidney injury (14.29% vs 6.82%, p = 0.526). The 28-day all-cause mortality in the polymyxin B-based therapy group was higher than in the tigecycline-based group (75.86% vs 45.45%, p = 0.010). Binary logistic regression analysis revealed that male and previous use of carbapenems were independent factors associated with 28-day all-cause mortality for patients treated with polymyxin B (p < 0.05). CONCLUSIONS Polymyxin B-based combination therapy at the standard dose should be used with caution for patients with CRKP-induced pneumonia, especially for men who used carbapenems prior to CRKP detection.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wu M, Feng K, Wu X, Liu C, Zhu S, Martins FS, Yu M, Lv Z, Yan M, Sy SKB. Prediction of tissue exposures of polymyxin-B, amikacin and sulbactam using physiologically-based pharmacokinetic modeling. Front Microbiol 2024; 15:1435906. [PMID: 39435440 PMCID: PMC11491386 DOI: 10.3389/fmicb.2024.1435906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Background The combination antimicrobial therapy consisting of amikacin, polymyxin-B, and sulbactam demonstrated in vitro synergy against multi-drug resistant Acinetobacter baumannii. Objectives The objectives were to predict drug disposition and extrapolate their efficacy in the blood, lung, heart, muscle and skin tissues using a physiologically-based pharmacokinetic (PBPK) modeling approach and to evaluate achievement of target pharmacodynamic (PD) indices against A. baumannii. Methods A PBPK model was initially developed for amikacin, polymyxin-B, and sulbactam in adult subjects, and then scaled to pediatrics, accounting for both renal and non-renal clearances. The simulated plasma and tissue drug exposures were compared to the observed data from humans and rats. Efficacy was inferred using joint probability of target attainment of target PD indices. Results The simulated plasma drug exposures in adults and pediatrics were within the 0.5 to 2 boundary of the mean fold error for the ratio between simulated and observed means. Simulated drug exposures in blood, skin, lung, and heart were consistent with reported penetration ratio between tissue and plasma drug exposure. In a virtual pediatric population from 2 to <18 years of age using pediatric dosing regimens, the interpretive breakpoints were achieved in 85-90% of the population. Conclusion The utility of PBPK to predict and simulate the amount of antibacterial drug exposure in tissue is a practical approach to overcome the difficulty of obtaining tissue drug concentrations in pediatric population. As combination therapy, amikacin/polymyxin-B/sulbactam drug concentrations in the tissues exhibited sufficient penetration to combat extremely drug resistant A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Mengyuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kun Feng
- Women and Children Hospital, Qingdao University, Qingdao, China
| | - Xiao Wu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chang Liu
- Women and Children Hospital, Qingdao University, Qingdao, China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Frederico S. Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Meixing Yan
- Women and Children Hospital, Qingdao University, Qingdao, China
| | - Sherwin K. B. Sy
- Department of Statistics, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
3
|
Li L, Huang X, Liu J, Li C, Lin Z, Ren R, Zhang Y, Ding H, Chen J, Mao Y. Efficacy and Safety Factors Related to Plasma Concentration-Optimized Polymyxin B Therapy in Treating Carbapenem-Resistant Gram-Negative Bacterial Infections in China. Infect Drug Resist 2024; 17:3057-3071. [PMID: 39050834 PMCID: PMC11268568 DOI: 10.2147/idr.s468890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background Polymyxin B (PMB)-based combination therapies are used to treat severe carbapenem-resistant gram-negative bacterial (CR-GNB) infections. This observational study investigated the relationship between clinical factors, including PMB concentration, and clinical efficacy and safety. Patients and Methods Polymyxin B regimens were optimized through therapeutic drug monitoring (TDM) and area under the concentration-time curve (AUC). In all, 382 samples were tested from 130 patients. Logistic regression was used to analyze the relationships between variables with clinical efficacy and 30-day mortality factors were analyzed by Cox regression. The sensitivity and specificity of Cmin and AUC for the occurrence of acute kidney injury (AKI) were determined by ROC curve analysis. Results The clinical effectiveness of PMB was 65.4%. Multivariate logistic regression analysis revealed that lung infection, continuous renal replacement therapy, and C-reactive protein were independent factors significantly associated with efficacy. AKI occurred in 14.6% of the patients during treatment; age > 73 years (OR: 3.63; 95% CI: 1.035-12.727; P = 0.044), Cmin greater than 2.3 µg/mL (OR: 7.37; 95% CI: 1.571-34.580; P = 0.011), combined vancomycin (OR: 9.47; 95% CI: 1.732-51.731; P = 0.009), and combined piperacillin-tazobactam (OR: 21.87; 95% CI: 3.139-152.324; P = 0.002) were independent risk factors. The identified PMB cut-offs for predicting AKI were Cmin = 2.3 µg/mL and AUC = 82.0 mg h/L. Conclusion Polymyxin B-based combination regimens are effective in treating CR-GNB infections, particularly bloodstream infections, but have shown unsatisfactory for lung infections. Cmin ≥ 2.3 µg /mL and AUC ≥ 82.0 mg h/L may increase PMB-associated AKI incidence. PMB dose should be adjusted based on TDM to ensure efficacy.
Collapse
Affiliation(s)
- Lixia Li
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiaohui Huang
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingxian Liu
- Department of Clinical Laboratory, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chao Li
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiyan Lin
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rongrong Ren
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yan Zhang
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoshu Ding
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanfei Mao
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
King N, Dhumal D, Lew SQ, Kuo SH, Galanakou C, Oh MW, Chong SY, Zhang N, Lee LTO, Hayouka Z, Peng L, Lau GW. Amphiphilic Dendrimer as Potent Antibacterial against Drug-Resistant Bacteria in Mouse Models of Human Infectious Diseases. ACS Infect Dis 2024; 10:453-466. [PMID: 38241613 DOI: 10.1021/acsinfecdis.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18-8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18-8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18-8A in mouse models of human infectious diseases. Remarkably, DDC18-8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18-8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18-8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.
Collapse
Affiliation(s)
- Noah King
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Dinesh Dhumal
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Christina Galanakou
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ling Peng
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
6
|
Jiang X, Patil NA, Xu Y, Wickremasinghe H, Zhou QT, Zhou F, Thompson PE, Wang L, Xiao M, Roberts KD, Velkov T, Li J. Structure-Interaction Relationship of Polymyxins with Lung Surfactant. J Med Chem 2023; 66:16109-16119. [PMID: 38019899 DOI: 10.1021/acs.jmedchem.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant Gram-negative bacteria present an urgent and formidable threat to the global public health. Polymyxins have emerged as a last-resort therapy against these 'superbugs'; however, their efficacy against pulmonary infection is poor. In this study, we integrated chemical biology and molecular dynamics simulations to examine how the alveolar lung surfactant significantly reduces polymyxin antibacterial activity. We discovered that lung surfactant is a phospholipid-based permeability barrier against polymyxins, compromising their efficacy against target bacteria. Next, we unraveled the structure-interaction relationship between polymyxins and lung surfactant, elucidating the thermodynamics that govern the penetration of polymyxins through this critical surfactant layer. Moreover, we developed a novel analog, FADDI-235, which exhibited potent activity against Gram-negative bacteria, both in the presence and absence of lung surfactant. These findings shed new light on the sequestration mechanism of lung surfactant on polymyxins and importantly pave the way for the rational design of new-generation lipopeptide antibiotics to effectively treat Gram-negative bacterial pneumonia.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yuwen Xu
- Shandong Institute for Food and Drug Control, Jinan 250000, China
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette 47907, United States of America
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney 2006, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
7
|
Sorlí L, Luque S, Li J, Benítez-Cano A, Fernández X, Prim N, Vega V, Gómez-Junyent J, López-Montesinos I, Gómez-Zorrilla S, Montero MM, Grau S, Horcajada JP. Colistin plasma concentrations are not associated with better clinical outcomes in patients with pneumonia caused by extremely drug-resistant Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0296723. [PMID: 37943035 PMCID: PMC10715210 DOI: 10.1128/spectrum.02967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE In some cases, colistin is the only treatment option for infections caused by the very drug-resistant Pseudomonas aeruginosa. However, in the past decade, there have been questions concerning its pharmacokinetics and concentration at the site of infection. In this scenario, its use in a difficult-to-treat infection like pneumonia is currently debatable. This is a clinical pharmacokinetic study of colistin in patients with multidrug-resistant P. aeruginosa pneumonia. Our findings demonstrate that colistin exposure is associated with worse clinical outcomes rather than better clinical outcomes, implying that other therapeutic options should be explored in this clinical setting.
Collapse
Affiliation(s)
- Luisa Sorlí
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| | - Sonia Luque
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Jian Li
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Adela Benítez-Cano
- Department of Anesthesiology and Surgical Intensive Care, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Xenia Fernández
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Nuria Prim
- Microbiology Service, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Victoria Vega
- Analytical Department, Laboratori de Referència de Catalunya, Barcelona, Spain
| | - Joan Gómez-Junyent
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| | - M. Milagro Montero
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| | - Santiago Grau
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002 and CB21/13/00099), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Li X, Cheng Y, Chen B, Chen Y, Huang Y, Zhang B, Que W, Liu M, Zhang H, Qiu H. Population pharmacokinetics of polymyxin B in patients with liver dysfunction. Br J Clin Pharmacol 2023; 89:3561-3572. [PMID: 37461291 DOI: 10.1111/bcp.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS Polymyxin B (PMB) is widely used to treat infections caused by multidrug-resistant Gram-negative pathogens. Currently, the pharmacokinetic data of PMB in patients with liver dysfunction are limited. This study aimed to develop a population pharmacokinetic (PopPK) model of PMB in patients with liver dysfunction and identify the factors affecting PMB pharmacokinetics. METHODS We conducted a retrospective pharmacokinetic study involving 136 adults with different levels of liver function. Nonlinear mixed effects modelling was used to develop a PopPK model of PMB. Monte Carlo simulation was used to design PMB dosage schedules across various liver and renal functions. RESULTS PMB pharmacokinetic analyses included 401 steady-state concentrations in 136 adult patients. A one-compartment pharmacokinetic model with first-order absorption and elimination was used to describe the data. The typical population value of PMB clearance was 2.43 L/h and the volume of distribution was 23.11 L. This study revealed that creatinine clearance (CrCL) and Child-Pugh class were significantly associated with PMB pharmacokinetic parameters; however, clinically relevant variations of dose-normalized drug exposure were not significant. For patients with a minimum inhibitory concentration of ≤0.5 mg/L, the appropriate dose was 40-75 mg/12-h. When the dose exceeded 100 mg/12-h, the risk of nephrotoxicity increased significantly. CONCLUSIONS This study provided PMB pharmacokinetic information for patients with liver dysfunction. Patients with renal and liver dysfunctions may not require an initial dose adjustment. Rather than PopPK-guided dose adjustment, therapeutic drug monitoring of PMB plays a more direct role in optimizing dosing regimens based on its therapeutic window.
