1
|
Tu MM, Carfrae LA, Rachwalski K, French S, Catacutan D, Gordzevich R, MacNair CR, Speagle ME, Werah F, Stokes JM, Brown ED. Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens. Nat Microbiol 2025; 10:53-65. [PMID: 39747690 DOI: 10.1038/s41564-024-01883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models. Using transcriptomic, genomic and chemical probes, we identified molecular pathways critical for VIM-2 expression under zinc limitation. In particular, disruption of envelope stress response pathways reduced the growth of VIM-2-expressing bacteria in vitro and in vivo. Furthermore, we showed that VIM-2 expression disrupts the integrity of the outer membrane, rendering VIM-2-expressing bacteria more susceptible to azithromycin. Using a systemic murine infection model, we showed azithromycin's therapeutic potential against VIM-2-expressing pathogens. In all, our findings provide a framework to exploit the fitness trade-offs of resistance, potentially accelerating the discovery of additional treatments for infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Megan M Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Denise Catacutan
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa E Speagle
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Firas Werah
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Stokes
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Biedrzycka M, Urbanowicz P, Brisse S, Palma F, Żabicka D, Gniadkowski M, Izdebski R. Multiple regional outbreaks caused by global and local VIM-producing Klebsiella pneumoniae clones in Poland, 2006-2019. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05016-1. [PMID: 39708274 DOI: 10.1007/s10096-024-05016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study was aimed at comprehensive genomic analysis of VIM-type carbapenemase-producing Klebsiella pneumoniae species complex (KpSC) in Poland. METHODS All non-duplicate 214 VIM-producing KpSC isolates reported in Poland in 2006-2019 were short-read sequenced and re-identified by the average nucleotide identity scoring. Their clonality/phylogeny was assessed by cgMLST and SNP in comparison with genomes from international databases. Serotypes, VIM-encoding integrons, resistomes, virulomes and plasmid replicons were identified by various bioinformatic tools. Structures of plasmids and genomic islands with VIM integrons were analysed for representative long-read sequenced isolates. RESULTS The KpSC isolates were the second most prevalent VIM-positive Enterobacterales (23.1%) in Poland in 2006-2019, following Enterobacter spp. (40.1%). Their significance emerged in 2014 and then grew consequently, owing to eight regional outbreaks of K. pneumoniae sequence types (STs) ST437, ST147, ST15, ST277 and ST392. These carried different VIM integrons, mainly In238 and In916 types, located on IncFIB + IncHI2 (pNDM-MAR)-, IncA- or IncM-like plasmids, or clc-type integrative and conjugative elements. Despite relatedness of the outbreak clusters to isolates from other countries, e.g. Greece, Spain, Slovakia or Germany, most of them have apparently emerged on site by horizontal acquisition of resistance determinants from other species, including Enterobacter spp. and Pseudomonas spp. CONCLUSIONS This work shows dynamic epidemiology of VIM-producing organisms, driven by a mix of circulation of different VIM-encoding elements, and parallel clonal spread of multiple organisms.
Collapse
Affiliation(s)
- Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Federica Palma
- Biological Resource Center of the Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
3
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Castellanos LR, Chaffee R, Kumar H, Mezgebo BK, Kassau P, Peirano G, Pitout JDD, Kim K, Pillai DR. A novel machine-learning aided platform for rapid detection of urine ESBLs and carbapenemases: URECA-LAMP. J Clin Microbiol 2024; 62:e0086924. [PMID: 39445836 PMCID: PMC11559160 DOI: 10.1128/jcm.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Pathogenic gram-negative bacteria frequently carry genes encoding extended-spectrum beta-lactamases (ESBL) and/or carbapenemases. Of great concern are carbapenem resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite the need for rapid AMR diagnostics globally, current molecular detection methods often require expensive equipment and trained personnel. Here, we present a novel machine-learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The platform consists of (i) an affordable device for sample lysis, LAMP amplification, and visual fluorometric detection; (ii) a LAMP screening panel to detect the most common ESBL and carbapenemase genes; and (iii) a smartphone application for automated interpretation of results. Validation studies on clinical isolates and urine samples demonstrated percent positive and negative agreements above 95% for all targets. Accuracy, precision, and recall values of the machine learning model deployed in the smartphone application were all above 92%. Providing a simplified workflow, minimal operation training, and results in less than an hour, this study demonstrated the platform's feasibility for near-patient testing in resource-limited settings.IMPORTANCEExtended-spectrum beta-lactamases (ESBL) and carbapenemases confer resistance to third-generation cephalosporins and carbapenems in pathogenic Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Conventional antimicrobial susceptibility testing is based on phenotypic methods, and results can take several days to be obtained. Current genotypic detection methods can be rapid but require expensive equipment and trained personnel. In this study, we present a novel machine learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The validation of the platform demonstrated percent positive and negative agreements above 95% for all targets. The newly developed platform provided a simplified workflow, minimal technical training, and results in less than an hour. This study demonstrated the platform's feasibility for rapid testing of ESBL and carbapenemases in bacteria and urine specimens.
Collapse
Affiliation(s)
- L. Ricardo Castellanos
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Chaffee
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Indore, Madhya Pradesh, India
| | - Biniyam Kahsay Mezgebo
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pawulos Kassau
- Amhara Public Health Institute, Amhara Bahir Dar, Ethiopia
| | - Gisele Peirano
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Johann D. D. Pitout
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Dylan R. Pillai
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Wang JL, Lai CC, Tsai YW, Ko WC, Hsueh PR. High ceftazidime-avibactam resistance among carbapenem-resistant Enterobacter species: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme, 2014-2021. Int J Antimicrob Agents 2024; 63:107105. [PMID: 38325719 DOI: 10.1016/j.ijantimicag.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Trends in the susceptibility to ceftazidime-avibactam (CZA) and tigecycline (TGC) among Enterobacter species from different geographic areas are unknown.This study aimed to analyse the trends in CZA and TGC susceptibility changes across different continents from 2014 to 2021 utilizing Antimicrobial Testing Leadership and Surveillance (ATLAS) data. METHODS A total of 23 669 isolates of Enterobacter species were collected over an 8-y period. RESULTS The overall non-susceptibility rate of Enterobacter isolates to both CZA and TGC was 3.2%. India (16.5%), Guatemala (15.4%), and the Philippines (13.1%) exhibited the highest resistance to CZA. The increase in CZA resistance rates was particularly evident in Asia, with an increase from 4.0% to 8.3%, and in Latin America, from 1.5% to 5%. The non-susceptibility rate for TGC mildly increased in Africa/Middle East but decreased in other continents during the study period. The overall rate of carbapenem resistance increased from 2.9% in 2014-2017 to 4.3% in 2018-2021. Among carbapenem-resistant Enterobacter isolates, the CZA resistance rate was highest in Asia (87.4%), followed by Europe (69.2%) and Africa/Middle East (60.8%). Among the 380 Enterobacter isolates resistant to CZA and carbapenem, the most common genotype of carbapenemase genes was blaNDM (59.2%), followed by blaVIM (24.2%), blaOXA (4.2%), blaIMP (1.1%), and blaKPC (1.1%). The susceptibility of carbapenem-resistant Enterobacter to TGC remained high, with an overall susceptibility rate of 90%. CONCLUSIONS The heterogeneous distribution of CZA resistance rates among different geographical regions highlights the divergent therapeutic options for drug-resistant Enterobacter species.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ya-Wen Tsai
- Center of Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Biez L, Bonnin RA, Emeraud C, Birer A, Jousset AB, Naas T, Dortet L. Nationwide molecular epidemiology of carbapenemase-producing Citrobacter spp. in France in 2019 and 2020. mSphere 2023; 8:e0036623. [PMID: 37815363 PMCID: PMC10732076 DOI: 10.1128/msphere.00366-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The emergence of carbapenemase producers in Enterobacterales mostly involves Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae complex species. However, in France, we observed the emergence and the rapid dissemination of carbapenemase in Citrobacter spp. In this study, we demonstrated that a wide variety of carbapenemases is produced by many different species of Citrobacter spp. However, we clearly identify three high-risk clones of Citrobacter freundii, ST8, ST22, and ST91 that drive the spread of carbapenemase in France. This epidemiological study paves the way of further analysis that would aim to identify the virulence factors involved in this pellicular ability of these three clones to disseminate at the hospital.
