1
|
Valzano F, La Bella G, Lopizzo T, Curci A, Lupo L, Morelli E, Mosca A, Marangi M, Melfitano R, Rollo T, De Nittis R, Arena F. Resistance to ceftazidime-avibactam and other new β-lactams in Pseudomonas aeruginosa clinical isolates: a multi-center surveillance study. Microbiol Spectr 2024; 12:e0426623. [PMID: 38934607 PMCID: PMC11302676 DOI: 10.1128/spectrum.04266-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
New β-lactam-β-lactamase inhibitor combinations represent last-resort antibiotics to treat infections caused by multidrug-resistant Pseudomonas aeruginosa. Carbapenemase gene acquisition can limit their spectrum of activity, and reports of resistance toward these new molecules are increasing. In this multi-center study, we evaluated the prevalence of resistance to ceftazidime-avibactam (CZA) and comparators among P. aeruginosa clinical isolates from bloodstream infections, hospital-acquired or ventilator-associated pneumonia, and urinary tract infections, circulating in Southern Italy. We also investigated the clonality and content of relevant β-lactam resistance mechanisms of CZA-resistant (CZAR) isolates. A total of 120 P. aeruginosa isolates were collected. CZA was among the most active β-lactams, retaining susceptibility in the 81.7% of cases, preceded by cefiderocol (95.8%) and followed by ceftolozane-tazobactam (79.2%), meropenem-vaborbactam (76.1%), imipenem-relebactam (75%), and aztreonam (69.6%). Among non-β-lactams, colistin and amikacin were active against 100% and 85.8% of isolates respectively. In CZAR strains subjected to whole-genome sequencing (n = 18), resistance was mainly due to the expression of metallo-β-lactamases (66.6% VIM-type and 5.5% FIM-1), followed by PER-1 (16.6%) and GES-1 (5.5%) extended-spectrum β-lactamases, mostly carried by international high-risk clones (ST111 and ST235). Of note, two strains producing the PER-1 enzyme were resistant to all β-lactams, including cefiderocol. In conclusion, the CZA resistance rate among P. aeruginosa clinical isolates in Southern Italy remained low. CZAR isolates were mostly metallo-β-lactamases producers and belonging to ST111 and ST253 epidemic clones. It is important to implement robust surveillance systems to monitor emergence of new resistance mechanisms and to limit the spread of P. aeruginosa high-risk clones. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa infections are a growing threat due to the limited therapeutic options available. Ceftazidime-avibactam (CZA) is among the last-resort antibiotics for the treatment of difficult-to-treat P. aeruginosa infections, although resistance due to the acquisition of transferable β-lactamase genes is increasing. With this work, we report that CZA represents a highly active antipseudomonal β-lactam compound (after cefiderocol), and that metallo-β-lactamases (VIM-type) and extended-spectrum β-lactamases (GES and PER-type) production is the major factor underlying CZA resistance in isolates from Southern Italian hospitals. In addition, we reported that such resistance mechanisms were mainly carried by the international high-risk clones ST111 and ST235.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianfranco La Bella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Teresa Lopizzo
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Anna Curci
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Laura Lupo
- Clinical Pathology and Microbiology Unit, Vito Fazzi Hospital, Lecce, Italy
| | | | - Adriana Mosca
- Department of Interdisciplinary Medicine, Microbiology Section, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Tiziana Rollo
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Rosella De Nittis
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
2
|
Venkatraman G, Mohan PS, Mashghan MM, Wong KC, Abdul-Rahman PS, Vellasamy KM, Hirad AH, Alarfaj AA, Wang S. Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline. Bioprocess Biosyst Eng 2024; 47:1163-1182. [PMID: 38491194 DOI: 10.1007/s00449-024-02984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical @ Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Maryam Mohammed Mashghan
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kar-Cheng Wong
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, 404000, Wanzhou, China
| |
Collapse
|
3
|
Karlowsky JA, Lob SH, Hawser SP, Kothari N, Siddiqui F, Alekseeva I, DeRyke CA, Young K, Motyl MR, Sahm DF. Activity of ceftolozane/tazobactam and imipenem/relebactam against clinical isolates of Enterobacterales and Pseudomonas aeruginosa collected in Greece and Italy-SMART 2017-2021. Eur J Clin Microbiol Infect Dis 2024; 43:1343-1348. [PMID: 38775873 PMCID: PMC11271313 DOI: 10.1007/s10096-024-04756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/10/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The current study evaluated the in vitro activities of ceftolozane/tazobactam (C/T), imipenem/relebactam (IMI/REL), and comparators against recent (2017-2021) clinical isolates of gram-negative bacilli from two countries in southern Europe. METHODS Nine clinical laboratories (two in Greece; seven in Italy) each collected up to 250 consecutive gram-negative isolates per year from lower respiratory tract, intraabdominal, urinary tract, and bloodstream infection samples. MICs were determined by the CLSI broth microdilution method and interpreted using 2022 EUCAST breakpoints. β-lactamase genes were identified in select β-lactam-nonsusceptible isolate subsets. RESULTS C/T inhibited the growth of 85-87% of Enterobacterales and 94-96% of ESBL-positive non-CRE NME (non-Morganellaceae Enterobacterales) isolates from both countries. IMI/REL inhibited 95-98% of NME, 100% of ESBL-positive non-CRE NME, and 98-99% of KPC-positive NME isolates from both countries. Country-specific differences in percent susceptible values for C/T, IMI/REL, meropenem, piperacillin/tazobactam, levofloxacin, and amikacin were more pronounced for Pseudomonas aeruginosa than Enterobacterales. C/T and IMI/REL both inhibited 84% of P. aeruginosa isolates from Greece and 91-92% of isolates from Italy. MBL rates were estimated as 4% of Enterobacterales and 10% of P. aeruginosa isolates from Greece compared to 1% of Enterobacterales and 3% of P. aeruginosa isolates from Italy. KPC rates among Enterobacterales isolates were similar in both countries (7-8%). OXA-48-like enzymes were only identified in Enterobacterales isolates from Italy (1%) while GES carbapenemase genes were only identified in P. aeruginosa isolates from Italy (2%). CONCLUSION We conclude that C/T and IMI/REL may provide viable treatment options for many patients from Greece and Italy.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Mendes Pedro D, Paulo SE, Santos CM, Fonseca AB, Melo Cristino J, Pereira ÁA, Caneiras C. Extensively drug-resistant Pseudomonas aeruginosa: clinical features and treatment with ceftazidime/avibactam and ceftolozane/tazobactam in a tertiary care university hospital center in Portugal - A cross-sectional and retrospective observational study. Front Microbiol 2024; 15:1347521. [PMID: 38414772 PMCID: PMC10896734 DOI: 10.3389/fmicb.2024.1347521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a growing concern due to its increasing incidence, limited therapeutic options, limited data on the optimal treatment, and high mortality rates. The study aimed to characterize the population, the outcome and the microbiological characteristics of XDR-PA identified in a Portuguese university hospital center. Methods All XDR-PA isolates between January 2019 and December 2021 were identified. XDR-PA was defined as resistance to piperacillin-tazobactam, third and fourth generation cephalosporins, carbapenems, aminoglycosides and fluoroquinolones. A retrospective analysis of the medical records was performed. Results One hundred seventy-eight individual episodes among 130 patients with XDR-PA detection were identified. The most common sources of infection were respiratory (32%) and urinary tracts (30%), although skin and soft tissue infections (18%) and primary bacteremia (14%) were also prevalent. Colonization was admitted in 64 cases. Several patients had risk factors for complicated infections, most notably immunosuppression, structural lung abnormalities, major surgery, hemodialysis or foreign intravascular or urinary devices. XDR-PA identification was more frequent in male patients with an average age of 64.3 ± 17.5 years. One non-susceptibility to colistin was reported. Only 12.4% were susceptible to aztreonam. Ceftazidime-avibactam (CZA) was susceptible in 71.5% of the tested isolates. Ceftolozane-tazobactam (C/T) was susceptible in 77.5% of the tested isolates. Antibiotic regimens with XDR-PA coverage were reserved for patients with declared infection, except to cystic fibrosis. The most frequently administered antibiotics were colistin (41 cases), CZA (39 cases), and C/T (16 cases). When combination therapy was used, CZA plus colistin was preferred. The global mortality rate among infected patients was 35.1%, significantly higher in those with hematologic malignancy (50.0%, p < 0.05), followed by the ones with bacteremia (44.4%, p < 0.05) and those medicated with colistin (39.0%, p < 0.05), especially the ones with respiratory infections (60.0%). Among patients treated with CZA or C/T, the mortality rate seemed to be lower. Discussion XDR-PA infections can be severe and difficult to treat, with a high mortality rate. Even though colistin seems to be a viable option, it is likely less safe and efficient than CZA and C/T. To the best of the authors' knowledge, this is the first description of the clinical infection characteristics and treatment of XDR-PA in Portugal.