Collapse
Affiliation(s)
- Xueyong Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bo Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yiying Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yingbin Huang
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bingqing Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Rodjun V, Montakantikul P, Houngsaitong J, Jitaree K, Nosoongnoen W. Pharmacokinetic/pharmacodynamic (PK/PD) simulation for dosage optimization of colistin and sitafloxacin, alone and in combination, against carbapenem-, multidrug-, and colistin-resistant Acinetobacter baumannii. Front Microbiol 2023; 14:1275909. [PMID: 38098659 PMCID: PMC10720588 DOI: 10.3389/fmicb.2023.1275909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 12/17/2023] Open
Abstract
To the best of our knowledge, to date, no study has investigated the optimal dosage regimens of either colistin or sitafloxacin against drug-resistant Acinetobacter baumannii (A. baumannii) infections by using specific parameters. In the current study, we aimed to explore the optimal dosage regimens of colistin and sitafloxacin, either in monotherapy or in combination therapy, for the treatment of carbapenem-, multidrug-, and colistin-resistant A. baumannii infections. A Monte Carlo simulation was applied to determine the dosage regimen that could achieve the optimal probability of target attainment (PTA) and cumulative fraction of response (CFR) (≥90%) based on the specific parameters of each agent and the minimal inhibitory concentration (MIC) of the clinical isolates. This study explored the dosage regimen of 90, 50, 30, and 10 mL/min for patients with creatinine clearance (CrCL). We also explored the dosage regimen for each patient with CrCL using combination therapy because there is a higher possibility of reaching the desired PTA or CFR. Focusing on the MIC90 of each agent in combination therapy, the dosage regimen for colistin was a loading dose of 300 mg followed by a maintenance dose ranging from 50 mg every 48 h to 225 mg every 12 h and the dosage regimen for sitafloxacin was 325 mg every 48 h to 750 mg every 12 h. We concluded that a lower-than-usual dose of colistin based on specific pharmacokinetic data in combination with a higher-than-usual dose of sitafloxacin could be an option for the treatment of carbapenem-, multidrug-, and colistin-resistant. A. baumannii. The lower dose of colistin might show a low probability of adverse reaction, while the high dose of sitafloxacin should be considered. In the current study, we attempted to find if there is a strong possibility of drug selection against crucial drug-resistant pathogen infections in a situation where there is a lack of new antibiotics. However, further study is needed to confirm the results of this simulation study.
Collapse
Affiliation(s)
| | - Preecha Montakantikul
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jantana Houngsaitong
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kamonchanok Jitaree
- Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Wichit Nosoongnoen
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Gill CM, Nicolau DP. In Vivo Pharmacodynamic Profile of EVER206, a Novel Polymyxin Antimicrobial, against Gram-Negative Bacteria in the Murine Thigh Infection Model. Antimicrob Agents Chemother 2023; 67:e0173822. [PMID: 37022170 PMCID: PMC10190685 DOI: 10.1128/aac.01738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
The objective was to determine the magnitude of the EVER206 free-plasma area under the concentration time curve (fAUC)/MIC target associated with bacteriostasis and 1-log10 kill against clinically relevant Gram-negative bacteria in the murine thigh model. Twenty-seven clinical isolates (Pseudomonas aeruginosa, n = 10; Escherichia coli, n = 9; Klebsiella pneumoniae, n = 5; Enterobacter cloacae, n = 2; and Klebsiella aerogenes, n = 1) were tested. Mice were pretreated with cyclophosphamide (induce neutropenia) and uranyl nitrate (increase the exposure of test compound through predictable renal dysfunction). Two hours postinoculation, five doses of EVER206 were administered subcutaneously. EVER206 pharmacokinetics were determined in infected mice. Data were fit using maximum effect (Emax) models to elucidate the fAUC/MIC targets for stasis and 1-log10 bacterial kill (reported as mean [range] by species). EVER206 MICs (mg/L) ranged from 0.25 to 2 mg/L (P. aeruginosa), 0.06 to 2 mg/L (E. coli), 0.06 to 0.125 mg/L (E. cloacae), 0.06 mg/L (K. aerogenes), and 0.06 to 2 mg/L (K. pneumoniae). In vivo, the mean 0-h baseline bacterial burden was 5.57 ± 0.39 log10 CFU/thigh. Stasis was achieved in 9/10 P. aeruginosa (fAUC/MIC, 88.13 [50.33 to 129.74]), 9/9 E. coli (fAUC/MIC, 112.84 [19.19 to 279.38]), 2/2 E. cloacae (fAUC/MIC, 259.28 [124.08 to 394.47]), 0/1 K. aerogenes, and 4/5 K. pneumoniae (fAUC/MIC, 99.26 [62.3 to 144.43]) isolates tested. 1-log10 kill was achieved in 9/10 for P. aeruginosa (fAUC/MIC, 106.43 [55.22 to 152.08]), 3/9 for E. coli (fAUC/MIC, 258.96 [74.08 to 559.4]), and 1/2 for E. cloacae (fAUC/MIC, 255.33). Using the murine thigh model, the fAUC/MIC targets of EVER206 were assessed across a broad MIC distribution. Integrating these data with microbiologic and clinical exposure data will aid in determining the clinical dose of EVER206.
Collapse
Affiliation(s)
- Christian M. Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
11
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Kumari P, Kaul G, Kumar TA, Akhir A, Shukla M, Sharma S, Kamat SS, Chopra S, Chakrapani H. Heterocyclic Diaryliodonium-Based Inhibitors of Carbapenem-Resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0477322. [PMID: 36976008 PMCID: PMC10101131 DOI: 10.1128/spectrum.04773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Finding new therapeutic strategies against Gram-negative pathogens such as Acinetobacter baumannii is challenging. Starting from diphenyleneiodonium (dPI) salts, which are moderate Gram-positive antibacterials, we synthesized a focused heterocyclic library and found a potent inhibitor of patient-derived multidrug-resistant Acinetobacter baumannii strains that significantly reduced bacterial burden in an animal model of infection caused by carbapenem-resistant Acinetobacter baumannii (CRAB), listed as a priority 1 critical pathogen by the World Health Organization. Next, using advanced chemoproteomics platforms and activity-based protein profiling (ABPP), we identified and biochemically validated betaine aldehyde dehydrogenase (BetB), an enzyme that is involved in the metabolism and maintenance of osmolarity, as a potential target for this compound. Together, using a new class of heterocyclic iodonium salts, a potent CRAB inhibitor was identified, and our study lays the foundation for the identification of new druggable targets against this critical pathogen. IMPORTANCE Discovery of novel antibiotics targeting multidrug-resistant (MDR) pathogens such as A. baumannii is an urgent, unmet medical need. Our work has highlighted the potential of this unique scaffold to annihilate MDR A. baumannii alone and in combination with amikacin both in vitro and in animals, that too without inducing resistance. Further in depth analysis identified central metabolism to be a putative target. Taken together, these experiments lay down the foundation for effective management of infections caused due to highly MDR pathogens.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Grace Kaul
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - T. Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manjulika Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Suraj Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
13
|
Yu Z, Liu X, Du X, Chen H, Zhao F, Zhou Z, Wang Y, Zheng Y, Bergen PJ, Li X, Sun R, Fang L, Li W, Fan Y, Wu H, Guo B, Li J, Yu Y, Zhang J. Pharmacokinetics/pharmacodynamics of polymyxin B in patients with bloodstream infection caused by carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2022; 13:975066. [PMID: 36588676 PMCID: PMC9800617 DOI: 10.3389/fphar.2022.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Polymyxin B is a last-line therapy for carbapenem-resistant microorganisms. However, a lack of clinical pharmacokinetic/pharmacodynamic (PK/PD) data has substantially hindered dose optimization and breakpoint setting. Methods: A prospective, multi-center clinical trial was undertaken with polymyxin B [2.5 mg/kg loading dose (3-h infusion), 1.25 mg/kg/12 h maintenance dose (2-h infusion)] for treatment of carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI). Safety, clinical and microbiological efficacy were evaluated. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to determine the concentrations of polymyxin B in blood samples. Population pharmacokinetic (PK) modeling and Monte Carlo simulations were conducted to examine the susceptibility breakpoint for polymyxin B against BSI caused by CRKP. Results: Nine patients were enrolled and evaluated for safety. Neurotoxicity (5/9), nephrotoxicity (5/9), and hyperpigmentation (1/9) were recorded. Blood cultures were negative within 3 days of commencing therapy in all 8 patients evaluated for microbiological efficacy, and clinical cure or improvement occurred in 6 of 8 patients. Cmax and Cmin following the loading dose were 5.53 ± 1.80 and 1.62 ± 0.41 mg/L, respectively. With maintenance dosing, AUCss,24 h was 79.6 ± 25.0 mg h/L and Css,avg 3.35 ± 1.06 mg/L. Monte Carlo simulations indicated that a 1 mg/kg/12-hourly maintenance dose could achieve >90% probability of target attainment (PTA) for isolates with minimum inhibitory concentration (MIC) ≤1 mg/L. PTA dropped substantially for MICs ≥2 mg/L, even with a maximally recommended daily dose of 1.5 mg/kg/12-hourly. Conclusion: This is the first clinical PK/PD study evaluating polymyxin B for BSI. These results will assist to optimize polymyxin B therapy and establish its breakpoints for CRKP BSI.
Collapse
Affiliation(s)
- Zhenwei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxing Du
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Chen
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihui Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zheng
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Phillip J. Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xi Li
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Renhua Sun
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Li Fang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| |
Collapse
|
14
|
Karballaei-Mirzahosseini H, Kaveh-Ahangaran R, Shahrami B, Rouini MR, Najafi A, Ahmadi A, Sadrai S, Mojtahedzadeh A, Najmeddin F, Mojtahedzadeh M. Pharmacokinetic study of high-dose oral rifampicin in critically Ill patients with multidrug-resistant Acinetobacter baumannii infection. Daru 2022; 30:311-322. [PMID: 36069988 PMCID: PMC9715901 DOI: 10.1007/s40199-022-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Although rifampicin (RIF) is used as a synergistic agent for multidrug-resistant Acinetobacter baumannii (MDR-AB) infection, the optimal pharmacokinetic (PK) indices of this medication have not been studied in the intensive care unit (ICU) settings. This study aimed to evaluate the PK of high dose oral RIF following fasting versus fed conditions in terms of achieving the therapeutic goals in critically ill patients with MDR-AB infections. METHODS 29 critically ill patients were included in this study. Under fasting and non-fasting conditions, RIF was given at 1200 mg once daily through a nasogastric tube. Blood samples were obtained at seven time points: exactly before administration of the drug, and at 1, 2, 4, 8, 12, and 24 h after RIF ingestion. To quantify RIF in serum samples, high-performance liquid chromatography (HPLC) was used. The MONOLIX Software and the Monte Carlo simulations were employed to estimate the PK parameters and describe the population PK model. RESULTS The mean area under the curve over the last 24-h (AUC0-24) value and accuracy (mean ± standard deviation) in the fasting and fed states were 220.24 ± 119.15 and 290.55 ± 276.20 μg × h/mL, respectively. There was no significant difference among AUCs following fasting and non-fasting conditions (P > 0.05). The probability of reaching the therapeutic goals at the minimum inhibitory concentration (MIC) of 4 mg/L, was only 1.6%. CONCLUSION In critically ill patients with MDR-AB infections, neither fasting nor non-fasting administrations of high-dose oral RIF achieve the therapeutic aims. More research is needed in larger populations and with measuring the amount of protein-unbound RIF levels.