Collapse
Affiliation(s)
- Laura Biez
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Cecile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Aurélien Birer
- Centre National de Référence de la Résistance aux Antibiotiques, Clermont-Ferrand, France
| | - Agnès B. Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Le Terrier C, Nordmann P, Bouvier M, Poirel L. Impact of acquired broad-spectrum β-lactamases on susceptibility to oral penems/carbapenems (tebipenem, sulopenem, and faropenem) alone or in combination with avibactam and taniborbactam β-lactamase inhibitors in Escherichia coli. Antimicrob Agents Chemother 2023; 67:e0054723. [PMID: 37668385 PMCID: PMC10583657 DOI: 10.1128/aac.00547-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/08/2023] [Indexed: 09/06/2023] Open
Abstract
The impact of β-lactamases on susceptibility to oral penems/carbapenems (tebipenem, sulopenem, and faropenem) and other carbapenem molecules was evaluated in Escherichia coli, alone and in combination with avibactam or taniborbactam β-lactamase inhibitors. Tebipenem and sulopenem exhibited a similar spectrum of activity compared to the intravenous carbapenems and displayed lower MIC values than ceftibuten-avibactam against E. coli producing extended-spectrum β-lactamases or AmpC enzymes. Combined with taniborbactam, tebipenem and sulopenem exhibited low MIC values against almost all tested recombinant E. coli, including metallo-β-lactamase producers.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Maxime Bouvier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
8
|
Boutzoukas AE, Komarow L, Chen L, Hanson B, Kanj SS, Liu Z, Salcedo Mendoza S, Ordoñez K, Wang M, Paterson DL, Evans S, Ge L, Giri A, Hill C, Baum K, Bonomo RA, Kreiswirth B, Patel R, Arias CA, Chambers HF, Fowler VG, van Duin D. International Epidemiology of Carbapenemase-Producing Escherichia coli. Clin Infect Dis 2023; 77:499-509. [PMID: 37154071 PMCID: PMC10444003 DOI: 10.1093/cid/ciad288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a prospective cohort. METHODS Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without metallo-β-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after the index culture. RESULTS Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 (CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less often met criteria for infection (39% vs 58%, P = .04), and had lower acuity of illness when compared with non-MBL-Ec. Among patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with non-MBL-Ec was 62% (95% CI: 48.2-74.3%). Among infected patients, non-MBL-Ec had increased 30-day (26% vs 0%; P = .02) and 90-day (39% vs 0%; P = .001) mortality compared with MBL-Ec. CONCLUSIONS Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical presentations, and outcomes differed between MBL-Ec and non-MBL-Ec. Mortality was higher among non-MBL isolates, which were more frequently isolated from blood, but these findings may be confounded by regional variations.
Collapse
Affiliation(s)
- Angelique E Boutzoukas
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Lauren Komarow
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Blake Hanson
- Center for Infectious Diseases and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, Texas, USA
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zhengyin Liu
- Infectious Disease Section, Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Soraya Salcedo Mendoza
- Servicio de Infectología, Organizacion Clinica General del Norte, Barranquilla, Colombia
| | - Karen Ordoñez
- Department of Infectious Diseases, E.S.E. Hospital Universitario, San Jorge de Pereira, Pereira, Colombia
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Scott Evans
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Lizhao Ge
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Abhigya Giri
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Carol Hill
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Keri Baum
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- VA–Case Center for Antibiotic Resistance and Epidemiology (Case-VA CARES), Cleveland, Ohio, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Cesar A Arias
- Division of Infectious Diseases and Center for Infectious Diseases, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | - Henry F Chambers
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Hu S, Xie W, Cheng Q, Zhang X, Dong X, Jing H, Wang J. Molecular eidemiology of carbapenem-resistant Enterobacter cloacae complex in a tertiary hospital in Shandong, China. BMC Microbiol 2023; 23:177. [PMID: 37407923 DOI: 10.1186/s12866-023-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.
Collapse
Affiliation(s)
- Shengnan Hu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Wenyan Xie
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Qiwen Cheng
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaoning Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiutao Dong
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, 102206, People's Republic of China
| | - Jiazheng Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China.