Collapse
Affiliation(s)
- Diogo Mendes Pedro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Eduardo Paulo
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Carla Mimoso Santos
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Ana Bruschy Fonseca
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - José Melo Cristino
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Instituto de Microbiologia, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Álvaro Ayres Pereira
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Cátia Caneiras
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Monte da Caparica, Portugal
- Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Carrara E, Grossi PA, Gori A, Lambertenghi L, Antonelli M, Lombardi A, Bongiovanni F, Magrini N, Manfredi C, Stefani S, Tumbarello M, Tacconelli E. How to tailor recommendations on the treatment of multi-drug resistant Gram-negative infections at country level integrating antibiotic stewardship principles within the GRADE-ADOLOPMENT framework. THE LANCET. INFECTIOUS DISEASES 2024; 24:e113-e126. [PMID: 37678308 DOI: 10.1016/s1473-3099(23)00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023]
Abstract
Promoting the optimal use of antibiotics through evidence-based recommendations should be regarded as a crucial step in the global fight against antimicrobial resistance. Within this scope, several guidelines and guidance documents for antibiotic therapy have been published in recent years. All documents underline the limitations of existing evidence and remark on the need for tailoring recommendations at the national level, based on local epidemiology, availability of diagnostics and drugs, and antimicrobial stewardship principles. The GRADE-ADOLOPMENT methodology is an evidence-based methodology that allows the adoption, adaptation, and update of existing recommendations to specific settings without performing de novo systematic reviews and grading of the evidence. However, procedures to integrate this evidence with stewardship principles, countries' surveillance data, and capacity in terms of diagnostics and antibiotics' availability have never been defined. This Personal View provides the first example of a country's calibration of international evidence-based guidance documents on treating infections caused by multidrug-resistant bacteria. A panel of experts convened by the Italian Medicine Agency (AIFA) used the GRADE methodology for systematically extracting and evaluating 100 recommendations on the treatment of infections due to multidrug-resistant Gram-negative bacteria from 11 guidance documents and 24 systematic reviews. The ADOLOPMENT procedure was used to calibrate the existing recommendations to the national context, leading to the adoption of 64, the adaptation of 27, and the rejection of nine recommendations. We discuss the technical details of the GRADE-ADOLOPMENT application, the calibration process, and the human resources required to support such an effort. This Personal View also covers the challenges of integrating antibiotic stewardship principles in evidence-based recommendations for treating infections with very limited therapeutic and diagnostic options. The details presented here could support the easy transferability of the methodology to other countries and settings, particularly where the incidence of antibiotic-resistant infections is high.
Collapse
Affiliation(s)
- Elena Carrara
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery University of Insubria and ASST-Sette Laghi, Varese, Italy
| | - Andrea Gori
- Centre for Multidisciplinary Research in Health Science, Department of Infectious Diseases Ospedale Luigi Sacco, University of Milan, Milan, Italy
| | - Lorenza Lambertenghi
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Nicola Magrini
- Italian Medicines Agency, Rome, Italy; NHS Clinical Governance Unit, Romagna Health Authority, Forli, Italy; WHO Collaborating Centre in Evidence Synthesis and Guideline Development, Health Directorate Regione Emilia Romagna, Bologna, Italy
| | - Carlo Manfredi
- Order of Physicians, Surgeons and Dentists of Massa Carrara- Health Authority Toscana North-West, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Biological Tower, University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Evelina Tacconelli
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| |
Collapse
|
7
|
Cosentino F, Viale P, Giannella M. MDR/XDR/PDR or DTR? Which definition best fits the resistance profile of Pseudomonas aeruginosa? Curr Opin Infect Dis 2023; 36:564-571. [PMID: 37930070 PMCID: PMC10836784 DOI: 10.1097/qco.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this narrative review is to compare the prognostic utility of the new definition of difficult-to-treat resistance (DTR) vs. established definitions in patients with Pseudomonas aeruginosa infection to understand the therapeutic implications of resistance classification and its impact on clinical outcome. RECENT FINDINGS Among Gram-negative bacteria (GNB), P. aeruginosa (PA) is associated with high rates of morbidity and mortality, mostly related to its intrinsic capacity of developing antibiotic resistance. Several classifications of antibiotic resistance have been proposed in the last 15 years. The most common used is that from Magiorakos et al. including multidrug resistance (MDR), extensively drug-resistant (XDR) and pan drug resistance (PDR) according to the number of antibiotic classes showing in vitro activity. A further classification based on the resistance to specific antibiotic classes (i.e. fluoroquinolones, cephalosporins, carbapenem resistance) was also proposed. However, both of them have been criticized because of limited usefulness in clinical practice and for poor correlation with patient outcome, mainly in infections due to PA. More recently the new definition of difficult-to-treat resistance (DTR) has been proposed referring to nonsusceptibility to all first-line agents showing high-efficacy and low-toxicity (i.e. carbapenems, β-lactam-β-lactamase inhibitor combinations, and fluoroquinolones). Studies including large cohorts of patients with GNB bloodstream infections have confirmed the prognostic value of DTR classification and its clinical usefulness mainly in infections due to PA. Indeed, in the recent documents from the Infectious Diseases Society of America (IDSA) on the management of antibiotic resistant GNB infections, the DTR classification was applied to PA. SUMMARY DTR definition seems to identify better than MDR/XDR/PDR and single class resistant categories the cases of PA with limited treatment options. It requires periodic revision in order to remain up-to-date with the introduction of new antibiotics and the evolving pattern of resistance.
Collapse
Affiliation(s)
- Federica Cosentino
- Department of Medical and Surgical Sciences, University of Bologna
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, University of Bologna
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, University of Bologna
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review focuses on the management of severe Pseudomonas aeruginosa infections in critically ill patients. RECENT FINDINGS Pseudomonas aeruginosa is the most common pathogen in intensive care; the main related infections are nosocomial pneumonias, then bloodstream infections. Antimicrobial resistance is common; despite new antibiotics, it is associated with increased mortality, and can lead to a therapeutic deadlock. SUMMARY Carbapenem resistance in difficult-to-treat P. aeruginosa (DTR-PA) strains is primarily mediated by loss or reduction of the OprD porin, overexpression of the cephalosporinase AmpC, and/or overexpression of efflux pumps. However, the role of carbapenemases, particularly metallo-β-lactamases, has become more important. Ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam are useful against DTR phenotypes (noncarbapenemase producers). Other new agents, such as aztreonam-ceftazidime-avibactam or cefiderocol, or colistin, might be effective for carbapenemase producers. Regarding nonantibiotic agents, only phages might be considered, pending further clinical trials. Combination therapy does not reduce mortality, but may be necessary for empirical treatment. Short-term treatment of severe P. aeruginosa infections should be preferred when it is expected that the clinical situation resolves rapidly.