Collapse
Affiliation(s)
- Hossein Karballaei-Mirzahosseini
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Romina Kaveh-Ahangaran
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Bita Shahrami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Ahmadi
- Department of Anesthesiology and Critical Care, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Sadrai
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Najmeddin
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran.
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wang Y, Li C, Wang J, Bai N, Zhang H, Chi Y, Cai Y. The Efficacy of Colistin Combined with Amikacin or Levofloxacin against Pseudomonas aeruginosa Biofilm Infection. Microbiol Spectr 2022; 10:e0146822. [PMID: 36102678 PMCID: PMC9603716 DOI: 10.1128/spectrum.01468-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) biofilm infection is clinically prevalent and difficult to eradicate. In the present work, we aimed to evaluate the in vitro and in vivo efficacy of colistin (COL)-based combinations against PA biofilm. MICs and fractional inhibitory concentration indexes (FICIs) of four antibiotics (COL, amikacin, levofloxacin, and meropenem) to bioluminescent strain PAO1, carbapenem-resistant PAO1 (CRPAO1), and clinically isolated strains were assessed. Minimal biofilm eradication concentrations (MBECs) of monotherapy and combinations were examined by counting the live bacteria in biofilm, accompanied by visual confirmation using confocal laser-scanning microscopy. An animal biofilm infection model was established by implanting biofilm subcutaneously, and the therapeutic effect was evaluated according to the change in luminescence through a live animal bio-photonic imaging system. In vitro, even combined with 4 or 8 mg/L COL, meropenem needed to reach 128 or 256 mg/L to eradicate the biofilm. Moreover, 2 mg/L COL combined with 32 mg/L amikacin or 4-8 mg/L levofloxacin could kill the PAO1 and CRPAO1 in biofilm within 24 h. In vivo, COL combined with amikacin or levofloxacin could shorten the eradication time of biofilm than monotherapy. For PAO1 biofilm, combination therapy could eradicate the biofilm in all mice on the 5th day, whereas monotherapy only eradicated biofilms in almost half of the mice. For CRPAO1 biofilm, the biofilm eradication rate on the 6th day in the COL+ amikacin, amikacin, or COL alone regimen was 90%, 10%, or 40%, respectively. COL combined with levofloxacin did not show a better effect than each individual antibiotic. COL-based combinations containing levofloxacin or amikacin were promising choices for treating PA biofilm infection. IMPORTANCE Infections associated with PA biofilm formation are extremely challenging. When monotherapy fails to achieve optimal efficacy, combination therapy becomes the last option. After evaluating multiple drug combinations through a series of experiments in vitro and in vivo, we confirmed that colistin-based combinations containing levofloxacin or amikacin were promising choices for treating PA biofilm infection. The efficacy of these combinations derives from the different bactericidal mechanisms and the bacterial susceptibility to each antibiotic. This study provided a new regimen to solve the incurable problem of biofilm by using COL combined with other antibiotics.
Collapse
Affiliation(s)
- Yuhang Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Chunsun Li
- Laboratory of Department of Pulmonary and Critical Care Medicine, PLA General Hospital, Beijing, People’s Republic of China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Bai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Luterbach CL, Qiu H, Hanafin PO, Sharma R, Piscitelli J, Lin FC, Ilomaki J, Cober E, Salata RA, Kalayjian RC, Watkins RR, Doi Y, Kaye KS, Nation RL, Bonomo RA, Landersdorfer CB, van Duin D, Rao GG. A Systems-Based Analysis of Mono- and Combination Therapy for Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob Agents Chemother 2022; 66:e0059122. [PMID: 36125299 PMCID: PMC9578421 DOI: 10.1128/aac.00591-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance is a global threat. As "proof-of-concept," we employed a system-based approach to identify patient, bacterial, and drug variables contributing to mortality in patients with carbapenem-resistant Klebsiella pneumoniae (CRKp) bloodstream infections exposed to colistin (COL) and ceftazidime-avibactam (CAZ/AVI) as mono- or combination therapies. Patients (n = 49) and CRKp isolates (n = 22) were part of the Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE-1), a multicenter, observational, prospective study of patients with carbapenem-resistant Enterobacterales (CRE) conducted between 2011 and 2016. Pharmacodynamic activity of mono- and combination drug concentrations was evaluated over 24 h using in vitro static time-kill assays. Bacterial growth and killing dynamics were estimated with a mechanism-based model. Random Forest was used to rank variables important for predicting 30-day mortality. Isolates exposed to COL+CAZ/AVI had enhanced early bacterial killing compared to CAZ/AVI alone and fewer incidences of regrowth compared to COL and CAZ/AVI. The mean coefficient of determination (R2) for the observed versus predicted bacterial counts was 0.86 (range: 0.75 - 0.95). Bacterial subpopulation susceptibilities and drug mechanistic synergy were essential to describe bacterial killing and growth dynamics. The combination of clinical (hypotension), bacterial (IncR plasmid, aadA2, and sul3) and drug (KC50) variables were most predictive of 30-day mortality. This proof-of-concept study combined clinical, bacterial, and drug variables in a unified model to evaluate clinical outcomes.
Collapse
Affiliation(s)
- Courtney L. Luterbach
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hongqiang Qiu
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Patrick O. Hanafin
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rajnikant Sharma
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph Piscitelli
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenni Ilomaki
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Eric Cober
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert A. Salata
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Richard R. Watkins
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
| | - Keith S. Kaye
- Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gauri G. Rao
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Cai XJ, Chen Y, Zhang XS, Wang YZ, Zhou WB, Zhang CH, Wu B, Song HZ, Yang H, Yu XB. Population pharmacokinetic analysis, renal safety, and dosing optimization of polymyxin B in lung transplant recipients with pneumonia: A prospective study. Front Pharmacol 2022; 13:1019411. [PMID: 36313312 PMCID: PMC9608142 DOI: 10.3389/fphar.2022.1019411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: This study aims to characterize the population pharmacokinetics of polymyxin B in lung transplant recipients and optimize its dosage regimens. Patients and methods: This prospective study involved carbapenem-resistant organisms-infected patients treated with polymyxin B. The population pharmacokinetic model was developed using the NONMEM program. The clinical outcomes including clinical treatment efficacy, microbiological efficacy, nephrotoxicity, and hyperpigmentation were assessed. Monte Carlo simulation was performed to calculate the probability of target attainment in patients with normal or decreased renal function. Results: A total of 34 hospitalized adult patients were included. 29 (85.29%) patients were considered of clinical cure or improvement; 14 (41.18%) patients had successful bacteria elimination at the end of the treatment. Meanwhile, 5 (14.71%) patients developed polymyxin B-induced nephrotoxicity; 19 (55.88%) patients developed skin hyperpigmentation. A total of 164 concentrations with a range of 0.56–11.66 mg/L were obtained for pharmacokinetic modeling. The pharmacokinetic characteristic of polymyxin B was well described by a 1-compartment model with linear elimination, and only creatinine clearance was identified as a covariate on the clearance of polymyxin B. Monte Carlo simulations indicated an adjusted dosage regimen might be needed in patients with renal insufficiency and the currently recommended dose regimens by the label sheet of polymyxin B may likely generate a subtherapeutic exposure for MIC = 2 mg/L. Conclusion: Renal function has a significant effect on the clearance of polymyxin B in lung transplant recipients, and an adjustment of dosage was needed in patients with renal impairments.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Chen
- Division of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, China
| | - Xiao-Shan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Bo Zhou
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chun-Hong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hui-Zhu Song
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Hang Yang
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Chonnam National University, Gwangju, South Korea
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| |
Collapse
|
18
|
Chen H, Li P. Commentary: Population pharmacokinetics of colistin sulfate in critically ill patients: Exposure and clinical efficacy. Front Pharmacol 2022; 13:992085. [PMID: 36176436 PMCID: PMC9514206 DOI: 10.3389/fphar.2022.992085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Huadong Chen
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Piaopiao Li
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
19
|
Cebrero-Cangueiro T, Labrador-Herrera G, Carretero-Ledesma M, Herrera-Espejo S, Álvarez-Marín R, Pachón J, Cisneros JM, Pachón-Ibáñez ME. IgM-enriched immunoglobulin improves colistin efficacy in a pneumonia model by Pseudomonas aeruginosa. Life Sci Alliance 2022; 5:5/10/e202101349. [PMID: 35728946 PMCID: PMC9214247 DOI: 10.26508/lsa.202101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Using polyclonal IgM-enriched immunoglobulin (IgM-IG) as adjuvant therapy to colistin appears useful in the treatment of pneumonia caused by multidrug-resistant strains of P. aeruginosa. We evaluated the efficacy of ceftazidime or colistin in combination with polyclonal IgM-enriched immunoglobulin (IgM-IG), in an experimental pneumonia model (C57BL/6J male mice) using two multidrug-resistant Pseudomonas aeruginosa strains, both ceftazidime-susceptible and one colistin-resistant. Pharmacodynamically optimised antimicrobials were administered for 72 h, and intravenous IgM-IG was given as a single dose. Bacterial tissues count and the mortality were analysed. Ceftazidime was more effective than colistin for both strains. In mice infected with the colistin-susceptible strain, ceftazidime reduced the bacterial concentration in the lungs and blood (−2.42 and −3.87 log10 CFU/ml) compared with colistin (−0.55 and −1.23 log10 CFU/ml, respectively) and with the controls. Colistin plus IgM-IG reduced the bacterial lung concentrations of both colistin-susceptible and resistant strains (−2.91 and −1.73 log10 CFU/g, respectively) and the bacteraemia rate of the colistin-resistant strain (−44%). These results suggest that IgM-IG might be useful as an adjuvant to colistin in the treatment of pneumonia caused by multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Tania Cebrero-Cangueiro
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Gema Labrador-Herrera
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Soraya Herrera-Espejo
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
| | - Rocío Álvarez-Marín
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - José Miguel Cisneros
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain .,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
20
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
21
|
Xie YL, Jin X, Yan SS, Wu CF, Xiang BX, Wang H, Liang W, Yang BC, Xiao XF, Li ZL, Pei Q, Zuo XC, Peng Y. Population pharmacokinetics of intravenous colistin sulfate and dosage optimization in critically ill patients. Front Pharmacol 2022; 13:967412. [PMID: 36105229 PMCID: PMC9465641 DOI: 10.3389/fphar.2022.967412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: To explore the population pharmacokinetics of colistin sulfate and to optimize the dosing strategy for critically ill patients.Methods: The study enrolled critically ill adult patients who received colistin sulfate intravenously for more than 72 h with at least one measurement of plasma concentration. Colistin concentrations in plasma or urine samples were measured by ultraperformance liquid chromatography tandem mass spectrometry (LC-MS/MS). The population pharmacokinetics (PPK) model for colistin sulfate was developed using the Phoenix NLME program. Monte Carlo simulation was conducted to evaluate the probability of target attainment (PTA) for optimizing dosing regimens.Results: A total of 98 plasma concentrations from 20 patients were recorded for PPK modeling. The data were adequately described by a two-compartment model with linear elimination. During modeling, creatinine clearance (CrCL) and alanine aminotransferase (ALT) were identified as covariates of the clearance (CL) and volume of peripheral compartment distribution (V2), respectively. In addition, colistin sulfate was predominantly cleared by the nonrenal pathway with a median urinary recovery of 10.05% with large inter-individual variability. Monte Carlo simulations revealed a greater creatinine clearance associated with a higher risk of sub-therapeutic exposure to colistin sulfate. The target PTA (≥90%) of dosage regimens recommended by the label sheet was achievable only in patients infected by pathogens with MIC ≤0.5 mg/L or with renal impairments.Conclusion: Our study showed that the dose of intravenous colistin sulfate was best adjusted by CrCL and ALT. Importantly, the recommended dosing regimen of 1.0–1.5 million units daily was insufficient for patients with normal renal functions (CrCL ≥80 ml/min) or those infected by pathogens with MIC ≥1.0 mg/L. The dosage of colistin sulfate should be adjusted according to renal function and drug exposure.