| |
Collapse
|
10
|
Fortunato G, Vaz-Moreira I, Gajic I, Manaia CM. Insight into phylogenomic bias of bla VIM-2 or bla NDM-1 dissemination amongst carbapenem-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2023; 61:106788. [PMID: 36924802 DOI: 10.1016/j.ijantimicag.2023.106788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) are ubiquitous opportunistic pathogens that combine intrinsic and acquired multidrug resistance phenotypes. Due to different types of acquired genes, carbapenem resistance has been expanding in this species. This study hypothesised that the spread of carbapenem resistance among P. aeruginosa is influenced by phylogenomic features, being distinct for different genes. METHODS To test this hypothesis, the genomes of P. aeruginosa harbouring blaVIM-2 or blaNDM-1 genes were compared. The blaVIM-2 gene was selected because, although frequent, it is almost restricted to this species and blaNDM-1 gene due to its wide interspecies distribution. A group of genomes harbouring the genes blaVIM-2 (n = 116) or blaNDM-1 (n = 27), available in GenBank, was characterised based on core phylogenomic analysis, functional categories in the accessory genome and mobile genetic elements flanking the selected genes. RESULTS Most blaVIM-2 gene hosts belonged to multilocus sequence types (ST) ST111 (n = 32 of 116) and ST233 (n = 27 of 116) and were reported in Europe (n = 75 of 116). The blaNDM-1 gene hosts were distributed by different STs (ST38, ST773, ST235, ST357 and ST654), frequently from Asia (n = 11 of 27). Significant differences in the prevalence of functional protein/enzyme annotations per number of accessory genomes were observed between blaVIM-2+ and blaNDM-1+. The blaVIM-2 gene was frequently inserted in the Tn402-like and Tn21 transposons family and rarely in IS6100, while blaNDM-1 gene was preferentially flanked by ISAba125 and bleMBL genes or associated with IS91 insertion sequence. CONCLUSION The hypothesis that carbapenem resistance gene acquisition is not random among phylogenomic lineages was confirmed, suggesting the importance of phylogeny in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
11
|
Qiao J, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Zheng B, Gou J. Detection of IMP-4 and SFO-1 co-producing ST51 Enterobacter hormaechei clinical isolates. Front Cell Infect Microbiol 2022; 12:998578. [PMID: 36389152 PMCID: PMC9647121 DOI: 10.3389/fcimb.2022.998578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Yeh TK, Lin HJ, Liu PY, Wang JH, Hsueh PR. Antibiotic resistance in Enterobacter hormaechei. Int J Antimicrob Agents 2022; 60:106650. [DOI: 10.1016/j.ijantimicag.2022.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
|
13
|
Inhibiting the metallo-β-lactamases: challenges and strategies to overcome bacterial β-lactam resistance. Future Med Chem 2022; 14:1021-1025. [DOI: 10.4155/fmc-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
15
|
Chen F, Wang P, Yin Z, Yang H, Hu L, Yu T, Jing Y, Guan J, Wu J, Zhou D. VIM-encoding Inc pSTY plasmids and chromosome-borne integrative and mobilizable elements (IMEs) and integrative and conjugative elements (ICEs) in Pseudomonas. Ann Clin Microbiol Antimicrob 2022; 21:10. [PMID: 35264204 PMCID: PMC8905914 DOI: 10.1186/s12941-022-00502-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiahong Wu
- Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
16
|
Emeraud C, Petit C, Gauthier L, Bonnin RA, Naas T, Dortet L. Emergence of VIM-producing Enterobacter cloacae complex in France between 2015 and 2018. J Antimicrob Chemother 2022; 77:944-951. [PMID: 35045171 DOI: 10.1093/jac/dkab471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To genetically characterize VIM-producing Enterobacter cloacae complex (ECC) isolates recovered in France from 2015 to 2018. METHODS WGS, species determination, MLST, clonal relationship and genetic characterization were performed on 149 VIM-producing ECC isolates. RESULTS Among VIM-producing Enterobacterales, the prevalence of ECC increased drastically from 6% in 2012 to 52% in 2018. The most prevalent species were Enterobacter hormaechei subsp. hoffmannii (40.9%), E. hormaechei subsp. steigerwaltii (21.5%), E. hormaechei subsp. xiangfangensis (14.8%) and ECC clade S (17.4%). Major STs were ST-873 (17.5%), ST-66 (12.1%), ST-78 (9.4%), ST-419 (8.1%), ST-145 (4.7%), ST-50 (4.0%), ST-118 (4.0%) and ST-168 (4.0%). Finally, six different integrons were identified, with some being specific to a given blaVIM variant (In916 with blaVIM-1-aacA4'-aphA15-aadA1-catB2 and In416 with blaVIM-4-aacA7-dfrA1b-aadA1b-smr2 genes). CONCLUSIONS This study demonstrated the genetic diversity among VIM-producing ECC isolates, indicating that their spread is not linked to a single clone.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Caroline Petit
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Lauraine Gauthier
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Rada AM, Correa A, Restrepo E, Capataz C. Escherichia coli ST471 Producing VIM-4 Metallo-β-Lactamase in Colombia. Microb Drug Resist 2022; 28:288-292. [PMID: 34990286 PMCID: PMC8968847 DOI: 10.1089/mdr.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An Escherichia coli isolate sequence-type 471 (ST471) producing Verona integron-encoded metallo-β-lactamases (VIM)-4 was recovered from a rectal swab in a patient without travel records with osteomyelitis in Colombia. The isolate carried a class 1 integron-borne blaVIM-4 gene with a 170-bp duplication in the 3′ end of the gene, preceded by an aac(6′)-Ib gene. The genetic environment of blaVIM-4, blaCMY-2, and sul2 genes showed similarities to the backbone of pKKp4, an IncA/C-type plasmid from a Klebsiella pneumoniae strain carrying blaVIM-4 recovered in Kuwait. This is the first report of blaVIM-4 in Enterobacterales in South America. Our results suggest that blaVIM-4 gene was found on an IncA/C-type plasmid that could play a role in the spread of VIM-4 carbapenemase in Colombia.
Collapse
Affiliation(s)
- Ana Mercedes Rada
- Department of Microbiology, Bacteria and Cáncer Group, University of Antioquia, Medellín, Colombia.,Facultad de Ciencias de la Salud, Biociencias Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | - Adriana Correa
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia.,Clínica Imbanaco, Cali, Colombia
| | - Eliana Restrepo
- Facultad de Ciencias de la Salud, Biociencias Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | | |
Collapse
|
18
|
Saavedra SY, Bernal JF, Montilla-Escudero E, Arévalo SA, Prada DA, Valencia MF, Moreno J, Hidalgo AM, García-Vega ÁS, Abrudan M, Argimón S, Kekre M, Underwood A, Aanensen DM, Duarte C, Donado-Godoy P. Complexity of Genomic Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clin Infect Dis 2021; 73:S290-S299. [PMID: 34850835 PMCID: PMC8634422 DOI: 10.1093/cid/ciab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an emerging public health problem. This study explores the specifics of CRKP epidemiology in Colombia based on whole genome sequencing (WGS) of the National Reference Laboratory at Instituto Nacional de Salud (INS)'s 2013-2017 sample collection. METHODS A total of 425 CRKP isolates from 21 departments were analyzed by HiSeq-X10®Illumina high-throughput sequencing. Bioinformatic analysis was performed, primarily using the pipelines developed collaboratively by the National Institute for Health Research Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance (AMR), and AGROSAVIA. RESULTS Of the 425 CRKP isolates, 91.5% were carbapenemase-producing strains. The data support a recent expansion and the endemicity of CRKP in Colombia with the circulation of 7 high-risk clones, the most frequent being CG258 (48.39% of isolates). We identified genes encoding carbapenemases blaKPC-3, blaKPC-2, blaNDM-1, blaNDM-9, blaVIM-2, blaVIM-4, and blaVIM-24, and various mobile genetic elements (MGE). The virulence of CRKP isolates was low, but colibactin (clb3) was present in 25.2% of isolates, and a hypervirulent CRKP clone (CG380) was reported for the first time in Colombia. ST258, ST512, and ST4851 were characterized by low levels of diversity in the core genome (ANI > 99.9%). CONCLUSIONS The study outlines complex CRKP epidemiology in Colombia. CG258 expanded clonally and carries specific carbapenemases in specific MGEs, while the other high-risk clones (CG147, CG307, and CG152) present a more diverse complement of carbapenemases. The specifics of the Colombian situation stress the importance of WGS-based surveillance to monitor evolutionary trends of sequence types (STs), MGE, and resistance and virulence genes.