Collapse
Affiliation(s)
- Hermann Do Rego
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
- IAME Université Paris Cité, UMR 1137, Paris
- Meta-network PROMISE, Inserm, Limoges Universit, Limoges University hospital (CHU), UMR1092, Limoges, France
| |
Collapse
|
9
|
Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K, Głuszek K, Piktel E, Okła S, Bucki R. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens 2023; 12:1346. [PMID: 38003809 PMCID: PMC10674730 DOI: 10.3390/pathogens12111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Katarzyna Głuszek
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Sławomir Okła
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|
10
|
Teng J, Imani S, Zhou A, Zhao Y, Du L, Deng S, Li J, Wang Q. Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother 2023; 167:115564. [PMID: 37748408 DOI: 10.1016/j.biopha.2023.115564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.
Collapse
Affiliation(s)
- Jianying Teng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China; The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai, PR China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Jun Li
- College of Food Science and Engineering, Jiangxi Agricultural University, 1225 Zhimin Avenue, Nanchang, Jiangxi Province, PR China.
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| |
Collapse
|
11
|
Stoikov I, Ivanov IN, Donchev D, Teneva D, Dobreva E, Hristova R, Sabtcheva S. Genomic Characterization of IMP-Producing Pseudomonas aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023; 11:2270. [PMID: 37764114 PMCID: PMC10537328 DOI: 10.3390/microorganisms11092270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa infections represent a major public health concern and require comprehensive understanding of their genetic makeup. This study investigated the first occurrence of imipenemase (IMP)-carrying P. aeruginosa strains from Bulgaria. Whole genome sequencing identified a novel plasmid-mediated IMP-100 allele located in a a novel In4886 integron embedded in a putative Tn7700 transposon. Two other closely related chromosomal IMP variants, IMP-13 and IMP-84, were also detected. The IMP-producers were resistant to last-line drugs including cefiderocol (CFDC) (two out of three) and susceptible to colistin. The IMP-13/84 cassettes were situated in a In320 integron inserted in a Tn5051-like transposon as previously reported. Lastly, the p4782-IMP plasmid rendered the PA01 transformant resistant to CFDC, suggesting a transferable CFDC resistance. A variety of virulence factors associated with adhesion, antiphagocytosis, iron uptake, and quorum sensing, as well as secretion systems, toxins, and proteases, were confirmed, suggesting significant pathogenic potential consistent with the observed strong biofilm formation. The emergence of IMP-producing MDR P. aeruginosa is alarming as it remains unsusceptible even to last-generation drugs like CFDC. Newly detected IMP-100 was even located in a CFDC-resistant XDR strain.
Collapse
Affiliation(s)
- Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deana Teneva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Elina Dobreva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Rumyana Hristova
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| |
Collapse
|
12
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
13
|
Wang J, Dong X, Wang F, Jiang J, Zhao Y, Gu J, Xu J, Mao X, Tu B. Molecular Characteristics and Genetic Analysis of Extensively Drug-Resistant Isolates with different Tn3 Mobile Genetic Elements. Curr Microbiol 2023; 80:246. [PMID: 37335402 DOI: 10.1007/s00284-023-03340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Extensively drug-resistant (XDR) bacteria are the main caues for causing clinical infectious diseases. Our aim was to distinguish the present molecular epidemiological situation of XDR Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli isolates recovered from local hospitals in Changzhou. Antibiotic susceptibility and phenotypic analysis, multilocus sequence typing and Pulsed Field Gel Electrophoresis were performed to trace these isolates. Resistant phenotype and gene analysis from 29 XDR strains demonstrated that they mainly included TEM, CTX-M-1/2, OXA-48, and KPC products. A. baumannii strains belonged to sequence type (ST) ST224, and carrying the blaCTX-M-2/TEM gene. The quinolone genes aac(6')-ib-cr and qnrB were carrying only in A. baumannii and E.coli. Three (2.3%) of these strains were found to contain the blaNDM-1 or blaNDM-5 gene. A new genotype of K. pneumoniae was found as ST2639. Epidemic characteristics of the XDR clones showed that antibiotic resistance genes distributed unevenly in different wards in Changzhou's local hospitals. With the sequencing of blaNDM carrying isolates, the plasmids often carrying a highly conservative Tn3-relavent mobile genetic element. The especially coupled insert sequence ISKox3 may be a distinctive resistance gene transfer loci. The genotypic diversity variation of XDRs suggested that tracking and isolating the sources of antibiotic resistance especially MBL-encoding genes such as blaNDM-will help manage the risk of infection by these XDRs.
Collapse
Affiliation(s)
- Jiazhen Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Dong
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Fengming Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jinyi Jiang
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ying Zhao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jingyue Gu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jian Xu
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xujian Mao
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Bowen Tu
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
- Pathogenic Biological Laboratory, Changzhou Disease Control and Prevention Centre, Changzhou Medical Centre, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
14
|
Reyes J, Komarow L, Chen L, Ge L, Hanson BM, Cober E, Herc E, Alenazi T, Kaye KS, Garcia-Diaz J, Li L, Kanj SS, Liu Z, Oñate JM, Salata RA, Marimuthu K, Gao H, Zong Z, Valderrama-Beltrán SL, Yu Y, Tambyah P, Weston G, Salcedo S, Abbo LM, Xie Q, Ordoñez K, Wang M, Stryjewski ME, Munita JM, Paterson DL, Evans S, Hill C, Baum K, Bonomo RA, Kreiswirth BN, Villegas MV, Patel R, Arias CA, Chambers HF, Fowler VG, Doi Y, van Duin D, Satlin MJ. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study. THE LANCET. MICROBE 2023; 4:e159-e170. [PMID: 36774938 PMCID: PMC10016089 DOI: 10.1016/s2666-5247(22)00329-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the distribution and clinical significance of carbapenemases are unclear. The aim of this study was to define characteristics and outcomes of CRPA infections and the global frequency and clinical impact of carbapenemases harboured by CRPA. METHODS We conducted an observational, prospective cohort study of CRPA isolated from bloodstream, respiratory, urine, or wound cultures of patients at 44 hospitals (10 countries) between Dec 1, 2018, and Nov 30, 2019. Clinical data were abstracted from health records and CRPA isolates were whole-genome sequenced. The primary outcome was 30-day mortality from the day the index culture was collected. We compared outcomes of patients with CRPA infections by infection type and across geographic regions and performed an inverse probability weighted analysis to assess the association between carbapenemase production and 30-day mortality. FINDINGS We enrolled 972 patients (USA n=527, China n=171, south and central America n=127, Middle East n=91, Australia and Singapore n=56), of whom 581 (60%) had CRPA infections. 30-day mortality differed by infection type (bloodstream 21 [30%] of 69, respiratory 69 [19%] of 358, wound nine [14%] of 66, urine six [7%] of 88; p=0·0012) and geographical region (Middle East 15 [29%] of 52, south and central America 20 [27%] of 73, USA 60 [19%] of 308, Australia and Singapore three [11%] of 28, China seven [6%] of 120; p=0·0002). Prevalence of carbapenemase genes among CRPA isolates also varied by region (south and central America 88 [69%] of 127, Australia and Singapore 32 [57%] of 56, China 54 [32%] of 171, Middle East 27 [30%] of 91, USA ten [2%] of 527; p<0·0001). KPC-2 (n=103 [49%]) and VIM-2 (n=75 [36%]) were the most common carbapenemases in 211 carbapenemase-producing isolates. After excluding USA patients, because few US isolates had carbapenemases, patients with carbapenemase-producing CRPA infections had higher 30-day mortality than those with non-carbapenemase-producing CRPA infections in both unadjusted (26 [22%] of 120 vs 19 [12%] of 153; difference 9%, 95% CI 3-16) and adjusted (difference 7%, 95% CI 1-14) analyses. INTERPRETATION The emergence of different carbapenemases among CRPA isolates in different geographical regions and the increased mortality associated with carbapenemase-producing CRPA infections highlight the therapeutic challenges posed by these organisms. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Lauren Komarow