Collapse
Affiliation(s)
- Yue-liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shan-shan Yan
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cui-fang Wu
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bi-xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- College of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Hui Wang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wu Liang
- Changsha VALS Technology Co. Ltd., Changsha, China
| | - Bing-chang Yang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xue-fei Xiao
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-ling Li
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| | - Yue Peng
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| |
Collapse
|
22
|
Chiusaroli L, Liberati C, Caseti M, Rulli L, Barbieri E, Giaquinto C, Donà D. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081088. [PMID: 36009956 PMCID: PMC9404799 DOI: 10.3390/antibiotics11081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Infections caused by multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria represent a challenge in the neonatal population due to disease severity and limited therapeutic possibilities compared to adults. The spread of antimicrobial resistance and drug availability differ significantly worldwide. The incidence of MDR bacteria has constantly risen, causing an increase in morbidity, mortality, and healthcare costs in both high-income (HIC) and low- and middle-income countries (LMIC). Therefore, more evidence is needed to define the possible use of newer molecules and to optimize combination regimens for the oldest antimicrobials in neonates. This systematic review aims to identify and critically appraise the current antimicrobial treatment options and the relative outcomes for MDR and XDR Gram-negative bacterial infections in the neonatal population. (2) Methods: A literature search for the treatment of MDR Gram-negative bacterial infections in neonates (term and preterm) was conducted in Embase, MEDLINE, and Cochrane Library. Studies reporting data on single-patient-level outcomes related to a specific antibiotic treatment for MDR Gram-negative bacterial infection in children were included. Studies reporting data from adults and children were included if single-neonate-level information could be identified. We focused our research on four MDROs: Enterobacterales producing extended-spectrum beta-lactamase (ESBL) or carbapenemase (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. PROSPERO registration: CRD42022346739 (3) Results: The search identified 11,740 studies (since January 2000), of which 22 fulfilled both the inclusion and exclusion criteria and were included in the analysis. Twenty of these studies were conducted in LMIC. Colistin is the main studied and used molecule to treat Gram-negative MDR bacteria for neonate patients in the last two decades, especially in LMIC, with variable evidence of efficacy. Carbapenems are still the leading antibiotics for ESBL Enterobacterales, while newer molecules (i.e., beta-lactam agents/beta-lactamase inhibitor combination) are promising across all analyzed categories, but data are few and limited to HICs. (4) Conclusions: Data about the treatment of Gram-negative MDR bacteria in the neonatal population are heterogeneous and limited mainly to older antimicrobials. Newer drugs are promising but not affordable yet for many LMICs. Therefore, strategies cannot be generalized but will differ according to the country’s epidemiology and resources. More extensive studies are needed to include new antimicrobials and optimize the combination strategies for the older ones.
Collapse
|
23
|
Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, Sy SKB. Prediction of Tissue Exposures of Meropenem, Colistin, and Sulbactam in Pediatrics Using Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:1427-1441. [PMID: 35947360 DOI: 10.1007/s40262-022-01161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The combination of polymyxins, meropenem, and sulbactam demonstrated efficacy against multi-drug-resistant bacillus Acinetobacter baumannii. These three antibiotics are commonly used against major blood, skin, lung, and heart muscle infections. OBJECTIVE The objective of this study was to predict drug disposition and extrapolate the efficacy in these tissues using a physiologically based pharmacokinetic modeling approach that linked drug exposures to their target pharmacodynamic indices associated with antimicrobial activities against A. baumannii. METHODS An adult physiologically based pharmacokinetic model was developed for meropenem, colistin, and sulbactam and scaled to pediatrics accounting for both renal and non-renal clearances. The model reliability was evaluated by comparing simulated plasma and tissue drug exposures to observed data. Target pharmacodynamic indices were used to evaluate whether pediatric and adult dosing regimens provided sufficient coverage. RESULTS The modeled plasma drug exposures in adults and pediatric patients were consistent with reported literature data. The mean fold errors for meropenem, colistin, and sulbactam were in the range of 0.710-1.37, 0.981-1.47, and 0.647-1.39, respectively. Simulated exposures in the blood, skin, lung, and heart were consistent with reported penetration rates. In a virtual pediatric population aged from 2 to < 18 years, the interpretive breakpoints were achieved in 85-90% of subjects for their targeted pharmacodynamic indices after administration of pediatric dosing regimens consisting of 30 mg/kg of meropenem, and 40 mg/kg of sulbactam three times daily as a 3-h or continuous infusion and 5 mg/kg/day of colistin base activity. CONCLUSIONS The physiologically based pharmacokinetic modeling supports pediatric dosing regimens of meropenem/colistin/sulbactam in a co-administration setting against infections in the blood, lung, skin, and heart tissues due to A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
24
|
Samarkos M, Papanikolaou K, Sourdi A, Paisios N, Mainas E, Paramythiotou E, Antoniadou A, Sambatakou H, Gargalianos-Kakolyris P, Skoutelis A, Daikos GL. The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study. Antibiotics (Basel) 2022; 11:antibiotics11081066. [PMID: 36009935 PMCID: PMC9405298 DOI: 10.3390/antibiotics11081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: It is not known whether different daily dosing schemes have different effects on colistin nephrotoxicity. We examined the effect of once- versus twice- or thrice-daily doses of colistin on renal function. (2) Methods: We performed a multicenter retrospective cohort study of hospitalized patients with a baseline glomerular filtration rate ≥ 50 mL/min who received intravenously the same colistin dose once (regimen A), twice (regimen B) or thrice daily (regimen C). The primary endpoint was acute kidney injury (AKI), defined as fulfilment of any of the RIFLE (Risk-Injury-Failure-Loss-End stage renal disease) criteria. (3) Results: We included 306 patients; 132 (43.1%) received regimen A, 151 (49.3%) regimen B, and 23 (7.5%) regimen C. Ninety-nine (32.4%) patients developed AKI; there was no difference between regimen A vs. B and C [45 (34.1%) vs. 54 (31.0%), p = 0.57]. In a propensity score−matched cohort, AKI was similar in patients receiving Regimen A, Regimen B, and Regimen C (31.6% vs. 33.3%, p = 0.78). On logistic regression analysis, diabetes was an independent predictor of AKI (OR = 4.59, 95% CI 2.03−10.39, p = 0.001) while eGFR > 80 mL/min (OR = 0.50, 95% CI 0.25−0.99, p = 0.048) was inversely associated with AKI. (4) Conclusions: Colistin once daily is not more nephrotoxic than the standard colistin regimens. The only independent predictor of nephrotoxicity was diabetes mellitus, while eGFR > 80 mL/min had a protective effect.
Collapse
Affiliation(s)
- Michael Samarkos
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Athena Sourdi
- 1st Propaedeutic Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Paisios
- 1st Department of Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece
| | - Efstratios Mainas
- 2nd Department of Medicine, Ippokrateion General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Helen Sambatakou
- 2nd Department of Medicine, Ippokrateion General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | - George L. Daikos
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
25
|
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and Pharmacodynamics of Fungal Defensin NZX Against Staphylococcus aureus-Induced Mouse Peritonitis Model. Front Microbiol 2022; 13:865774. [PMID: 35722282 PMCID: PMC9198545 DOI: 10.3389/fmicb.2022.865774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common pathogenic bacteria responsible for causing a life-threatening peritonitis disease. NZX, as a variant of fungal defensin plectasin, displayed potent antibacterial activity against S. aureus. In this study, the antibacterial and resistance characteristics, pharmacokinetics, and pharmacodynamics of NZX against the S. aureus E48 and S. aureus E48-induced mouse peritonitis model were studied, respectively. NZX exhibited a more rapid killing activity to S. aureus (minimal inhibitory concentration, 1 μg/ml) compared with linezolid, ampicillin and daptomycin, and serial passaging of S. aureus E48 for 30 days at 1/2 × MIC, NZX had a lower risk of resistance compared with ampicillin and daptomycin. Also, it displayed a high biocompatibility and tolerance to physiological salt, serum environment, and phagolysosome proteinase environment, except for acid environment in phagolysosome. The murine serum protein-binding rate of NZX was 89.25% measured by ultrafiltration method. Based on the free NZX concentration in serum after tail vein administration, the main pharmacokinetic parameters for T1/2, Cmax, Vd, MRT, and AUC ranged from 0.32 to 0.45 h, 2.85 to 20.55 μg/ml, 1469.10 to 2073.90 ml/kg, 0.32 to 0.56 h, and 1.11 to 8.89 μg.h/ml, respectively. Additionally, the in vivo pharmacodynamics against S. aureus demonstrated that NZX administrated two times by tail vein at 20 mg/kg could rescue all infected mice in the lethal mouse peritonitis model. And NZX treatment (20 mg/kg) significantly reduced CFU counts in the liver, lung, and spleen, especially for intracellular bacteria in the peritoneal fluid, which were similar or superior to those of daptomycin. In vivo efficacies of NZX against total bacteria and intracellular bacteria were significantly correlated with three PK/PD indices of ƒAUC/MIC, ƒCmax/MIC, and ƒT% > MIC analyzed by a sigmoid maximum-effect model. These results showed that NZX may be a potential candidate for treating peritonitis disease caused by intracellular S. aureus.