Collapse
Affiliation(s)
| | - Johan Fabian Bernal
- Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá - Mosquera, Cundinamarca, Colombia
| | | | - Stefany Alejandra Arévalo
- Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá - Mosquera, Cundinamarca, Colombia
| | - Diego Andrés Prada
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - María Fernanda Valencia
- Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá - Mosquera, Cundinamarca, Colombia
| | - Jaime Moreno
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | | | - Ángela Sofía García-Vega
- Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá - Mosquera, Cundinamarca, Colombia
| | - Monica Abrudan
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK.,Wellcome Genome Campus, Hinxton, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK.,Wellcome Genome Campus, Hinxton, UK
| | - Mihir Kekre
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK.,Wellcome Genome Campus, Hinxton, UK
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK.,Wellcome Genome Campus, Hinxton, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK.,Wellcome Genome Campus, Hinxton, UK
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Pilar Donado-Godoy
- Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá - Mosquera, Cundinamarca, Colombia
| | | |
Collapse
|
19
|
Heiden SE, Sydow K, Schaefer S, Klempien I, Balau V, Bauer P, Hübner NO, Schaufler K. Nearly Identical Plasmids Encoding VIM-1 and Mercury Resistance in Enterobacteriaceae from North-Eastern Germany. Microorganisms 2021; 9:microorganisms9071345. [PMID: 34206177 PMCID: PMC8305640 DOI: 10.3390/microorganisms9071345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of carbapenemase-producing Enterobacteriaceae limits therapeutic options and presents a major public health problem. Resistances to carbapenems are mostly conveyed by metallo-beta-lactamases (MBL) including VIM, which are often encoded on resistance plasmids. We characterized four VIM-positive isolates that were obtained as part of a routine diagnostic screening from two laboratories in north-eastern Germany between June and August 2020. Whole-genome sequencing was performed to address (a) phylogenetic properties, (b) plasmid content, and (c) resistance gene carriage. In addition, we performed phenotypic antibiotic and mercury resistance analyses. The genomic analysis revealed three different bacterial species including C. freundii, E. coli and K. oxytoca with four different sequence types. All isolates were geno- and phenotypically multidrug-resistant (MDR) and the phenotypic profile was explained by the underlying resistance gene content. Three isolates of four carried nearly identical VIM-1-resistance plasmids, which in addition encoded a mercury resistance operon and showed some similarity to two publicly available plasmid sequences from sources other than the two laboratories above. Our results highlight the circulation of a nearly identical IncN-type VIM-1-resistance plasmid in different Enterobacteriaceae in north-eastern Germany.
Collapse
Affiliation(s)
- Stefan E. Heiden
- Pharmaceutical Microbiology, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
| | - Katharina Sydow
- Pharmaceutical Microbiology, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
| | - Stephan Schaefer
- MVZ Laboratory Limbach Vorpommern-Rügen, 18435 Stralsund, Germany;
| | - Ingo Klempien
- Klinische Hygiene und Infektiologie, Helios Hanseklinikum, 18435 Stralsund, Germany;
| | - Veronika Balau
- IMD Laboratory Greifswald, Institute of Medical Diagnostics, 17493 Greifswald, Germany;
| | | | - Nils-Olaf Hübner
- Central Unit for Infection Prevention and Control, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Katharina Schaufler
- Pharmaceutical Microbiology, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
- Correspondence: ; Tel.: +49-38344204869
| |
Collapse
|
20
|
Karaiskos I, Galani I, Papoutsaki V, Galani L, Giamarellou H. Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies. Expert Rev Anti Infect Ther 2021; 20:53-69. [PMID: 34033499 DOI: 10.1080/14787210.2021.1935237] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The emergence of carbapenemase resistant Gram-negative is designated as an 'urgent' priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome.Areas covered: This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel β-lactam/β-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed.Expert opinion: Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-β-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Ilias Karaiskos
- 1st Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Irene Galani
- 4th Department of Internal Medicine, University General Hospital ATTIKON, National and Kapodistrian University of Athens, Faculty of Medicine, Infectious Diseases Laboratory, Athens, Greece
| | | | - Lamprini Galani
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
21
|
Campos-Madueno EI, Sigrist T, Flückiger UM, Risch L, Bodmer T, Endimiani A. First report of a bla VIM-1 metallo-β-lactamase-possessing Klebsiella michiganensis. J Glob Antimicrob Resist 2021; 25:310-314. [PMID: 33957287 DOI: 10.1016/j.jgar.2021.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Klebsiella michiganensis is an emerging pathogen. Like Klebsiella pneumoniae, this species is able to acquire antibiotic resistance genes (ARGs) via mobile genetic elements. In this context, K. michiganensis isolates producing carbapenemases of KPC, NDM, IMP and OXA-48-like types have already been reported. Here we characterised a strain (BD-50-Km) isolated from a rectal swab of a Turkish patient hospitalised in Switzerland. METHODS Species identification was initially performed using MALDI-TOF/MS. Antimicrobial susceptibility testing was done by the microdilution method. Whole-genome sequencing (WGS) was performed with both Illumina and Nanopore platforms and was used to confirm species identification, to characterise plasmids and to perform core-genome analyses. RESULTS BD-50-Km was initially identified as Klebsiella oxytoca and showed reduced susceptibility to imipenem. However, WGS indicated that the isolate was actually K. michiganensis. BD-50-Km carried the blaVIM-1 gene associated with a rare class 1 integron (In87) located on a pST1 196 kb IncC plasmid. This plasmid shares its backbone with many other IncC plasmids found in different species (including five K. michiganensis), but not the same In87 and the remaining region harbouring various ARGs. BD-50-Km belongs to the novel ST342. Moreover, core-genome analysis (single nucleotide variant analysis) showed that BD-50-Km was not closely related to any K. michiganensis strains deposited in NCBI (n = 212), including the 38 so far reported as possessing carbapenemase genes. CONCLUSION This is the first report of a blaVIM-possessing K. michiganensis clinical isolate. The spread of plasmid-mediated VIM carbapenemases in this emerging pathogen represents an additional threat to our therapeutic armamentarium.
Collapse
Affiliation(s)
- Edgar I Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland
| | | | | | - Lorenz Risch
- Centre of Laboratory Medicine Dr Risch, Bern-Liebefeld, Switzerland
| | - Thomas Bodmer
- Centre of Laboratory Medicine Dr Risch, Bern-Liebefeld, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland.
| |
Collapse
|
22
|
Wastewaters, with or without Hospital Contribution, Harbour MDR, Carbapenemase-Producing, but Not Hypervirulent Klebsiella pneumoniae. Antibiotics (Basel) 2021; 10:antibiotics10040361. [PMID: 33805405 PMCID: PMC8065489 DOI: 10.3390/antibiotics10040361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.
Collapse
|
23
|
Ochońska D, Klamińska-Cebula H, Dobrut A, Bulanda M, Brzychczy-Włoch M. Clonal Dissemination of KPC-2, VIM-1, OXA-48-Producing Klebsiella pneumoniae ST147 in Katowice, Poland. Pol J Microbiol 2021; 70:107-116. [PMID: 33815532 PMCID: PMC8008758 DOI: 10.33073/pjm-2021-010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important bacterium of nosocomial infections. In this study, CRKP strains, which were mainly isolated from fecal samples of 14 patients in three wards of the hospital in the Silesia Voivodship, rapidly increased from February to August 2018. Therefore, we conducted microbiological and molecular studies of the CRKP isolates analyzed. Colonized patients had critical underlying diseases and comorbidities; one developed bloodstream infection, and five died (33.3%). Antibiotic susceptibilities were determined by the E-test method. A disc synergy test confirmed carbapenemase production. CTX-Mplex PCR evaluated the presence of resistance genes blaCTX-M-type, blaCTX-M-1, blaCTX-M-9, and the genes blaSHV, blaTEM, blaKPC-2, blaNDM-1, blaOXA-48, blaIMP, and blaVIM-1 was detected with the PCR method. Clonality was evaluated by Multi Locus Sequence Typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE). Six (40%) strains were of XDR (Extensively Drug-Resistant) phenotype, and nine (60%) of the isolates exhibited MDR (Multidrug-Resistant) phenotype. The range of carbapenem minimal inhibitory concentrations (MICs, μg/mL) was as follows doripenem (16 to >32), ertapenem (> 32), imipenem (4 to > 32), and meropenem (> 32). PCR and sequencing confirmed the blaCTX-M-15, blaKPC-2, blaOXA-48, and blaVIM-1 genes in all strains. The isolates formed one large PFGE cluster (clone A). MLST assigned them to the emerging high-risk clone of ST147 (CC147) pandemic lineage harboring the blaOXA-48 gene. This study showed that the K. pneumoniae isolates detected in the multi-profile medical centre in Katowice represented a single strain of the microorganism spreading in the hospital environment.