- The Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Liang Chen
- Center for Discovery and Innovation and Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Lizhao Ge
- The Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Blake M Hanson
- Center for Infectious Diseases and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, TX, USA
| | - Eric Cober
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Erica Herc
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, MI, USA
| | - Thamer Alenazi
- College of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA; Division of Allergy, Immunology, and Infectious Diseases, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Julia Garcia-Diaz
- Division of Infectious Diseases, Ochsner Medical Center, New Orleans, LA, USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zhengyin Liu
- Infectious Disease Section, Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jose M Oñate
- Servicio de Medicina Interna, Centro Medico Imbanaco, Cali, Colombia
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kalisvar Marimuthu
- Department of Infectious Diseases, Tan Tock Seng Hospital, National Centre for Infectious Diseases, Singapore
| | - Hainv Gao
- Department of Infectious Diseases, Shulan Hangzhou Hospital, Hangzhou, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Sandra L Valderrama-Beltrán
- Infectious Diseases Research Group, School of Medicine, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Paul Tambyah
- National University of Singapore, Infectious Diseases Translational Research Program, Singapore
| | - Gregory Weston
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Soraya Salcedo
- Servicio de Infectología, Organizacion Clinica General del Norte, Barranquilla, Colombia
| | - Lillian M Abbo
- Division of Infectious Diseases, University of Miami Hospital, Miami, FL, USA
| | - Qing Xie
- Department of Infectious Disease, Ruijin Hospital, Shanghai, China
| | - Karen Ordoñez
- Department of Infectious Diseases, ESE Hospital Universitario, San Jorge de Pereira, Pereira, Colombia
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Martin E Stryjewski
- Department of Medicine and Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | - Jose M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - David L Paterson
- Department of Infectious Diseases, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QL, Australia
| | - Scott Evans
- The Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Carol Hill
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Keri Baum
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Robert A Bonomo
- Case Western Reserve University-Veteran Affairs Center for Antimicrobial Resistance and Epidemiology, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Department of Medicine, Pharmacology, Molecular Biology and Microbiology, and Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation and Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Maria Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cesar A Arias
- Division of Infectious Diseases and Center for Infectious Diseases Research, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, TX, USA
| | - Henry F Chambers
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vance G Fowler
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Antonelli A, Coppi M, Tellapragada C, Hasan B, Maruri A, Gijón D, Morecchiato F, de Vogel C, Verbon A, van Wamel W, Kragh KN, Frimodt-Møller N, Cantón R, Giske CG, Rossolini GM. Isothermal microcalorimetry versus checkerboard assay to evaluate in vitro synergism of meropenem-amikacin and meropenem-colistin combinations against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 2022; 60:106668. [PMID: 36038097 DOI: 10.1016/j.ijantimicag.2022.106668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the activity of meropenem-amikacin and meropenem-colistin combinations with checkerboard broth microdilution (CKBM) compared to isothermal microcalorimetry (ITMC) assays against a multicentric collection of multidrug-resistant Gram-negative (MDR-GN) clinical isolates, to compare the Fractional inhibitory concentration index (FICI) and time to results of CKBM and ITMC assays. METHODS A collection of 333 MDR-GNs showing reduced susceptibility to meropenem (121 Klebsiella pneumoniae, 14 Escherichia coli, 130 Pseudomonas aeruginosa and 68 Acinetobacter baumannii) isolated from different centres (Florence, Madrid, Rotterdam, and Stockholm) was included in the study. The antimicrobial activity of selected combinations was evaluated with CKBM and ITMC. FICI results were interpreted as synergistic/additive and indifferent for values ≤0.5/0.5<x≤1 and >1, respectively. WGS data in a subset of strains was used to evaluate their clonality. RESULTS A total of 254 and 286 strains were tested with meropenem-colistin and meropenem-amikacin combinations with ITMC and CKBM, respectively. Synergism/additive effects were observed with 46 strains (20 K. pneumoniae, 4 E. coli, 22 P. aeruginosa) and 20 strains (3 K. pneumoniae, 11 P. aeruginosa and 6 A. baumannii) with meropenem-amikacin and meropenem-colistin combination, respectively, with CKBM. ITMC showed a good concordance with CKBM with 89.5% and 92.2% of cases interpreted within the same FICI category for meropenem-amikacin and meropenem-colistin combinations, respectively. Most of the synergism/additivity effects were detected within 6 hours by ITMC. CONCLUSIONS ITMC showed a very good concordance with CKBM against a large collection of MDR-GN and could be implemented for the rapid evaluation of in vitro activity of antimicrobial combinations.
Collapse
Affiliation(s)
- Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Badrul Hasan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ainhize Maruri
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Desiree Gijón
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Fabio Morecchiato
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy
| | - Corné de Vogel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University, Rotterdam, Netherlands
| | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University, Rotterdam, Netherlands
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Rafael Cantón
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER de Enfermedades Infecciosas. Instituto de Salud Carlos III. Madrid, Spain
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.
| |
Collapse
|
16
|
Morroni G, Brescini L, Antonelli A, Pilato VD, Castelletti S, Brenciani A, D'Achille G, Mingoia M, Giovanetti E, Fioriti S, Masucci A, Giani T, Giacometti A, Rossolini GM, Cirioni O. Clinical and microbiological features of ceftolozane/tazobactam resistant Pseudomonas aeruginosa isolates in a university hospital in central Italy. J Glob Antimicrob Resist 2022; 30:377-383. [PMID: 35842115 DOI: 10.1016/j.jgar.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Ceftolozane/tazobactam (C/T) is a novel cephalosporin and β-lactamase inhibitor combination with great activity against Pseudomonas aeruginosa. To assess the Pseudomonas aeruginosa susceptibility to C/T, a surveillance study was conducted from October 2018 to March 2019 at the University Hospital "Ospedali Riuniti" of Ancona (Italy). MATERIALS AND METHODS MICs to C/T were determined by Etest strip. Resistant isolates were characterized by phenotypic (broth microdilution antimicrobial susceptibility testing and mCIM) and genotypic (PCR, PFGE and WGS) methods. Clinical variables of patients infected by C/T resistant P. aeruginosa were collected from medical records. RESULTS fifteen out of 317 P. aeruginosa collected showed resistance to C/T (4.7%). Ten strains demonstrated a carbapenemase activity by mCIM method, and PCR confirmed eight of them harbored a blaVIM gene, while the other two were positive for blaIMP. Additionally, three isolates carried acquired extended spectrum β-lactamase genes (2 blaPER and 1 blaGES). Eight strains were strictly related by PFGE and WGS analysis confirmed that they belonged to ST111. The other STs found were ST175 (2 isolates), ST235 (2 isolates), ST70 (1 isolate), ST621 (1 isolate) and the new ST3354 (1 isolate). Most of the patients received previous antibiotic therapies, carried invasive devices and had a prolonged hospitalization. CONCLUSION This study demonstrated the presence of C/T resistant P. aeruginosa isolates also in a regional hospital, carrying a number of resistance mechanisms acquired by different high-risk clones.