Collapse
Affiliation(s)
- Xueling Zheng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
26
|
Yu XB, Zhang XS, Wang YX, Wang YZ, Zhou HM, Xu FM, Yu JH, Zhang LW, Dai Y, Zhou ZY, Zhang CH, Lin GY, Pan JY. Population Pharmacokinetics of Colistin Sulfate in Critically Ill Patients: Exposure and Clinical Efficacy. Front Pharmacol 2022; 13:915958. [PMID: 35784679 PMCID: PMC9243584 DOI: 10.3389/fphar.2022.915958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Presently, colistin is commercially available in two different forms, namely, colistin sulfate and its sulphomethylated derivative, colistimethate sodium (CMS). However, in the currently reported studies, most of the clinical studies on colistin for parenteral use are referred to as CMS. Data on the pharmacokinetics (PK), clinical efficacy, and side effects of colistin sulfate in clinical use have not been reported.Methods: This retrospective study was performed on carbapenem-resistant organism (CRO)-infected patients treated with colistin sulfate for more than 72 h. The population pharmacokinetic model was developed using the NONMEM program. The clinical outcomes including clinical treatment efficacy, microbiological eradication, and nephrotoxicity were assessed. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) in patients with normal or decreased renal function.Results: A total of 42 patients were enrolled, of which 25 (59.52%) patients were considered clinical treatment success and 29 (69.06%) patients had successful bacteria elimination at the end of treatment. Remarkably, no patient developed colistin sulfate-related nephrotoxicity. A total of 112 colistin concentrations with a range of 0.28–6.20 mg/L were included for PK modeling. The PK characteristic of colistin was well illustrated by a one-compartment model with linear elimination, and creatinine clearance (CrCL) was identified as a covariate on the clearance of colistin sulfate that significantly explained inter-individual variability. Monte Carlo simulations showed that the recommended dose regimen of colistin sulfate, according to the label sheet, of a daily dose of 1–1.5 million IU/day, given in 2–3 doses, could attain PTA > 90% for MICs ≤ 0.5 μg/mL, and that a daily dose of 1 million IU/day could pose a risk of subtherapeutic exposure for MIC ≥1 μg/ml in renal healthy patients.Conclusion: Renal function significantly affects the clearance of colistin sulfate. A dose of 750,000 U every 12 h was recommended for pathogens with MIC ≤1 μg/ml. The dosage recommended by the label inserts had a risk of subtherapeutic exposure for pathogens with MIC ≥2 μg/ml. Despite higher exposure to colistin in patients with acute renal insufficiency, dose reduction was not recommended.
Collapse
Affiliation(s)
- Xu-ben Yu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Chonnam National University, Gwangju, South Korea
- *Correspondence: Xu-ben Yu, ; Jing-Ye Pan,
| | - Xiao-Shan Zhang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ye-Xuan Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hong-Min Zhou
- Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Min Xu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jun-Hui Yu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Li-Wen Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ying Dai
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Ye Zhou
- Clinical Research Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Hong Zhang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan-Yang Lin
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-Ye Pan
- Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xu-ben Yu, ; Jing-Ye Pan,
| |
Collapse
|
27
|
Fan Y, Li Y, Chen Y, Yu J, Liu X, Li W, Guo B, Li X, Wang J, Wu H, Wang Y, Hu J, Guo Y, Hu F, Xu X, Cao G, Wu J, Zhang Y, Zhang J, Wu X. Pharmacokinetics and Pharmacodynamics of Colistin Methanesulfonate in Healthy Chinese Subjects after Multi-Dose Regimen. Antibiotics (Basel) 2022; 11:antibiotics11060798. [PMID: 35740204 PMCID: PMC9220111 DOI: 10.3390/antibiotics11060798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Colistin methanesulfonate (CMS) is an important treatment option for infections caused by carbapenem-resistant Gram-negative organisms (CROs). This study evaluated the pharmacokinetic/pharmacodynamic (PK/PD) profiles and safety of CMS in Chinese subjects following a recommended dosage. A total of 12 healthy Chinese subjects received CMS injections at 2.5 mg/kg once every 12 h for 7 consecutive days. The PK/PD profiles of the active form of CMS, colistin, against CROs were analyzed with the Monte Carlo simulation method. No serious adverse events were observed. The average steady-state plasma concentrations of CMS and colistin were 4.41 ± 0.75 μg/mL and 1.27 ± 0.27 μg/mL, and the steady-state exposures (AUC0−12,ss) were 52.93 ± 9.05 h·μg/mL and 15.28 ± 3.29 h·μg/mL, respectively. Colistin, at its minimum inhibitory concentration (MIC) of 0.5 μg/mL, has >90% probability to reduce CROs by ≥1 log. The PK/PD breakpoints for the ≥1 log kill were ≥MIC90 for carbapenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa, but were ≤MIC50 for carbapenem-resistant Acinetobacter baumannii. The recommended dose regimen of CMS for 7 consecutive days was safe in Chinese subjects. The systemic exposure of colistin showed a high probability of being sufficient for most CROs, but was not sufficient for some carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuancheng Chen
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jicheng Yu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjing Wang
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoyong Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guoying Cao
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jufang Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingyuan Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| | - Xiaojie Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| |
Collapse
|
28
|
Jia X, Yin Z, Zhang W, Guo C, Du S, Zhang X. Effectiveness and Nephrotoxicity of Intravenous Polymyxin B in Carbapenem-Resistant Gram-Negative Bacterial Infections Among Chinese Children. Front Pharmacol 2022; 13:902054. [PMID: 35712713 PMCID: PMC9197179 DOI: 10.3389/fphar.2022.902054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: No clinical study on the use of polymyxin B in Chinese children has been reported, thus making it difficult for pediatric clinicians to rationally select these drugs. Methods: A retrospective analysis of children treated with polymyxin B during hospitalization in a hospital from June 2019 to June 2021 was conducted to analyze its effectiveness and the incidence of acute kidney injury (AKI) during treatment with polymyxin B. Results: A total of 55 children were included in this study, and the results showed that the intravenous polymyxin B-based regimen had an effective rate of 52.7% in the treatment of Carbapenem-resistant Gram-negative bacterial (CR-GNB) infection in children. The results of the subgroup analysis showed that the course of treatment was longer in the favorable clinical response group than in the unfavorable outcome group (p = 0.027) and that electrolyte disturbances in children during the course of treatment could lead to unfavorable clinical outcomes (p = 0.042). The risk of incidence of AKI during treatment was 27.3%, and the all-cause mortality rate in the children on their discharge from the hospital was 7.3%. Conclusion: Polymyxin B can be used as a salvage therapy for CR-GNB infection in children when no other susceptible antibiotics are available, and the monitoring of kidney function should be strengthened.
Collapse
Affiliation(s)
- Xuedong Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
- *Correspondence: Xuedong Jia, ; Shuzhang Du,
| | - Zhao Yin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| | - Wan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| | - Conghui Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
- *Correspondence: Xuedong Jia, ; Shuzhang Du,
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| |
Collapse
|
29
|
Chauzy A, Akrong G, Aranzana-Climent V, Moreau J, Prouvensier L, Mirfendereski H, Buyck JM, Couet W, Marchand S. PKPD Modeling of the Inoculum Effect of Acinetobacter baumannii on Polymyxin B in vivo. Front Pharmacol 2022; 13:842921. [PMID: 35370719 PMCID: PMC8966651 DOI: 10.3389/fphar.2022.842921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The reduction in antimicrobial activity at high bacterial counts is a microbiological phenomenon known as the inoculum effect (IE). In a previous in vitro study, a significant IE was observed for polymyxin B (PMB) against a clinical isolate of Acinetobacter baumannii, and well described by a new pharmacokinetic-pharmacodynamic model. Few in vivo studies have investigated the impact of inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous administration (1, 15 and 40 mg/kg) were studied in a neutropenic murine thigh infection model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment model including saturable absorption from the subcutaneous injection site and linear elimination. The previous in vitro PD model was modified to adequately describe the decrease of PMB efficacy with increased inoculum size in infected mice. The IE was modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously characterized in vitro an IE was confirmed in vivo.
Collapse
Affiliation(s)
- Alexia Chauzy
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Grace Akrong
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Vincent Aranzana-Climent
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Jérémy Moreau
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - Laure Prouvensier
- INSERM U1070, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Hélène Mirfendereski
- INSERM U1070, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Julien M Buyck
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - William Couet
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| | - Sandrine Marchand
- INSERM U1070, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France.,Département de Toxicologie et de Pharmacocinétique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
30
|
Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect Dis Ther 2022; 11:683-694. [PMID: 35175509 PMCID: PMC8960525 DOI: 10.1007/s40121-022-00597-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) causes colonization and infection predominantly in hospitalized patients. Distinction between the two is a challenge. When CRAB is isolated from a non-sterile site (soft tissue, respiratory samples, etc.), it probably represents colonization unless clear signs of infection (fever, elevated white blood count, elevated inflammatory markers and abnormal imaging) are present. Treatment is warranted only for true infections. In normally sterile sites (blood, cerebrospinal fluid) the presence of indwelling medical devices (catheters, stents) should be considered when evaluating positive cultures. In the absence of such devices, the isolate represents an infection and should be treated. If an indwelling device is present and there are no signs of active infection, the device should be replaced if possible, and no treatment is required. If there are signs of an active infection the device should be removed or replaced, and treatment should be administered. Current treatments options and clinical data are limited. No agent or combination regimen has been shown to be superior to any other in randomized clinical trials. Ampicillin-sulbactam appears to have the best evidence for initial use. This is probably due to its ability to saturate penicillin-binding proteins 1 and 3 when given in high dose. Tigecycline when used should be given in high dose as well. Polymyxins are a treatment option but are difficult to dose correctly and have significant side effects. Newer treatment options such as eravacycline and cefiderocol have potential; however, currently there are not enough data to support their use as single agents. Combination therapy appears to be the best treatment option and should always include high-dose ampicillin-sulbactam combined with another active agent such as high-dose tigecycline, polymyxins, etc. These infections require a high complexity of skill, and an infectious disease specialist should be involved in the management of these patients.