Collapse
Affiliation(s)
- Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Klamińska-Cebula
- Department of Bacteriology, Leszek Giec Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, Katowice, Poland
| | - Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Bulanda
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
24
|
Abid FB, Tsui CKM, Doi Y, Deshmukh A, McElheny CL, Bachman WC, Fowler EL, Albishawi A, Mushtaq K, Ibrahim EB, Doiphode SH, Hamed MM, Almaslmani MA, Alkhal A, Butt AA, Omrani AS. Molecular characterization of clinical carbapenem-resistant Enterobacterales from Qatar. Eur J Clin Microbiol Infect Dis 2021; 40:1779-1785. [PMID: 33616788 PMCID: PMC8295067 DOI: 10.1007/s10096-021-04185-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
One hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).
Collapse
Affiliation(s)
- Fatma Ben Abid
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar. .,Communicable Diseases Center, Hamad Medical Corporation, PO Box 3050, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Clement K M Tsui
- Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Pathology, Sidra Medicine, Doha, Qatar.,Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Anand Deshmukh
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin L Fowler
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmed Albishawi
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.,Communicable Diseases Center, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Kamran Mushtaq
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Emad B Ibrahim
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Sanjay H Doiphode
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Manal M Hamed
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Muna A Almaslmani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.,Communicable Diseases Center, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Abdullatif Alkhal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.,Communicable Diseases Center, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Adeel A Butt
- Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ali S Omrani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.,Communicable Diseases Center, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.,Clinical Epidemiology Research Unit, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
25
|
Genomic Characterization of VIM and MCR Co-Producers: The First Two Clinical Cases, in Italy. Diagnostics (Basel) 2021; 11:diagnostics11010079. [PMID: 33418979 PMCID: PMC7825325 DOI: 10.3390/diagnostics11010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: the co-production of carbapenemases and mcr-genes represents a worrisome event in the treatment of Enterobacteriaceae infections. The aim of the study was to characterize the genomic features of two clinical Enterobacter cloacae complex (ECC) isolates, co-producing VIM and MCR enzymes, in Italy. Methods: species identification and antibiotic susceptibility profiling were performed using MALDI-TOF and broth microdilution methods, respectively. Transferability of the blaVIM- and mcr- type genes was verified through conjugation experiment. Extracted DNA was sequenced using long reads sequencing technology on the Sequel I platform (PacBio). Results: the first isolate showed clinical resistance against ertapenem yet was colistin susceptible (EUCAST 2020 breakpoints). The mcr-9.2 gene was harbored on a conjugative IncHI2 plasmid, while the blaVIM-1 determinant was harbored on a conjugative IncN plasmid. The second isolate, resistant to both carbapenems and colistin, harbored: mcr-9 gene and its two component regulatory genes for increased expression on the chromosome, mcr-4.3 on non-conjugative (yet co-transferable) ColE plasmid, and blaVIM-1 on a non-conjugative IncA plasmid. Conclusions: to our knowledge, this is the first report of co-production of VIM and MCR in ECC isolates in Italy.
Collapse
|
26
|
Ballaben AS, Galetti R, Andrade LN, Ferreira JC, de Oliveira Garcia D, Doi Y, Darini ALC. Extensively drug-resistant IMP-16-producing Pseudomonas monteilii isolated from cerebrospinal fluid. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104658. [PMID: 33271337 DOI: 10.1016/j.meegid.2020.104658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/24/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022]
Abstract
IMP-1-producing Pseudomonas aeruginosa was first reported in Japan and since then, bacteria with this metallo-β-lactamase have been detected worldwide. Pseudomonas monteilii (part of P. putida group) were considered an environmental pathogen with low virulence potential; however, multidrug-resistant and carbapenem-resistant P. monteilii have emerged. The present study reports the draft sequence of an extensively drug-resistant IMP-16-producing P. monteilii 597/14 isolated from cerebrospinal fluid in 2014. The sequencing data revealed blaIMP-16 as a gene cassette on class 1 integron, In1738 characterized in this study. Furthermore, the resistome of Pm597/14 consisted of 7 resistance genes (aadA1b, strA, strB, aacA4, blaIMP-16, blaOXA-2, sul1) and diverse virulence determinants involved in the adherence, LPS, antiphagocytosis, iron uptake and mercuric resistance. Although different virulence determinants were found in this study, using Galleria mellonella infection model, Pm597/14 did not kill any larvae between 7 days post-infection. P. monteilii isolates have been reported from clinical and environmental sources, carrying different MBL genes showing its potential role as their reservoir.
Collapse
Affiliation(s)
- Anelise Stella Ballaben
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renata Galetti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Neves Andrade
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Joseane Cristina Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, USA; Center for Innovative Antimicrobial Therapy, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| | - Ana Lucia Costa Darini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
27
|
Nishida S, Matsunaga N, Kamimura Y, Ishigaki S, Furukawa T, Ono Y. Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms 2020; 8:E1816. [PMID: 33217991 PMCID: PMC7698710 DOI: 10.3390/microorganisms8111816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging threat in healthcare settings worldwide. OBJECTIVES We evaluated the presence of carbapenemase genes in CPE in a tertiary care university hospital in Tokyo, Japan. METHODS Carbapenem-resistant clinical isolates were collected in 2018 at Teikyo University Hospital (Tokyo, Japan). Bacterial species were identified using MALDI-TOF MS. Carbapenemase production was evaluated using a carbapenemase inactivation method. The presence of carbapenemase genes was confirmed by multiplex PCR and DNA sequencing. RESULTS Four CPE isolates were identified: two Enterobacter cloacae complex strains and Klebsiella oxytoca and Klebsiella pneumoniae strains. Three of the isolates (E. cloacae complex and K. oxytoca) were IMP-1-type producers, including IMP-10 in their produced metallo-β-lactamase, and are epidemic in East Japan. The IMP-10-producing E. cloacae complex strain also produced CTX-M ESBL. The other CPE isolate (K. pneumoniae) is a VIM-1 producer. VIM-1-producing K. pneumoniae is epidemic in Europe, especially in Greece. Accordingly, the VIM-1 producer was isolated from a patient with a medical history in Greece. CONCLUSIONS This study revealed the emergence of E. cloacae complex co-producing IMP-1-type carbapenemase and CTX-M ESBL, and K. pneumoniae producing VIM-1 carbapenemase in clinical isolates in Japan. Metallo-β-lactamase was the most prevalent type of carbapenemase at Teikyo University Hospital, especially IMP-1-type carbapenemase. The detection of VIM-1-producing K. pneumoniae suggests that epidemic CPE from overseas can spread to countries with low CPE prevalence, such as Japan, highlighting the need for active surveillance.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Naohisa Matsunaga
- Department of Infection Control and Prevention, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan;
| | - Yuta Kamimura
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
28
|
Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy. Microorganisms 2020; 8:microorganisms8081232. [PMID: 32806766 PMCID: PMC7466171 DOI: 10.3390/microorganisms8081232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using “Microbial Assembly”. Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6′)-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3′)-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
Collapse
|
29
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Characterization of a rare bla VIM-4 metallo-β-lactamase-producing Serratia marcescens clinical isolate in Hungary. Heliyon 2020; 6:e04231. [PMID: 32637682 PMCID: PMC7327745 DOI: 10.1016/j.heliyon.2020.e04231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
A carbapenem-resistant S. marcescens isolate was recovered from a patient with an inflammed pacemaker inplantation pocket from a Cardiac Surgery ward in a Hungarian University Hospital. Phenotypic tests and polymerase chain reaction (PCR) confirmed a very rare gene responsible for production of a carbapenemase (blaVIM-4), which was further characterized by Sanger-sequencing. The characterization of this S. marcescens strain emphasizes the ongoing emergence of novel or rare carbapenemases. Strains expressing a weak carbapenemase like this strain might go unrecognized by routine diagnostics due to low minimum inhibitory concentrations (MICs) for the bacterial strains producing such enzymes.