Collapse
Key Words
- Ceftolozane/tazobactam, Pseudomonas aeruginosa, β-lactamase Abbreviations: C/T, ceftolozane/tazobactam
- ESBL, extended spectrum β-lactamase
- ICU, intensive care unit
- MBL, metallo-β-lactamase
- MDR, multi-drug resistant
- MIC, minimum inhibitory concentration
- MLST, multi locus sequence typing
- PFGE, pulsed field gel electrophoresis
- ST, sequence type
- WGS, whole genome sequencing
- XDR, extensively-drug resistant
- cIAI, complicated intra-abdominal infections
- cUTI, complicated urinary tract infection, HAP, hospital acquired pneumonia
- mCIM, modified carbapenem-inactivation method
Collapse
Affiliation(s)
- Gianluca Morroni
- Microbiology unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Sefora Castelletti
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Microbiology unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gloria D'Achille
- Microbiology unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Marina Mingoia
- Microbiology unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Microbiology unit, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Fioriti
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Masucci
- Clinical Microbiology Laboratory, University Hospital "Ospedali Riuniti", Ancona, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Andrea Giacometti
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
17
|
Principe L, Lupia T, Andriani L, Campanile F, Carcione D, Corcione S, De Rosa FG, Luzzati R, Stroffolini G, Steyde M, Decorti G, Di Bella S. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol—An All-Inclusive Guide for Clinicians. Pharmaceuticals (Basel) 2022; 15:ph15040463. [PMID: 35455461 PMCID: PMC9028825 DOI: 10.3390/ph15040463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Bacterial resistance mechanisms are continuously and rapidly evolving. This is particularly true for Gram-negative bacteria. Over the last decade, the strategy to develop new β-lactam/β-lactamase inhibitors (BLs/BLIs) combinations has paid off and results from phase 3 and real-world studies are becoming available for several compounds. Cefiderocol warrants a separate discussion for its peculiar mechanism of action. Considering the complexity of summarizing and integrating the emerging literature data of clinical outcomes, microbiological mechanisms, and pharmacokinetic/pharmacodynamic properties of the new BL/BLI and cefiderocol, we aimed to provide an overview of data on the following compounds: aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, cefiderocol, ceftaroline/avibactam, ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/relebactam, meropenem/nacubactam and meropenem/vaborbactam. Each compound is described in a dedicated section by experts in infectious diseases, microbiology, and pharmacology, with tables providing at-a-glance information.
Collapse
Affiliation(s)
- Luigi Principe
- Clinical Pathology and Microbiology Unit, “San Giovanni di Dio” Hospital, I-88900 Crotone, Italy;
| | - Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia Hospital, I-14100 Asti, Italy; (T.L.); (F.G.D.R.)
| | - Lilia Andriani
- Clinical Pathology and Microbiology Unit, Hospital of Sondrio, I-23100 Sondrio, Italy;
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I-95123 Catania, Italy;
| | - Davide Carcione
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy;
| | - Silvia Corcione
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia Hospital, I-14100 Asti, Italy; (T.L.); (F.G.D.R.)
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| | - Giacomo Stroffolini
- Infectious diseases Unit, Department of Medical Sciences, University of Torino, I-10124 Torino, Italy; (S.C.); (G.S.)
| | - Marina Steyde
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| | - Giuliana Decorti
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
- Institute for Maternal and Child Health–IRCCS Burlo Garofolo, I-34137 Trieste, Italy
- Correspondence: ; Tel.: +39 40-378-5362
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, I-34149 Trieste, Italy; (R.L.); (M.S.); (S.D.B.)
| |
Collapse
|
18
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
19
|
Kim D, Yoon EJ, Hong JS, Choi MH, Kim HS, Kim YR, Kim YA, Uh Y, Shin KS, Shin JH, Park JS, Park KU, Won EJ, Kim SH, Shin JH, Kim JW, Lee S, Jeong SH. Major Bloodstream Infection-Causing Bacterial Pathogens and Their Antimicrobial Resistance in South Korea, 2017-2019: Phase I Report From Kor-GLASS. Front Microbiol 2022; 12:799084. [PMID: 35069503 PMCID: PMC8770956 DOI: 10.3389/fmicb.2021.799084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
To monitor national antimicrobial resistance (AMR), the Korea Global AMR Surveillance System (Kor-GLASS) was established. This study analyzed bloodstream infection (BSI) cases from Kor-GLASS phase I from January 2017 to December 2019. Nine non-duplicated Kor-GLASS target pathogens, including Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp., and Salmonella spp., were isolated from blood specimens from eight sentinel hospitals. Antimicrobial susceptibility testing, AMR genotyping, and strain typing were carried out. Among the 20,041 BSI cases, 15,171 cases were caused by one of the target pathogens, and 12,578 blood isolates were collected for the study. Half (1,059/2,134) of S. aureus isolates were resistant to cefoxitin, and 38.1% (333/873) of E. faecium isolates were resistant to vancomycin. Beta-lactamase-non-producing ampicillin-resistant and penicillin-resistant E. faecalis isolates by disk diffusion method were identified, but the isolates were confirmed as ampicillin-susceptible by broth microdilution method. Among E. coli, an increasing number of isolates carried the bla CTX-M-27 gene, and the ertapenem resistance in 1.4% (30/2,110) of K. pneumoniae isolates was mostly (23/30) conferred by K. pneumoniae carbapenemases. A quarter (108/488) of P. aeruginosa isolates were resistant to meropenem, and 30.5% (33/108) of those carried acquired carbapenemase genes. Over 90% (542/599) of A. baumannii isolates were imipenem-resistant, and all except one harbored the bla OXA-23 gene. Kor-GLASS provided comprehensive AMR surveillance data, and the defined molecular mechanisms of resistance helped us to better understand AMR epidemiology. Comparative analysis with other GLASS-enrolled countries is possible owing to the harmonized system provided by GLASS.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.,National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Jun Sung Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University School of Medicine, Jeju, South Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Wook Kim
- National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - SungYoung Lee
- National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Paprocka P, Durnaś B, Mańkowska A, Skłodowski K, Król G, Zakrzewska M, Czarnowski M, Kot P, Fortunka K, Góźdź S, Savage PB, Bucki R. New β-Lactam Antibiotics and Ceragenins - A Study to Assess Their Potential in Treatment of Infections Caused by Multidrug-Resistant Strains of Pseudomonas aeruginosa. Infect Drug Resist 2022; 14:5681-5698. [PMID: 34992394 PMCID: PMC8715797 DOI: 10.2147/idr.s338827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background The increasing number of infections caused by antibiotic resistant strains of Pseudomonas aeruginosa posed a very serious challenge for clinical practice. This standing is driving scientists to develop new antibiotics against these microorganisms. Methods In this study, we measured the MIC/MBC values and estimated the ability of tested molecules to prevent bacterial biofilm formation to explore the effectiveness of β-lactam antibiotics ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, and ceragenins CSA-13, CSA-44, and CSA-131 against 150 clinical isolates of Pseudomonas aeruginosa that were divided into five groups, based on their antibiotic resistance profiles to beta-lactams. Selected strains of microorganisms from each group were also subjected to prolonged incubations (20 passages) with ceragenins to probe the development of resistance towards those molecules. Cytotoxicity of tested ceragenins was evaluated using human red blood cell (RBCs) hemolysis and microscopy observations of human lung epithelial A549 cells after ceragenin treatment. Poloxamer 407 (pluronic F-127) at concentrations ranging from 0.5% to 5% was tested as a potential drug delivery substrate to reduce ceragenin toxicity. Results Collected data proved that ceragenins at low concentrations are highly active against clinical strains of Pseudomonas aeruginosa regardless of their resistance mechanisms to conventional antibiotics. Ceragenins also show low potential for resistance development, high antibiofilm activity, and controlled toxicity when used together with poloxamer 407. Conclusion This data strongly supports the need for further study directed to develop this group of molecules as new antibiotics to fighting infections caused by antibiotic resistant strains of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland.,Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Kamila Fortunka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland.,Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