Collapse
Affiliation(s)
- Carmi Bartal
- Faculty of Health Sciences, Internal Medicine, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Kenneth V I Rolston
- The Department of Infectious Diseases, Infection Control, and Employee Health, Unit 1460, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lior Nesher
- Faculty of Health Sciences, Internal Medicine, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheba, Israel.
- Faculty of Health-Sciences, Infectious Disease Institute, Soroka Medical Center, Ben-Gurion University of the Negev, 1 Rager Street, Beer-Sheba, Israel.
| |
Collapse
|
31
|
A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat Commun 2022; 13:1625. [PMID: 35338128 PMCID: PMC8956739 DOI: 10.1038/s41467-022-29234-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Gram-negative pathogens is an urgent global medical challenge. The old polymyxin lipopeptide antibiotics (polymyxin B and colistin) are often the only therapeutic option due to resistance to all other classes of antibiotics and the lean antibiotic drug development pipeline. However, polymyxin B and colistin suffer from major issues in safety (dose-limiting nephrotoxicity, acute toxicity), pharmacokinetics (poor exposure in the lungs) and efficacy (negligible activity against pulmonary infections) that have severely limited their clinical utility. Here we employ chemical biology to systematically optimize multiple non-conserved positions in the polymyxin scaffold, and successfully disconnect the therapeutic efficacy from the toxicity to develop a new synthetic lipopeptide, structurally and pharmacologically distinct from polymyxin B and colistin. This resulted in the clinical candidate F365 (QPX9003) with superior safety and efficacy against lung infections caused by top-priority MDR pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. Polymyxins are often the last therapeutic option for multidrug-resistant (MDR) bacteria, but have suboptimal safety and efficacy. Here the authors report the discovery and development of a synthetic lipopeptide with an improved safety and efficacy against top-priority MDR Gram-negative pathogens.
Collapse
|
32
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
33
|
Bian X, Liu X, Hu F, Feng M, Chen Y, Bergen PJ, Li J, Li X, Guo Y, Zhang J. Pharmacokinetic/Pharmacodynamic Based Breakpoints of Polymyxin B for Bloodstream Infections Caused by Multidrug-Resistant Gram-Negative Pathogens. Front Pharmacol 2022; 12:785893. [PMID: 35058776 PMCID: PMC8763792 DOI: 10.3389/fphar.2021.785893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
The latest PK/PD findings have demonstrated negligible efficacy of intravenous polymyxins against pulmonary infections. We investigated pharmacokinetic/pharmacodynamic (PK/PD)-based breakpoints of polymyxin B for bloodstream infections and the rationality of the recent withdrawal of polymyxin susceptibility breakpoints by the CLSI. Polymyxin B pharmacokinetic data were obtained from a phase I clinical trial in healthy Chinese subjects and population pharmacokinetic parameters were employed to determine the exposure of polymyxin B at steady state. MICs of 1,431 recent clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae collected from across China were determined. Monte-Carlo simulations were performed for various dosing regimens (0.42–1.5 mg/kg/12 h via 1 or 2-h infusion). The probability of target attainment, PK/PD breakpoints and cumulative fraction of response were determined for each bacterial species. MIC90 of polymyxin B was 1 mg/L for P. aeruginosa and 0.5 mg/L for A. baumannii and K. pneumoniae. With the recommended polymyxin B dose of 1.5–2.5 mg/kg/day, the PK/PD susceptible breakpoints for P. aeruginosa, A. baumannii and K. pneumoniae were 2, 1 and 1 mg/L respectively for bloodstream infection. For Chinese patients, polymyxin B dosing regimens of 0.75–1.5 mg/kg/12 h for P. aeruginosa and 1–1.5 mg/kg/12 h for A. baumannii and K. pneumoniae were appropriate. Breakpoint determination should consider the antimicrobial PK/PD at infection site and delivery route. The recent withdrawal of polymyxin susceptible breakpoint by CLSI primarily based on poor efficacy against lung infections needs to be reconsidered for bloodstream infections.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China.,National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China.,National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuancheng Chen
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China.,National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China.,National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Landersdorfer CB, Nation RL. Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking Back to Move Forward. Front Pharmacol 2021; 12:770518. [PMID: 34776982 PMCID: PMC8585766 DOI: 10.3389/fphar.2021.770518] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Within a few years after the first successful clinical use of penicillin, investigations were conducted in animal infection models to explore a range of factors that were considered likely to influence the antibacterial response to the drug. Those studies identified that the response was influenced by not only the total daily dose but also the interval between individual doses across the day, and whether penicillin was administered in an intermittent or continuous manner. Later, as more antibiotics were discovered and developed, antimicrobial pharmacologists began to measure antibiotic concentrations in biological fluids. This enabled the linking of antibacterial response at a single time point in an animal or in vitro infection model with one of three summary pharmacokinetic (PK) measures of in vivo exposure to the antibiotic. The summary PK exposure measures were normalised to the minimum inhibitory concentration (MIC), an in vitro measure of the pharmacodynamic (PD) potency of the drug. The three PK-PD indices (ratio of maximum concentration to MIC, ratio of area under the concentration-time curve to MIC, time concentration is above MIC) have been used extensively since the 1980s. While these MIC-based summary PK-PD metrics have undoubtedly facilitated the development of new antibiotics and the clinical application of both new and old antibiotics, it is increasingly recognised that they have a number of substantial limitations. In this article we use a historical perspective to review the origins of the three traditional PK-PD indices before exploring in detail their limitations and the implications arising from those limitations. Finally, in the interests of improving antibiotic development and dosing in patients, we consider a model-based approach of linking the full time-course of antibiotic concentrations with that of the antibacterial response. Such an approach enables incorporation of other factors that can influence treatment outcome in patients and has the potential to drive model-informed precision dosing of antibiotics into the future.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
35
|
Population Pharmacokinetics of Colistin Methanesulfonate Sodium and Colistin in Critically Ill Patients: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14090903. [PMID: 34577603 PMCID: PMC8472798 DOI: 10.3390/ph14090903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding the pharmacokinetics parameter of colistin methanesulfonate sodium (CMS) and colistin is needed to optimize the dosage regimen in critically ill patients. However, there is a scarcity of pharmacokinetics parameters in this population. This review provides a comprehensive understanding of CMS and colistin pharmacokinetics parameters in this population. The relevant studies published in English that reported on the pharmacokinetics of CMS and colistin from 2000 until 2020 were systematically searched using the PubMed and Scopus electronic databases. Reference lists of articles were reviewed to identify additional studies. A total of 252 citation titles were identified, of which 101 potentially relevant abstracts were screened, and 25 full-text articles were selected for detailed analysis. Of those, 15 studies were included for the review. This review has demonstrated vast inter-study discrepancies in colistin plasma concentration and the pharmacokinetics parameter estimates. The discrepancies might be due to complex pathophysiological changes in the population studied, differences in CMS brand used, methodology, and study protocol. Application of loading dose of CMS and an additional dose of CMS after dialysis session was recommended by some studies. In view of inter-patient and intra-patient variability in colistin plasma concentration and pharmacokinetics parameters, personalized colistin dosing for this population is recommended.
Collapse
|
36
|
Generating Genotype-Specific Aminoglycoside Combinations with Ceftazidime/Avibactam for KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0069221. [PMID: 34152820 DOI: 10.1128/aac.00692-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibiotic combinations, including ceftazidime/avibactam (CAZ/AVI), are frequently employed to combat KPC-producing Klebsiella pneumoniae (KPC-Kp), though such combinations have not been rationally optimized. Clinical KPC-Kp isolates with common genes encoding aminoglycoside-modifying enzymes (AMEs), aac(6')-Ib' or aac(6')-Ib, were used in static time-kill assays (n = 4 isolates) and the hollow-fiber infection model (HFIM; n = 2 isolates) to evaluate the activity of gentamicin, amikacin, and CAZ/AVI alone and in combinations. A short course, one-time aminoglycoside dose was also evaluated. Gentamicin plus CAZ/AVI was then tested in a mouse pneumonia model. Synergy with CAZ/AVI was more common with amikacin for aac(6')-Ib'-containing KPC-Kp but more common with gentamicin for aac(6')-Ib-containing isolates in time-kill assays. In the HFIM, although the isolates were aminoglycoside-susceptible at baseline, aminoglycoside monotherapies displayed variable initial killing, followed by regrowth and resistance emergence. CAZ/AVI combined with amikacin or gentamicin resulted in undetectable counts 50 h sooner than CAZ/AVI monotherapy against KPC-Kp with aac(6')-Ib'. CAZ/AVI monotherapy failed to eradicate KPC-Kp with aac(6')-Ib and a combination with gentamicin led to undetectable counts 70 h sooner than with amikacin. A one-time aminoglycoside dose with CAZ/AVI provided similar killing to aminoglycosides dosed for 7 days. In the mouse pneumonia model (n = 1 isolate), gentamicin and CAZ/AVI achieved a 6.0-log10 CFU/lung reduction at 24 h, which was significantly greater than either monotherapy (P < 0.005). Aminoglycosides in combination with CAZ/AVI were promising for KPC-Kp infections; this was true even for a one-time aminoglycoside dose. Selecting aminoglycosides based on AME genes or susceptibilities can improve the pharmacodynamic activity of the combination.
Collapse
|
37
|
Development of novel immunoprophylactic agents against multidrug resistant Gram-negative bacterial infections. Antimicrob Agents Chemother 2021; 65:e0098521. [PMID: 34370589 DOI: 10.1128/aac.00985-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread emergence of antibiotic resistance including multidrug resistance in Gram negative (G-) bacterial pathogens poses a critical challenge to the current antimicrobial armamentarium. Antibody-drug conjugates (ADCs), primarily used in anti-cancer therapy, offer a promising treatment alternative due to their ability to deliver a therapeutic molecule while simultaneously activating the host immune response. The Cloudbreak® platform is being used to develop ADCs to treat infectious diseases, composed of a therapeutic targeting moiety (TM) attached via a non-cleavable linker to an effector moiety (EM) to treat infectious diseases. In this proof-of-concept study, 21 novel dimeric peptidic molecules (TMs) were evaluated for activity against a screening panel of G- pathogens. The activity of the TMs were not impacted by existing drug resistance. Potent TMs were conjugated to the Fc fragment of human IgG1 (EM) resulting in 4 novel ADCs. These ADCs were evaluated for immunoprophylactic efficacy in a neutropenic mouse model of deep thigh infection. In colistin-sensitive infections, 3 of the 4 ADCs offered similar protection as therapeutically dosed colistin while CTC-171 offered enhanced protection. The efficacy of these ADCs was unchanged in colistin-resistant infections. Together, these results indicate that the ADCs used here are capable of potent binding to G- pathogens regardless of LPS modifications that otherwise lead to antibiotic resistance and support further exploration of ADCs in the treatment of drug resistant G- bacterial infections.