Collapse
|
31
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
32
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 986] [Impact Index Per Article: 197.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
33
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
34
|
Emergence and Spread of Carbapenem-Resistant and Aminoglycoside-Panresistant Enterobacter cloacae Complex Isolates Coproducing NDM-Type Metallo-β-Lactamase and 16S rRNA Methylase in Myanmar. mSphere 2020; 5:5/2/e00054-20. [PMID: 32161144 PMCID: PMC7067590 DOI: 10.1128/msphere.00054-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant E. cloacae complex has become a public health threat worldwide. E. xiangfangensis is a recently classified species belonging to E. cloacae complex. Here, we report a clonal dissemination of multidrug-resistant E. xiangfangensis ST200 producing two types of New Delhi metallo-β-lactamase (NDM-type MBL), NDM-1 and -4, and three types of 16S rRNA methylases, ArmA, RmtC, and RmtE, in hospitals in Myanmar. The observation of these multidrug-resistant E. xiangfangensis ST200 isolates stresses the urgency to continue molecular epidemiological surveillance of these pathogens in Myanmar and in South Asian countries. Surveillance of 10 hospitals and a regional public health laboratory in Myanmar identified 31 isolates of carbapenem-resistant Enterobacter cloacae complex harboring blaNDM-type. Of these isolates, 19 were highly resistant to aminoglycosides and harbored one or more genes encoding 16S rRNA methylases, including armA, rmtB, rmtC, and/or rmtE. Of the 19 isolates, 16 were Enterobacter xiangfangensis ST200, with armA on the chromosome and a plasmid harboring blaNDM-1 and rmtC, indicating that these isolates were clonally disseminated nationwide in Myanmar. IMPORTANCE The emergence of multidrug-resistant E. cloacae complex has become a public health threat worldwide. E. xiangfangensis is a recently classified species belonging to E. cloacae complex. Here, we report a clonal dissemination of multidrug-resistant E. xiangfangensis ST200 producing two types of New Delhi metallo-β-lactamase (NDM-type MBL), NDM-1 and -4, and three types of 16S rRNA methylases, ArmA, RmtC, and RmtE, in hospitals in Myanmar. The observation of these multidrug-resistant E. xiangfangensis ST200 isolates stresses the urgency to continue molecular epidemiological surveillance of these pathogens in Myanmar and in South Asian countries.
Collapse
|
35
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
36
|
van der Zwaluw K, Witteveen S, Wielders L, van Santen M, Landman F, de Haan A, Schouls LM, Bosch T. Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014-2018 national laboratory surveillance. Clin Microbiol Infect 2020; 26:1412.e7-1412.e12. [PMID: 32006688 DOI: 10.1016/j.cmi.2020.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Carbapenem resistance mediated by mobile genetic elements has emerged worldwide and has become a major public health threat. To gain insight into the molecular epidemiology of carbapenem resistance in The Netherlands, Dutch medical microbiology laboratories are requested to submit suspected carbapenemase-producing Enterobacterales (CPE) to the National Institute for Public Health and the Environment as part of a national surveillance system. METHODS Meropenem MICs and species identification were confirmed by E-test and MALDI-TOF and carbapenemase production was assessed by the Carbapenem Inactivation Method. Of all submitted CPE, one species/carbapenemase gene combination per person per year was subjected to next-generation sequencing (NGS). RESULTS In total, 1838 unique isolates were received between 2014 and 2018, of which 892 were unique CPE isolates with NGS data available. The predominant CPE species were Klebsiella pneumoniae (n = 388, 43%), Escherichia coli (n = 264, 30%) and Enterobacter cloacae complex (n = 116, 13%). Various carbapenemase alleles of the same carbapenemase gene resulted in different susceptibilities to meropenem and this effect varied between species. Analyses of NGS data showed variation of prevalence of carbapenemase alleles over time with blaOXA-48 being predominant (38%, 336/892), followed by blaNDM-1 (16%, 145/892). For the first time in the Netherlands, blaOXA-181, blaOXA-232 and blaVIM-4 were detected. The genetic background of K. pneumoniae and E. coli isolates was highly diverse. CONCLUSIONS The CPE population in the Netherlands is diverse, suggesting multiple introductions. The predominant carbapenemase alleles are blaOXA-48 and blaNDM-1. There was a clear association between species, carbapenemase allele and susceptibility to meropenem.