21
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2199-2208. [DOI: 10.1093/jac/dkac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
|
22
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1862-1872. [DOI: 10.1093/jac/dkac122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
|
23
|
Alfouzan W, Dhar R, Mohsin J, Khamis F, Mokaddas E, Abdullah A, Mustafa AS, Otero A, Wanis P, Matar SH, Khalil S, Alekseeva I, Young K. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac035. [PMID: 35465239 PMCID: PMC9021015 DOI: 10.1093/jacamr/dlac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background The treatment options for infections caused by MDR Gram-negative bacteria have been limited, especially for infections caused by bacteria that produce carbapenemases and/or ESBLs. Ceftolozane/tazobactam is a cephalosporin/β-lactamase inhibitor developed to treat Gram-negative bacteria. Methods Ceftolozane/tazobactam and 14 comparators (amikacin, aztreonam, cefepime, cefotaxime, cefoxitin, ceftazidime, ceftriaxone, ciprofloxacin, colistin, ertapenem, imipenem, levofloxacin, meropenem and piperacillin/tazobactam) were evaluated against Pseudomonas aeruginosa and Enterobacterales isolates collected from Kuwait and Oman (n = 606) during 2016–17. In addition, further analysis of resistance mechanisms to ceftolozane/tazobactam was done utilizing WGS. Non-susceptible isolates from ceftolozane/tazobactam surveillance were selected for analysis. Overall, 35 strains underwent WGS. Results Among isolates from Kuwait, susceptibility of P. aeruginosa, Escherichia coli and Klebsiella pneumoniae to ceftolozane/tazobactam was 79.8%, 95.7% and 87.5%, respectively, and from Oman was 92.3%, 93.1% and 88.5%, respectively. No P. aeruginosa with a ceftolozane/tazobactam MIC <32 mg/L encoded β-lactamases besides normal chromosomal enzymes (PDC variants or OXA-50-like) whereas all but one P. aeruginosa isolate with MIC >32 mg/L encoded either MBLs (60%), VEB-1 (19%) or additional OXAs (3.7%). Conclusions Colistin followed by ceftolozane/tazobactam showed the greatest activity against P. aeruginosa. Enterobacterales showed more susceptibility to ceftolozane/tazobactam than to piperacillin/tazobactam, but meropenem and colistin showed better activity.
Collapse
Affiliation(s)
- Wadha Alfouzan
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Kuwait City, Kuwait
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Corresponding author. E-mail:
| | - Rita Dhar
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Kuwait City, Kuwait
| | | | | | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Microbiology Unit, Department of Laboratories, Ibn Sina Hospital, Kuwait City, Kuwait
| | - Abrar Abdullah
- Microbiology Unit, Department of Laboratories, Amiri hospital, Kuwait City, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Paulette Wanis
- Merck Sharp & Dohme IDEA Middle East, Dubai Healthcare City, AlFaris building #39, 4th floor, MSD Office, Dubai, UAE
| | - Samar Hussien Matar
- Merck Sharp & Dohme IDEA Middle East, Dubai Healthcare City, AlFaris building #39, 4th floor, MSD Office, Dubai, UAE
| | - Sherif Khalil
- Merck Sharp & Dohme IDEA Middle East, Dubai Healthcare City, AlFaris building #39, 4th floor, MSD Office, Dubai, UAE
| | - Irina Alekseeva
- Merck Sharp & Dohme IDEA Middle East, Dubai Healthcare City, AlFaris building #39, 4th floor, MSD Office, Dubai, UAE
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To discuss the current literature on novel agents for the treatment of carbapenem-resistant nonfermenting Gram-negative bacteria (NF-GNB) infections. RECENT FINDINGS Some novel agents have recently become available that are expected to replace classical polymyxins as the first-line options for the treatment of carbapenem-resistant NF-GNB infections. SUMMARY In this narrative review, we provide a brief overview of the differential activity of various recently approved agents against NF-GNB most encountered in the daily clinical practice, as well as the results from phase-3 randomized clinical trials and large postapproval observational studies, with special focus on NF-GNB. Since resistance to novel agents has already been reported, the use of novel agents needs to be optimized, based on their differential activity (not only in terms of targeted bacteria, but also of resistance determinants), the local microbiological epidemiology, and the most updated pharmacokinetic/pharmacodynamic data. Large real-life experiences remain of crucial importance for further refining the optimal treatment of NF-GNB infections in the daily clinical practice.
Collapse
|
25
|
Meschiari M, Orlando G, Kaleci S, Bianco V, Sarti M, Venturelli C, Mussini C. Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs. Antibiotics (Basel) 2021; 10:antibiotics10101224. [PMID: 34680805 PMCID: PMC8532599 DOI: 10.3390/antibiotics10101224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
A retrospective case-control study was conducted at Modena University Hospital from December 2017 to January 2019 to identify risk factors and predictors of MDR/XDR Pseudomonas aeruginosa (PA) isolation with resistance to ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T), and of mortality among patients infected/colonized. Among 111 PA isolates from clinical/surveillance samples, 60 (54.1%) were susceptible to both drugs (S-CZA-C/T), while 27 (24.3%) were resistant to both (R-CZA-C/T). Compared to patients colonized/infected with S-CZA-C/T, those with R-C/T + CZA PA had a statistically significantly higher Charlson comorbidity score, greater rate of previous PA colonization, longer time before PA isolation, more frequent presence of CVC, higher exposure to C/T and cephalosporins, longer hospital stay, and higher overall and attributable mortality. In the multivariable analysis, age, prior PA colonization, longer time from admission to PA isolation, diagnosis of urinary tract infection, and exposure to carbapenems were associated with the isolation of a R-C/T + CZA PA strain, while PA-related BSI, a comorbidity score > 7, and ICU stay were significantly associated with attributable mortality. C/T and CZA are important therapeutic resources for hard-to-treat PA-related infections, thus specific antimicrobial stewardship interventions should be prompted in order to avoid the development of this combined resistance, which would jeopardize the chance to treat these infections.
Collapse
Affiliation(s)
- Marianna Meschiari
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
| | - Gabriella Orlando
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
- Correspondence: ; Tel.: +39-059-422-5287
| | - Shaniko Kaleci
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41122 Modena, Italy;
| | - Vincenzo Bianco
- Infectious Disease Clinic, Cotugno Hospital, 80131 Naples, Italy;
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, 41122 Modena, Italy; (M.S.); (C.V.)
| | - Claudia Venturelli
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, 41122 Modena, Italy; (M.S.); (C.V.)