Collapse
|
38
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
39
|
Gontijo AVL, Cavalieri AVG. Optimal control for colistin dosage selection. J Pharmacokinet Pharmacodyn 2021; 48:803-813. [PMID: 34156631 PMCID: PMC8217983 DOI: 10.1007/s10928-021-09769-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/12/2021] [Indexed: 12/04/2022]
Abstract
Optimization of antibiotic administration helps minimizing cases of bacterial resistance. Dosages are often selected by trial and error using a pharmacokinetic (PK) model. However, this is limited to the range of tested dosages, restraining possible treatment choices, especially for the loading doses. Colistin is a last-resort antibiotic with a narrow therapeutic window; therefore, its administration should avoid subtherapeutic or toxic concentrations. This study formulates an optimal control problem for dosage selection of colistin based on a PK model, minimizing deviations of colistin concentration to a target value and allowing a specific dosage optimization for a given individual. An adjoint model was used to provide the sensitivity of concentration deviations to dose changes. A three-compartment PK model was adopted. The standard deviation between colistin plasma concentrations and a target set at 2 mg/L was minimized for some chosen treatments and sample patients. Significantly lower deviations from the target concentration are obtained for shorter administration intervals (e.g. every 8 h) compared to longer ones (e.g. every 24 h). For patients with normal or altered renal function, the optimal loading dose regimen should be divided into two or more administrations to attain the target concentration quickly, with a high first loading dose followed by much lower ones. This regimen is not easily obtained by trial and error, highlighting advantages of the method. The present method is a refined optimization of antibiotic dosage for the treatment of infections. Results for colistin suggest significant improvement in treatment avoiding subtherapeutic or toxic concentrations.
Collapse
Affiliation(s)
- Aline Vidal Lacerda Gontijo
- Department of Clinical and Toxicological Analysis, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, Alfenas, MG, 37130-001, Brazil.
- Department of Pharmacy, Anhanguera Educacional, São José dos Campos, SP, Brazil.
| | - André V G Cavalieri
- Divisão de Engenharia Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
| |
Collapse
|
40
|
Wu X, Huang C, Wang H, Ji J, Ying C, Xiao Y. Optimal Empiric Polymyxin B Treatment of Patients Infected with Gram-Negative Organisms Detected Using a Blood Antimicrobial Surveillance Network in China. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2593-2603. [PMID: 34168431 PMCID: PMC8216662 DOI: 10.2147/dddt.s313714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Background Few pharmacodynamics studies to date have evaluated the efficacy and safety of polymyxin B (PMB) in treating patients with bloodstream infections (BSIs) in China. Methods Patients with BSIs were identified using an antimicrobial surveillance network, and their pathogens were isolated. Patients were treated with a loading dose of PMB followed by either a weight-based or weight-independent maintenance dose. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) and cumulative fraction of response (CFR) against Gram-negative organisms in patients with normal or decreased renal function. Results A total of 10,066 Gram-negative organisms, including 5500 Escherichia coli (Eco), 2519 Klebsiella pneumoniae (Kpn), 501 Acinetobacter baumannii (Aba), were isolated from patients with BSIs. Although these strains were highly resistant to carbapenem, they remained susceptible to PMB. Among patients with renal impairment (mean CrCL, 42 mL/min), a PMB 2.5 mg/kg loading dose followed by a maintenance dose of 60 mg q12h reached ≥90% PTA against isolates with an MIC of 2 mg/L, with a low risk of toxicity. Among patients with normal renal function (mean CrCL, 123 mL/min), all simulated regimens showed PTAs of 25–80%. A weight-based loading dose followed by either a weight-based or weight-independent maintenance dose showed a promising CFR, especially in patients with renal impairment, with CFRs ≥90% against carbapenem-resistant Eco, Kpn, and Aba. Simulated regimens showed a disappointing CFR (<80%) against carbapenem-resistant Pae in patients with normal renal function. Based on the optimal balance of efficacy and toxicity, a fixed maintenance dose of 60 mg q12h among patients with renal impairment yielded a CFR similar to regimens based on total body weight and was associated with a probability of toxicity (12.5%) significantly lower than that of simulations based on total body weight. Among patients with normal renal function, a weight-based maintenance dose of 1.25 mg/kg q12h achieved a higher CFR than a fixed maintenance dose, without significantly increasing toxicity. Conclusion A 2.5 mg/kg loading dose of PMB is optimal, regardless of renal function. A fixed maintenance dose of 60 mg q12h is recommended for empirical treatment of patients with renal impairment infected with Eco, Kpn, and Aba, whereas a weight-based maintenance dose of 1.25 mg/kg is recommended for patients with normal renal function.
Collapse
Affiliation(s)
- Xingbing Wu
- Department of Infectious Disease, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Hui Wang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
41
|
Colistin Dosing Regimens against Pseudomonas aeruginosa in Critically Ill Patients: An Application of Monte Carlo Simulation. Antibiotics (Basel) 2021; 10:antibiotics10050595. [PMID: 34067716 PMCID: PMC8157232 DOI: 10.3390/antibiotics10050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Our aims are to assess various colistin dosing regimens against Pseudomonas aeruginosa (P. aeruginosa) infection in critically ill patients and to propose an appropriate regimen based on microbiological data. A Monte Carlo simulation was performed using the published colistin’s pharmacokinetic parameters of critically ill patients, the published pharmacodynamic target from a mouse thigh infection model, and the minimum inhibitory concentration (MIC) results from a Vietnamese hospital. The probability of target attainment (PTA) of 80% and cumulative fraction of response (CFR) of 90% were used to evaluate the efficacy of each regimen. Of 121 P. aeruginosa laboratory datasets, the carbapenem-resistant P. aeruginosa (CRPA) and the colistin-resistant P. aeruginosa rates were 29.8% and 0.8%, respectively. MIC50,90 were both 0.5 mg/L. The simulated results showed that at MIC of 2 mg/L, most regimens could not reach the PTA target, particularly in patients with normal renal function (Creatinine clearance (CrCl) ≥ 80 mL/min). At MIC of 0.5 mg/L and 1 mg/L, current recommendations still worked well. On the basis of these results, aside from lung infection, our study recommends three regimens against P. aeruginosa infection at MIC of 0.5 mg/L, 1 mg/L, and 2 mg/L. In conclusion, higher total daily doses and fractionated colistin dosing regimens could be the strategy for difficult-to-acquire PTA cases, while a less aggressive dose might be appropriate for empirical treatment in settings with low MIC50/90.
Collapse
|
42
|
Synchrotron-based X-ray fluorescence microscopy reveals accumulation of polymyxins in single human alveolar epithelial cells. Antimicrob Agents Chemother 2021; 65:AAC.02314-20. [PMID: 33649114 PMCID: PMC8092916 DOI: 10.1128/aac.02314-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 μM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 μM, respectively. The corresponding intracellular concentrations following the treatment at 5 μM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.
Collapse
|
43
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
44
|
Zeng H, Zeng Z, Kong X, Zhang H, Chen P, Luo H, Chen Y. Effectiveness and Nephrotoxicity of Intravenous Polymyxin B in Chinese Patients With MDR and XDR Nosocomial Pneumonia. Front Pharmacol 2021; 11:579069. [PMID: 33613276 PMCID: PMC7892461 DOI: 10.3389/fphar.2020.579069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Nosocomial pneumonia is a major health and economic burden globally. Multidrug-resistant (MDR) or extensively drug-resistant (XDR) Gram-negative bacteria are the most common causative pathogens in critically-ill patients. Polymyxin B is a salvage therapy for MDR Gram-negative pathogens; however, the current literature on its effectiveness and nephrotoxicity is limited, including in Chinese patients. Methods: We retrospectively analyzed 107 patients with nosocomial pneumonia caused by MDR or XDR Gram-negative bacteria treated with intravenous polymyxin B (2–3 mg/kg/day). Renal function was evaluated on the day before commencement of polymyxin B therapy and on the third and 7 days of treatment. Univariate and multivariate analyses were conducted to determine risk factors for the effectiveness and nephrotoxicity of polymyxin B. Sixty-seven (62.6%) and sixty-five (60.7%) patients had favorable clinical and microbiological responses, respectively. Acute physiology and chronic health evaluation II (APACHE II) scores, cardio-pulmonary resuscitation (CPR) history, numbers of pathogens per patient and a favorable microbiological response were independently associated with favorable clinical outcomes of polymyxin B treatment in Chinese patients with MDR or XDR nosocomial pneumonia. Initial renal dysfunction was not associated with late nephrotoxicity (on day 7), although early nephrotoxicity (on day 3) was independently associated with late nephrotoxicity (OR = 39.43, 95% CI 7.64–203.62, p = 0.00). Conclusion: Our findings support polymyxin B treatment for MDR and XDR pneumonia, with the severity of disease and polymicrobial infection being risk factors for a poor clinical outcome. Nephrotoxicity following 3 days of polymyxin B treatment was found to be a reliable risk factor for later nephrotoxicity.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Zihang Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Xianglong Kong
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| |
Collapse
|
45
|
Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions. Clin Pharmacokinet 2021; 60:409-445. [PMID: 33486720 DOI: 10.1007/s40262-020-00981-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Antibiotic therapy is one of the main treatments for cystic fibrosis (CF). It aims to eradicate bacteria during early infection, calms down the inflammatory process, and leads to symptom resolution of pulmonary exacerbations. CF can modify both the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of antibiotics, therefore specific PK/PD endpoints should be determined in the context of CF. Currently available data suggest that optimal PK/PD targets cannot be attained in sputum with intravenous aminoglycosides. Continuous infusion appears preferable for β-lactam antibiotics, but optimal concentrations in sputum are unlikely to be reached, with some possible exceptions such as meropenem and ceftolozane. Usual doses are likely suboptimal for fluoroquinolones and linezolid, whereas daily doses of 45-60 mg/kg and 200 mg could be convenient for vancomycin and doxycycline, respectively. Weekly azithromycin doses of 22-30 mg/kg could also be appropriate for its anti-inflammatory effect. The difficulty with achieving optimal concentrations supports the use of combined treatments and the inhaled administration route, as very high local concentrations, concomitantly with low systemic exposure, can be obtained with the inhaled route for aminoglycosides, colistin, and fluoroquinolones, thus minimizing the risk of toxicity.