Collapse
Affiliation(s)
- K van der Zwaluw
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - S Witteveen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - L Wielders
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - M van Santen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - F Landman
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A de Haan
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - L M Schouls
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - T Bosch
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | -
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
37
|
Izdebski R, Baraniak A, Zabicka D, Sekowska A, Gospodarek-Komkowska E, Hryniewicz W, Gniadkowski M. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages. J Antimicrob Chemother 2019; 73:2675-2681. [PMID: 29986025 DOI: 10.1093/jac/dky257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives To analyse VIM/IMP-type MBL-producing Enterobacteriaceae isolates identified in Poland during 2006-12. Methods Isolates were typed by PFGE, followed by MLST. blaVIM/IMP genes were amplified and sequenced within class 1 integrons. Their plasmidic versus chromosomal location was assessed by nuclease S1 and I-CeuI plus hybridization experiments. Plasmids were characterized by transfer assays and PCR-based replicon typing. Results One hundred and nineteen VIM/IMP-positive Enterobacteriaceae cases were reported in Poland from the first case in 2006 until 2012. The patients were in 54 hospitals and were infected or colonized by 121 organisms, including Enterobacter cloacae complex (n = 64), Klebsiella oxytoca (n = 23), Serratia marcescens (n = 20) and Klebsiella pneumoniae (n = 11). The isolates represented numerous pulsotypes and mainly original STs, and carried eight integrons with blaVIM-1-like genes (blaVIM-1/-4/-28/-37/-40; n = 101), three with blaVIM-2 variants (blaVIM-2/-20; n = 17) and one with blaIMP-19 (n = 3). Six integrons were new, and five and two formed prevalent families of In238-like (n = 96) and In1008-like (n = 16) elements, respectively. In238 (aacA4-blaVIM-4rpt) and In1008 (blaVIM-2-aacA4) had been originally observed in Polish Pseudomonas aeruginosa, suggestive of their transfer to enterobacteria, followed by spread and diversification. Four organisms have disseminated inter-regionally, i.e. Enterobacter hormaechei ST90 with plasmidic In238/In238a integrons (n = 36), K. oxytoca ST145 with a chromosomal In237-like element (n = 18) and two subclones of E. hormaechei ST89 with In1008- or In238-type variants (n = 8 and n = 7, respectively). Conclusions The epidemiology of VIM/IMP-producing Enterobacteriaceae in Poland has revealed a remarkable number of specific or novel characteristics of the organisms, with some possible links to other mid-southern European countries.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Zabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - A Sekowska
- Department of Microbiology, Nicolas Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - E Gospodarek-Komkowska
- Department of Microbiology, Nicolas Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
38
|
Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457:61-91. [PMID: 31469443 DOI: 10.1111/nyas.14223] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been listed by the WHO as high-priority pathogens owing to their high association with mortalities and morbidities. Resistance to multiple β-lactams complicates effective clinical management of CRE infections. Using plasmid typing methods, a wide distribution of plasmid replicon groups has been reported in CREs around the world, including IncF, N, X, A/C, L/M, R, P, H, I, and W. We performed a literature search for English research papers, published between 2013 and 2018, reporting on plasmid-mediated carbapenem resistance. A rise in both carbapenemase types and associated plasmid replicon groups was seen, with China, Canada, and the United States recording a higher increase than other countries. blaKPC was the most prevalent, except in Angola and the Czech Republic, where OXA-181 (n = 50, 88%) and OXA-48-like (n = 24, 44%) carbapenemases were most prevalent, respectively; blaKPC-2/3 accounted for 70% (n = 956) of all reported carbapenemases. IncF plasmids were found to be responsible for disseminating different antibiotic resistance genes worldwide, accounting for almost 40% (n = 254) of plasmid-borne carbapenemases. blaCTX-M , blaTEM , blaSHV , blaOXA-1/9 , qnr, and aac-(6')-lb were mostly detected concurrently with carbapenemases. Most reported plasmids were conjugative but not present in multiple countries or species, suggesting limited interspecies and interboundary transmission of a common plasmid. A major limitation to effective characterization of plasmid evolution was the use of PCR-based instead of whole-plasmid sequencing-based plasmid typing.
Collapse
Affiliation(s)
- Katlego Kopotsa
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.,National Health Laboratory Service, Tshwane Division, Department of Medical Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
39
|
Cahill N, O'Connor L, Mahon B, Varley Á, McGrath E, Ryan P, Cormican M, Brehony C, Jolley KA, Maiden MC, Brisse S, Morris D. Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:618-624. [PMID: 30974353 PMCID: PMC6525273 DOI: 10.1016/j.scitotenv.2019.03.428] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance is a major public health concern. Carbapenemase-producing Enterobacterales (CPE) represent a significant health threat as some strains are resistant to almost all available antibiotics. The aim of this research was to examine hospital effluent and municipal wastewater in an urban area in Ireland for CPE. Samples of hospital effluent (n = 5), municipal wastewater before (n = 5) and after (n = 4) the hospital effluent stream joined the municipal wastewater stream were collected over a nine-week period (May-June 2017). All samples were examined for CPE by direct plating onto Brilliance CRE agar. Isolates were selected for susceptibility testing to 15 antimicrobial agents in accordance with EUCAST criteria. Where relevant, isolates were tested for carbapenemase-encoding genes by real-time PCR. CPE were detected in five samples of hospital effluent, one sample of pre-hospital wastewater and three samples of post-hospital wastewater. Our findings suggest hospital effluent is a major contributor to CPE in municipal wastewater. Monitoring of hospital effluent for CPE could have important applications in detection and risk management of unrecognised dissemination of CPE in both the healthcare setting and the environment.
Collapse
Affiliation(s)
- Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Bláthnaid Mahon
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Áine Varley
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Elaine McGrath
- Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Phelim Ryan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland; Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Carina Brehony
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
40
|
Piazza A, Comandatore F, Romeri F, Brilli M, Dichirico B, Ridolfo A, Antona C, Bandi C, Gismondo MR, Rimoldi SG. Identification of blaVIM-1 Gene in ST307 and ST661 Klebsiella pneumoniae Clones in Italy: Old Acquaintances for New Combinations. Microb Drug Resist 2019; 25:787-790. [DOI: 10.1089/mdr.2018.0327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aurora Piazza
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milano, Italy
| | - Francesco Comandatore
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milano, Italy
| | - Francesca Romeri
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Matteo Brilli
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Barbara Dichirico
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Annalisa Ridolfo
- Divisione di Malattie Infettive, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Carlo Antona
- Unità Operativa di Cardiochirurgia, AAST Fatebenefratelli Sacco, Milano, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milano, Italy
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Maria Rita Gismondo
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milano, Italy
| |
Collapse
|
41
|
Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8020037. [PMID: 30959901 PMCID: PMC6628318 DOI: 10.3390/antibiotics8020037] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has increased markedly in gram-negative bacteria over the last two decades, and in many cases has been associated with increased mortality and healthcare costs. The adoption of genotyping and next generation whole genome sequencing of large sets of clinical bacterial isolates has greatly expanded our understanding of how antibiotic resistance develops and transmits among bacteria and between patients. Diverse mechanisms of resistance, including antibiotic degradation, antibiotic target modification, and modulation of permeability through the bacterial membrane have been demonstrated. These fundamental insights into the mechanisms of gram-negative antibiotic resistance have influenced the development of novel antibiotics and treatment practices in highly resistant infections. Here, we review the mechanisms and global epidemiology of antibiotic resistance in some of the most clinically important resistance phenotypes, including carbapenem resistant Enterobacteriaceae, extensively drug resistant (XDR) Pseudomonas aeruginosa, and XDR Acinetobacter baumannii. Understanding the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterials and for individual treatment decisions, which often involve alternatives to β-lactam antibiotics.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Adelowo OO, Vollmers J, Mäusezahl I, Kaster AK, Müller JA. Detection of the carbapenemase gene bla VIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Sci Rep 2018; 8:15116. [PMID: 30310126 PMCID: PMC6181998 DOI: 10.1038/s41598-018-33535-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene blaVIM-5. WGS revealed the blaVIM-5 in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|blaVIM-5|blaPSE-1, aadB|blaVIM-5|aadB|blaPSE-1, and blaVIM-5|aadB|tnpA|blaPSE-1|smr2|tnpA, respectively. Strains carrying the aadB|blaVIM-5|blaPSE-1 cassette also carried an identical integron without blaVIM-5. In addition, the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3”)-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of blaVIM-5 in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes.
Collapse
Affiliation(s)
- Olawale O Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. .,Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
43
|
Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:e000197. [PMID: 30035710 PMCID: PMC6113871 DOI: 10.1099/mgen.0.000197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.