| | - Cristina Mussini
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
| |
Collapse
|
26
|
Giani T, Antonelli A, Sennati S, Di Pilato V, Chiarelli A, Cannatelli A, Gatsch C, Luzzaro F, Spanu T, Stefani S, Rossolini GM. Results of the Italian infection-Carbapenem Resistance Evaluation Surveillance Trial (iCREST-IT): activity of ceftazidime/avibactam against Enterobacterales isolated from urine. J Antimicrob Chemother 2021; 75:979-983. [PMID: 31958125 DOI: 10.1093/jac/dkz547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To assess the in vitro antibacterial activity of ceftazidime/avibactam against a recent Italian collection of carbapenem-resistant Enterobacterales (CRE) isolated from urine specimens. METHODS Consecutive Gram-negative isolates from urine specimens, collected from inpatients in five Italian hospitals during the period October 2016 to February 2017, were screened for CRE phenotype using chromogenic selective medium and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed by reference broth microdilution (BMD) and, for ceftazidime/avibactam, also by Etest® CZA. Results were interpreted according to the EUCAST breakpoints. All confirmed CRE were subjected to real-time PCR targeting blaKPC-type, blaVIM-type, blaNDM-type and blaOXA-48-type carbapenemase genes. Non-MBL-producing isolates resistant to ceftazidime/avibactam were subjected to WGS and their resistome and clonality were analysed. RESULTS Overall, 318 non-replicate presumptive CRE were collected following screening of 9405 isolates of Enterobacterales (3.4%) on chromogenic selective medium. Molecular analysis revealed that 216 isolates were positive for a carbapenemase gene (of which 92.1%, 2.8%, 1.4% and 1.4% were positive for blaKPC-type, blaOXA-48-type, blaNDM-type and blaVIM-type, respectively). Against the confirmed carbapenemase-producing Enterobacterales (CPE), ceftazidime/avibactam was the most active compound, followed by colistin (susceptibility rates 91.6% and 69.4%, respectively). Compared with BMD, Etest® for ceftazidime/avibactam yielded consistent results (100% category agreement). All class B β-lactamase producers were resistant to ceftazidime/avibactam, while OXA-48 and KPC producers were susceptible, with the exception of seven KPC-producing isolates (4.2%). The latter exhibited an MIC of 16 to >32 mg/L, belonged to ST512, produced KPC-3 and showed alterations in the OmpK35 and Ompk36 porins. CONCLUSIONS Ceftazidime/avibactam showed potent in vitro activity against a recent Italian collection of CPE from urine.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Samanta Sennati
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Adriana Chiarelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Cannatelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Christopher Gatsch
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, Lecco A. Manzoni Hospital, Lecco, Italy
| | - Teresa Spanu
- Institute of Microbiology, A. Gemelli University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, section of Microbiology, University of Catania, Catania, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Kazmierczak KM, de Jonge BLM, Stone GG, Sahm DF. Longitudinal analysis of ESBL and carbapenemase carriage among Enterobacterales and Pseudomonas aeruginosa isolates collected in Europe as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme, 2013-17. J Antimicrob Chemother 2021; 75:1165-1173. [PMID: 32040168 DOI: 10.1093/jac/dkz571] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the spread of ESBLs and carbapenemases in Enterobacterales and Pseudomonas aeruginosa in Europe. METHODS 45 335 Gram-negative bacilli were collected in 18 European countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme from 2013 to 2017. Antimicrobial susceptibility was determined using broth microdilution, and 9546 isolates were screened for β-lactamase genes by PCR and sequencing. RESULTS ESBLs were identified in 35.5% of Klebsiella pneumoniae and 18.5% of Escherichia coli. ESBL carriage was lowest among isolates in Northern/Western Europe and highest in Eastern Europe. CTX-M-15 was the dominant ESBL in all countries except Greece, where SHV-type ESBLs were more common. Carbapenemases (KPC, OXA-48-like, GES, NDM and VIM) were found in 3.4% of Enterobacterales and were most common among K. pneumoniae (10.5% of those collected). Carbapenemase carriage was lowest in Northern/Western and highest in Southern Europe. KPC-positive Enterobacterales were most abundant but the percentages of OXA-48-like-, NDM- and VIM-positive isolates increased over time and were correlated with an increase in meropenem non-susceptibility. Carbapenemases (VIM, IMP, NDM and GES) were also identified in 5.1% of P. aeruginosa and were commonly found in Eastern Europe. Carbapenemase carriage and meropenem non-susceptibility among P. aeruginosa fluctuated over the 5 years studied and were not well correlated. CONCLUSIONS ESBL and carbapenemase carriage varied by species and European subregion. Meropenem non-susceptibility in European isolates of Enterobacterales can be attributed to carbapenemase carriage and is increasingly caused by MBLs and OXA-48-like carbapenemases. Carbapenemases or other β-lactamases are not a common cause of meropenem non-susceptibility in P. aeruginosa in Europe.
Collapse
Affiliation(s)
| | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
28
|
Sader HS, Carvalhaes CG, Duncan LR, Flamm RK, Shortridge D. Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012-18. J Antimicrob Chemother 2021; 75:2907-2913. [PMID: 32653914 DOI: 10.1093/jac/dkaa278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS) monitors the in vitro activity of ceftolozane/tazobactam and numerous antimicrobial agents against Gram-negative bacteria worldwide. OBJECTIVES To evaluate the activity of ceftolozane/tazobactam and resistance trends among Pseudomonas aeruginosa and Enterobacterales isolates in Europe between 2012 and 2018. METHODS P. aeruginosa (7503) and Enterobacterales (30 582) isolates were collected from 53 medical centres in 26 countries in Europe and the Mediterranean region and tested for susceptibility by reference broth microdilution method in a central laboratory. MIC results were interpreted using EUCAST criteria. RESULTS Ceftolozane/tazobactam was the most active compound tested against P. aeruginosa isolates after colistin, with overall susceptibility rates of 94.1% in Western Europe and 80.9% in Eastern Europe. Moreover, ceftolozane/tazobactam retained activity against 75.2% and 59.2% of meropenem-non-susceptible P. aeruginosa isolates in Western and Eastern Europe, respectively. Tobramycin was the third most active compound tested against P. aeruginosa, with susceptibility rates of 88.6% and 70.9% in Western and Eastern Europe, respectively. Ceftolozane/tazobactam was active against 94.5% of all Enterobacterales and 96.1% of meropenem-susceptible isolates from Western Europe. In Eastern Europe, ceftolozane/tazobactam was active against 79.4% of Enterobacterales overall and 86.2% of meropenem-susceptible isolates. DISCUSSION Antimicrobial susceptibility rates for agents commonly used to treat serious systemic infections varied widely among nations and geographic regions and were generally lower in Eastern Europe compared with Western Europe. Ceftolozane/tazobactam demonstrated potent activity against P. aeruginosa, including MDR strains, and retained activity against most meropenem-susceptible Enterobacterales causing infection in European medical centres.
Collapse
|
29
|
Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life (Basel) 2021; 11:life11060474. [PMID: 34073847 PMCID: PMC8225018 DOI: 10.3390/life11060474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Ceftolozane/tazobactam (C/T) is a β-lactam/β-lactamase inhibitor combination that mainly targets Gram-negative bacteria. The current international guidelines recommend including C/T treatment in the empirical therapy for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) is one of the most challenging Gram-negative bacteria. We conducted a systematic review of all cases reported in the literature to summarize the existing evidence. Methods: The main electronic databases were screened to identify case reports of patients with drug-resistant PA respiratory infections treated with C/T. Results: A total of 22 publications were included for a total of 84 infective episodes. The clinical success rate was 72.6% across a wide range of comorbidities. The 45.8% of patients treated with C/T presented colonization by PA. C/T was well tolerated. Only six patients presented adverse events, but none had to stop treatment. The most common therapeutic regimens were 1.5 g every 8 h and 3 g every 8 h. Conclusion: C/T may be a valid therapeutic option to treat multidrug-resistant (MDR), extensively drug-resistant (XDR), pandrug-resistant (PDR), and carbapenem-resistant (CR) PA infections. However, further data are necessary to define the optimal treatment dosage and duration.