Collapse
|
46
|
Hua X, Li C, Pogue JM, Sharma VS, Karaiskos I, Kaye KS, Tsuji BT, Bergen PJ, Zhu Y, Song J, Li J. ColistinDose, a Mobile App for Determining Intravenous Dosage Regimens of Colistimethate in Critically Ill Adult Patients: Clinician-Centered Design and Development Study. JMIR Mhealth Uhealth 2020; 8:e20525. [PMID: 33325835 PMCID: PMC7748388 DOI: 10.2196/20525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023] Open
Abstract
Background Determining a suitable dose of intravenous colistimethate is challenging because of complicated pharmacokinetics, confusing terminology, and the potential for renal toxicity. Only recently have reliable pharmacokinetic/pharmacodynamic data and dosing recommendations for intravenous colistimethate become available. Objective The aim of this work was to develop a clinician-friendly, easy-to-use mobile app incorporating up-to-date dosing recommendations for intravenous colistimethate in critically ill adult patients. Methods Swift programming language and common libraries were used for the development of an app, ColistinDose, on the iPhone operating system (iOS; Apple Inc). The compatibility among different iOS versions and mobile devices was validated. Dosing calculations were based on equations developed in our recent population pharmacokinetic study. Recommended doses generated by the app were validated by comparison against doses calculated manually using the appropriate equations. Results ColistinDose provides 3 major functionalities, namely (1) calculation of a loading dose, (2) calculation of a daily dose based on the renal function of the patient (including differing types of renal replacement therapies), and (3) retrieval of historical calculation results. It is freely available at the Apple App Store for iOS (version 9 and above). Calculated doses accurately reflected doses recommended in patients with varying degrees of renal function based on the published equations. ColistinDose performs calculations on a local mobile device (iPhone or iPad) without the need for an internet connection. Conclusions With its user-friendly interface, ColistinDose provides an accurate and easy-to-use tool for clinicians to calculate dosage regimens of intravenous colistimethate in critically ill patients with varying degrees of renal function. It has significant potential to avoid the prescribing errors and patient safety issues that currently confound the clinical use of colistimethate, thereby optimizing patient treatment.
Collapse
Affiliation(s)
- Xueliang Hua
- Independent Researcher, Santa Clara, CA, United States
| | - Chen Li
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| | - Varun S Sharma
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ilias Karaiskos
- 1st Internal Medicine and Infectious Diseases Department, Hygeia Hospital, Marousi, Greece
| | - Keith S Kaye
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brian T Tsuji
- Laboratory for Antimicrobial Dynamics, NYS Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States.,School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Phillip J Bergen
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | - Yan Zhu
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Jian Li
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
47
|
Pharmacodynamic Evaluation of MRX-8, a Novel Polymyxin, in the Neutropenic Mouse Thigh and Lung Infection Models against Gram-Negative Pathogens. Antimicrob Agents Chemother 2020; 64:AAC.01517-20. [PMID: 32868332 DOI: 10.1128/aac.01517-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
MRX-8 is a novel polymyxin analogue in development for the treatment of infections caused by Gram-negative pathogens, including those resistant to other antibiotic classes. In the present study, we examined the pharmacodynamic activity of MRX-8 against a variety of common Gram-negative pathogens in the neutropenic mouse thigh and lung models. Additionally, we examined polymyxin B (PMB) as a comparator. Plasma pharmacokinetics of MRX-8 and PMB were linear over a broad dosing range of 0.156 to 10 mg/kg of body weight and had similar AUC0-∞ (area under the drug concentration-time curve from 0 h to infinity) exposures of MRX-8, 0.22 to 12.64 mg · h/liter, and PMB, 0.12 to 13.22 mg · h/liter. Dose fractionation was performed for MRX-8 using a single Escherichia coli isolate, and the results demonstrated that both C max (maximum concentration of drug in serum)/MIC and AUC/MIC ratios were strongly associated with efficacy. In the thigh model, dose-ranging studies included strains of E. coli (n = 3), Pseudomonas aeruginosa (n = 2), Klebsiella pneumoniae (n = 3), and Acinetobacter baumannii (n = 1). Both MRX-8 and PMB exhibited increased effects with increasing doses. MRX-8 and PMB free AUC/MIC exposures for net stasis were similar for E. coli and K. pneumoniae at 20 to 30. Notably, for P. aeruginosa and A. baumannii, the free AUC/MIC ratio for stasis was numerically much smaller for MRX-8 at 6 to 8 than for PMB at 16 to 37. In the lung model, MRX-8 was also more effective than PMB when dosed to achieve similar free-drug AUC exposures over the study period. MRX-8 is a promising novel polymyxin analogue with in vivo activity against many different clinically relevant species in both the mouse thigh and lung models.
Collapse
|
48
|
Li Y, Xie M, Zhou J, Lin H, Xiao T, Wu L, Ding H, Fang B. Increased Antimicrobial Activity of Colistin in Combination With Gamithromycin Against Pasteurella multocida in a Neutropenic Murine Lung Infection Model. Front Microbiol 2020; 11:511356. [PMID: 33072002 PMCID: PMC7536268 DOI: 10.3389/fmicb.2020.511356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/21/2020] [Indexed: 01/09/2023] Open
Abstract
We investigate the antimicrobial activity of combined colistin and gamithromycin against nine Pasteurella multocida strains by testing in vitro susceptibility. Two high-colistin minimal inhibitory concentration (MIC) isolates (D18 and T5) and one low-colistin MIC isolate (WJ11) were used in time-kill tests and therapeutic effect experiments using a neutropenic murine pneumonia model over 24 h. Pharmacokinetics (PK) in plasma was calculated along with pharmacodynamics (PD) to determine the PK/PD index. Synergy between colistin and gamithromycin was observed using high-colistin MIC isolates, equating to a 128- or 256-fold and 4- or 8-fold reduction in colistin and gamithromycin concentration, respectively. Interestingly, no synergistic effect of the combination on low-colistin MIC isolates was observed. However, regardless of the MIC difference among isolates, each drug tended to reach the same concentration in all isolates subjected to combined treatments, which was verified by the time-kill tests presenting similar rates and extent of killing for isolates D18, T5, and WJ11. The AUC( 0 - 24 h)/MIC index was used to evaluate the relationship between PK and PD, and the correlation was >0.89. The relevant gamithromycin doses for combined therapy were determined, and the value decreased from 6- to 35-fold compared with monotherapy. Combined colistin and gamithromycin therapy provides a more potent therapeutic regimen than monotherapy against P. multocida strains.
Collapse
Affiliation(s)
- Yanqin Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Mengjuan Xie
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Junwen Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Lin
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Tianan Xiao
- Guangdong Center for Agricultural Products Quality and Safety, Guangzhou, China
| | - Liqin Wu
- Guangdong Center for Agricultural Products Quality and Safety, Guangzhou, China
| | - Huanzhong Ding
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Binghu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Nang SC, Han ML, Yu HH, Wang J, Torres VVL, Dai C, Velkov T, Harper M, Li J. Polymyxin resistance in Klebsiella pneumoniae: multifaceted mechanisms utilized in the presence and absence of the plasmid-encoded phosphoethanolamine transferase gene mcr-1. J Antimicrob Chemother 2020; 74:3190-3198. [PMID: 31365098 DOI: 10.1093/jac/dkz314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Until plasmid-mediated mcr-1 was discovered, it was believed that polymyxin resistance in Gram-negative bacteria was mainly mediated by the chromosomally-encoded EptA and ArnT, which modify lipid A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), respectively. This study aimed to construct a markerless mcr-1 deletion mutant in Klebsiella pneumoniae, validate a reliable reference gene for reverse transcription quantitative PCR (RT-qPCR) and investigate the interactions among mcr-1, arnT and eptA, in response to polymyxin treatments using pharmacokinetics/pharmacodynamics (PK/PD). METHODS An isogenic markerless mcr-1 deletion mutant (II-503Δmcr-1) was generated from a clinical K. pneumoniae II-503 isolate. The efficacy of different polymyxin B dosage regimens was examined using an in vitro one-compartment PK/PD model and polymyxin resistance was assessed using population analysis profiles. The expression of mcr-1, eptA and arnT was examined using RT-qPCR with a reference gene pepQ, and lipid A was profiled using LC-MS. In vivo polymyxin B efficacy was investigated in a mouse thigh infection model. RESULTS In K. pneumoniae II-503, mcr-1 was constitutively expressed, irrespective of polymyxin exposure. Against II-503Δmcr-1, an initial bactericidal effect was observed within 4 h with polymyxin B at average steady-state concentrations of 1 and 3 mg/L, mimicking patient PK. However, substantial regrowth and concomitantly increased expression of eptA and arnT were detected. Predominant l-Ara4N-modified lipid A species were detected in II-503Δmcr-1 following polymyxin B treatment. CONCLUSIONS This is the first study demonstrating a unique markerless deletion of mcr-1 in a clinical polymyxin-resistant K. pneumoniae. The current polymyxin B dosage regimens are suboptimal against K. pneumoniae, regardless of mcr, and can lead to the emergence of resistance.
Collapse
Affiliation(s)
- Sue C Nang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Heidi H Yu
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Von Vergel L Torres
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Comparison between Colistin Sulfate Dry Powder and Solution for Pulmonary Delivery. Pharmaceutics 2020; 12:pharmaceutics12060557. [PMID: 32560289 PMCID: PMC7356940 DOI: 10.3390/pharmaceutics12060557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022] Open
Abstract
To assess the difference in the fate of the antibiotic colistin (COLI) after its pulmonary delivery as a powder or a solution, we developed a COLI powder and evaluated the COLI pharmacokinetic properties in rats after pulmonary administration of the powder or the solution. The amorphous COLI powder prepared by spray drying was characterized by a mass median aerodynamic diameter and fine particle fraction of 2.68 ± 0.07 µm and 59.5 ± 5.4%, respectively, when emitted from a Handihaler®. After intratracheal administration, the average pulmonary epithelial lining fluid (ELF): plasma area under the concentration versus time curves (AUC) ratios were 570 and 95 for the COLI solution and powder, respectively. However, the same COLI plasma concentration profiles were obtained with the two formulations. According to our pharmacokinetic model, this difference in ELF COLI concentration could be due to faster systemic absorption of COLI after the powder inhalation than for the solution. In addition, the COLI apparent permeability (Papp) across a Calu-3 epithelium model increased 10-fold when its concentration changed from 100 to 4000 mg/L. Based on this last result, we propose that the difference observed in vivo between the COLI solution and powder could be due to a high local ELF COLI concentration being obtained at the site where the dry particles impact the lung. This high local COLI concentration can lead to a local increase in COLI Papp, which is associated with a high concentration gradient and could produce a high local transfer of COLI across the epithelium and a consequent increase in the overall absorption rate of COLI.
Collapse
|