Collapse
Affiliation(s)
- Hayley Wilson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| |
Collapse
|
44
|
Characteristics of Carbapenemase-Producing Enterobacteriaceae in Wastewater Revealed by Genomic Analysis. Antimicrob Agents Chemother 2018; 62:AAC.02501-17. [PMID: 29483120 DOI: 10.1128/aac.02501-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Wastewater is considered a major source of antibiotic-resistant bacteria released into the environment. Here, we characterized carbapenemase-producing Enterobacteriaceae (CPE) in wastewater by whole-genome analysis. Wastewater samples (n = 40) were collected from municipal wastewater treatment plants and hospital wastewater in Japan and Taiwan. Samples were screened for CPE using selective media, and the obtained isolates were sequenced using an Illumina MiSeq. The isolates (n = 45) included the following microorganisms: Klebsiella quasipneumoniae (n = 12), Escherichia coli (n = 10), Enterobacter cloacae complex (n = 10), Klebsiella pneumoniae (n = 8), Klebsiella variicola (n = 2), Raoultella ornithinolytica (n = 1), Citrobacter freundii (n = 1), and Citrobacter amalonaticus (n = 1). Among the 45 isolates, 38 harbored at least one carbapenemase-encoding gene. Of these, the blaGES (blaGES-5, blaGES-6, and blaGES-24) genes were found in 29 isolates. The genes were situated in novel class 1 integrons, but the integron structures were different between the Japanese (In1439 with blaGES-24 and In1440 with blaGES-5) and Taiwanese (In1441 with blaGES-5 and In1442 with blaGES-6) isolates. Other carbapenemase-encoding genes (blaVIM-1, blaNDM-5, blaIMP-8, blaIMP-19, and blaKPC-2) were found in one to three isolates. Notably, class 1 integrons previously reported among clinical isolates obtained in the same regions as the present study, namely, In477 with blaIMP-19 and In73 with blaIMP-8, were found among the Japanese and Taiwanese isolates, respectively. The results indicate that CPE with various carbapenemase-encoding genes in different genetic contexts were present in biologically treated wastewater, highlighting the need to monitor for antibiotic resistance in wastewater.
Collapse
|
45
|
Impact of human-associated Escherichia coli clonal groups in Antarctic pinnipeds: presence of ST73, ST95, ST141 and ST131. Sci Rep 2018; 8:4678. [PMID: 29549276 PMCID: PMC5856829 DOI: 10.1038/s41598-018-22943-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
There is growing concern about the spreading of human microorganisms in relatively untouched ecosystems such as the Antarctic region. For this reason, three pinniped species (Leptonychotes weddellii, Mirounga leonina and Arctocephalus gazella) from the west coast of the Antartic Peninsula were analysed for the presence of Escherichia spp. with the recovery of 158 E. coli and three E. albertii isolates. From those, 23 harboured different eae variants (α1, β1, β2, ε1, θ1, κ, ο), including a bfpA-positive isolate (O49:H10-A-ST206, eae-k) classified as typical enteropathogenic E. coli. Noteworthy, 62 of the 158 E. coli isolates (39.2%) exhibited the ExPEC status and 27 (17.1%) belonged to sequence types (ST) frequently occurring among urinary/bacteremia ExPEC clones: ST12, ST73, ST95, ST131 and ST141. We found similarities >85% within the PFGE-macrorrestriction profiles of pinniped and human clinic O2:H6-B2-ST141 and O16:H5/O25b:H4-B2-ST131 isolates. The in silico analysis of ST131 Cplx genomes from the three pinnipeds (five O25:H4-ST131/PST43-fimH22-virotype D; one O16:H5-ST131/PST506-fimH41; one O25:H4-ST6252/PST9-fimH22-virotype D1) identified IncF and IncI1 plasmids and revealed high core-genome similarities between pinniped and human isolates (H22 and H41 subclones). This is the first study to demonstrate the worrisome presence of human-associated E. coli clonal groups, including ST131, in Antarctic pinnipeds.
Collapse
|
46
|
Draft Genome Sequence of Singapore Klebsiella pneumoniae subsp. pneumoniae Isolate DS32358_14, Which Contains the Carbapenemase Gene blaVIM-1. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01377-17. [PMID: 29301903 PMCID: PMC5754483 DOI: 10.1128/genomea.01377-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We sequenced the first blaVIM-1-positive Klebsiella pneumoniae strain isolated in Singapore. The isolate belongs to multilocus sequence type 2542 (ST2542), and blaVIM-1 was the first gene in an integron that also contained aacA4, aphA15, aadA1, catB2, qacEdelta1, and sul1.
Collapse
|
47
|
Esposito EP, Gaiarsa S, Del Franco M, Crivaro V, Bernardo M, Cuccurullo S, Pennino F, Triassi M, Marone P, Sassera D, Zarrilli R. A Novel IncA/C1 Group Conjugative Plasmid, Encoding VIM-1 Metallo-Beta-Lactamase, Mediates the Acquisition of Carbapenem Resistance in ST104 Klebsiella pneumoniae Isolates from Neonates in the Intensive Care Unit of V. Monaldi Hospital in Naples. Front Microbiol 2017; 8:2135. [PMID: 29163422 PMCID: PMC5675864 DOI: 10.3389/fmicb.2017.02135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
The emergence of carbapenemase producing Enterobacteriaceae has raised major public health concern. The aim of this study was to investigate the molecular epidemiology and the mechanism of carbapenem resistance acquisition of multidrug-resistant Klebsiella pneumoniae isolates from 20 neonates in the neonatal intensive care unit (NICU) of the V. Monaldi Hospital in Naples, Italy, from April 2015 to March 2016. Genotype analysis by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) identified PFGE type A and subtypes A1 and A2 in 17, 2, and 1 isolates, respectively, and assigned all isolates to sequence type (ST) 104. K. pneumoniae isolates were resistant to all classes of β-lactams including carbapenems, fosfomycin, gentamicin, and trimethoprim-sulfamethoxazole, but susceptible to quinolones, amikacin, and colistin. Conjugation experiments demonstrated that resistance to third-generation cephems and imipenem could be transferred along with an IncA/C plasmid containing the extended spectrum β-lactamase blaSHV -12 and carbapenem-hydrolyzing metallo-β-lactamase blaV IM-1 genes. The plasmid that we called pIncAC_KP4898 was 156,252 bp in size and included a typical IncA/C backbone, which was assigned to ST12 and core genome (cg) ST12.1 using the IncA/C plasmid MLST (PMLST) scheme. pIncAC_KP4898 showed a mosaic structure with blaV IM-1 into a class I integron, blaSHV -12 flanked by IS6 elements, a mercury resistance and a macrolide 2'-phosphotransferase clusters, ant(3″), aph(3″), aacA4, qnrA1, sul1, and dfrA14 conferring resistance to aminoglycosides, quinolones, sulfonamides, and trimethoprim, respectively, several genes predicted to encode transfer functions and proteins involved in DNA transposition. The acquisition of pIncAC_KP4898 carrying blaV IM-1 and blaSHV -12 contributed to the spread of ST104 K. pneumoniae in the NICU of V. Monaldi Hospital in Naples.
Collapse
Affiliation(s)
- Eliana P Esposito
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Stefano Gaiarsa
- Department of Bioscience, University of Milan, Milan, Italy.,Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | | | - Valeria Crivaro
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Mariano Bernardo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Susanna Cuccurullo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Francesca Pennino
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Piero Marone
- Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnologies, University of Pavia, Pavia, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples 'Federico II', Naples, Italy.,Centro di Inngegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|