Collapse
|
30
|
Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M, Pachón ME, Garnacho J, González V, Pascual Á, Cisneros JM, Bou G. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 2021; 74:1244-1252. [PMID: 30753505 DOI: 10.1093/jac/dkz030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/24/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To characterize the antimicrobial susceptibility, molecular epidemiology and carbapenem resistance mechanisms in Pseudomonas aeruginosa isolates recovered from respiratory tract samples from patients with ventilator-associated pneumonia enrolled in the MagicBullet clinical trial. METHODS Isolates were collected from 53 patients from 12 hospitals in Spain, Italy and Greece. Susceptibility was determined using broth microdilution and Etest. MALDI-TOF MS was used to detect carbapenemase activity and carbapenemases were identified by PCR and sequencing. Molecular epidemiology was investigated using PFGE and MLST. RESULTS Of the 53 isolates, 2 (3.8%) were considered pandrug resistant (PDR), 19 (35.8%) were XDR and 16 (30.2%) were MDR. Most (88.9%) of the isolates from Greece were MDR, XDR or PDR, whereas fewer of the isolates from Spain (33.3%) and Italy (43.5%) showed antibiotic resistance. Three Greek isolates were resistant to colistin. Overall, the rates of resistance of P. aeruginosa isolates to imipenem, ciprofloxacin, ceftolozane/tazobactam and ceftazidime/avibactam were 64.1%, 54.7%, 22.6% and 24.5%, respectively. All isolates resistant to ceftolozane/tazobactam and ceftazidime/avibactam (Greece, n = 10; and Italy, n = 2) carried blaVIM-2. Spanish isolates were susceptible to the new drug combinations. Forty-eight restriction patterns and 27 STs were documented. Sixty percent of isolates belonged to six STs, including the high-risk clones ST-111, ST-175 and ST-235. CONCLUSIONS MDR/XDR isolates were highly prevalent, particularly in Greece. The most effective antibiotic against P. aeruginosa was colistin, followed by ceftolozane/tazobactam and ceftazidime/avibactam. blaVIM-2 is associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam, and related to highly resistant phenotypes. ST-111 was the most frequent and disseminated clone and the clonal diversity was lower in XDR and PDR strains.
Collapse
Affiliation(s)
- Astrid Pérez
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Eva Gato
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - José Pérez-Llarena
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Felipe Fernández-Cuenca
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla, Seville, Spain
| | - María José Gude
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Marina Oviaño
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María Eugenia Pachón
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - José Garnacho
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Verónica González
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Álvaro Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla, Seville, Spain
- Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - José Miguel Cisneros
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Germán Bou
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
31
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob Agents Chemother 2021; 65:AAC.01117-20. [PMID: 33199392 DOI: 10.1128/aac.01117-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Resistance mechanisms of Pseudomonas aeruginosa to ceftolozane/tazobactam (C/T) were assessed on a collection of 420 nonredundant strains nonsusceptible to ceftazidime (MIC > 8 μg/ml) and/or imipenem (>4 μg/ml), collected by 36 French hospital laboratories over a one-month period (the GERPA study). Rates of C/T resistance (MIC > 4/4 μg/ml) were equal to 10% in this population (42/420 strains), and 23.2% (26/112) among the isolates resistant to both ceftazidime and imipenem. A first group of 21 strains (50%) was found to harbor various extended-spectrum β-lactamases (1 OXA-14; 2 OXA-19; 1 OXA-35; 1 GES-9; and 3 PER-1), carbapenemases (2 GES-5; 1 IMP-8; and 8 VIM-2), or both (1 VIM-2/OXA-35 and 1 VIM-4/SHV-2a). All the strains of this group belonged to widely distributed epidemic clones (ST111, ST175, CC235, ST244, ST348, and ST654), and were highly resistant to almost all the antibiotics tested except colistin. A second group was composed of 16 (38%) isolates moderately resistant to C/T (MICs from 8/4 to 16/4 μg/ml), of which 7 were related to international clones (ST111, ST253, CC274, ST352, and ST386). As demonstrated by targeted mass spectrometry, cloxacillin-based inhibition tests, and gene bla PDC deletion experiments, this resistance phenotype was correlated with an extremely high production of cephalosporinase PDC. In part accounting for this strong PDC upregulation, genomic analyses revealed the presence of mutations in the regulator AmpR (D135N/G in 6 strains) and enzymes of the peptidoglycan recycling pathway, such as AmpD, PBP4, and Mpl (9 strains). Finally, all of the 5 (12%) remaining C/T-resistant strains (group 3) appeared to encode PDC variants with mutations known to improve the hydrolytic activity of the β-lactamase toward ceftazidime and C/T (F147L, ΔL223-Y226, E247K, and N373I). Collectively, our results highlight the importance of both intrinsic and transferable mechanisms in C/T-resistant P. aeruginosa Which mutational events lead some clinical strains to massively produce the natural cephalosporinase PDC remains incompletely understood.
Collapse
|
33
|
Giacobbe DR, Ciacco E, Girmenia C, Pea F, Rossolini GM, Sotgiu G, Tascini C, Tumbarello M, Viale P, Bassetti M. Evaluating Cefiderocol in the Treatment of Multidrug-Resistant Gram-Negative Bacilli: A Review of the Emerging Data. Infect Drug Resist 2020; 13:4697-4711. [PMID: 33402840 PMCID: PMC7778378 DOI: 10.2147/idr.s205309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB), especially when carbapenem resistant, have been very difficult to manage in the last fifteen years, owing to the paucity of dependable therapeutic options. Cefiderocol is a siderophore cephalosporin recently approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) that may have the potential to fill some of the remaining gaps in the treatment of MDR-GNB infections. Among others, cefiderocol demonstrated in vitro activity against carbapenem-resistant Acinetobacter baumannii and metallo-β-lactamases producers. Clinical data from both registrative studies and post-marketing experiences are essential to confirm whether these promises from in vitro studies could readily translate into clinical practice, as well as to delineate the precise place in therapy for cefiderocol for the treatment of MDR-GNB in the near future. Because of its unique potential, it is essential to provide both randomized controlled trials (RCT) and real-life data to improve the ability of clinicians to exploit its benefit in both empirical and targeted treatment of MDR-GNB infections. In this narrative review, we discuss the emerging data from pivotal RCT and initial real-life experiences on the use of cefiderocol for the treatment of MDR-GNB infections.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Eugenio Ciacco
- Pharmacy Unit, S. Salvatore Hospital, ASL1 Abruzzo, L'Aquila, Italy
| | - Corrado Girmenia
- Hematology, Dipartimento Medicina Traslazionale e di Precisione, AOU Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,University Hospital IRCCS Policlinico Sant'Orsola Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Carlo Tascini
- SOC Malattie Infettive, Azienda Sanitaria Integrata, University of Udine, Udine, Italy
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,University Hospital IRCCS Policlinico Sant'Orsola Bologna, Bologna, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | | |
Collapse
|
34
|
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; 19:825-844. [PMID: 33270485 DOI: 10.1080/14787210.2021.1859369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Ventilator-associated pneumonia (VAP) is a common and potentially fatal complication of mechanical ventilation that is often caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB). Despite the repurposing of older treatments and the novel antimicrobials, many resistance mechanisms cannot be confronted, and novel therapies are needed.Areas covered: We searched the literature for keywords regarding the treatment of GNB infections in mechanically ventilated patients. This narrative review presents new data on antibiotics and non-antibiotic approaches focusing on Phase 3 trials against clinically significant GNB that cause VAP.Expert opinion: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam stand out as new options for infections by Klebsiella pneumoniae carbapenemase-producing bacteria, whereas ceftolozane-tazobactam adds therapeutic flexibility in Pseudomonas aeruginosa infections with multiple resistance mechanisms. Ceftazidime-avibactam and ceftolozane-tazobactam have relevant literature. Aztreonam-avibactam holds promise for the treatment of infections by metallo-β-lactamase (MBL)-producing organisms. Recently approved cefiderocol possesses an extended antibacterial spectrum, including KPC- and MBL-producers. However, recently published data have toned down optimism about treating VAP caused by carbapenem-resistant Acinetobacter baumannii. For the latter, eravacycline may provide additional hope, pending pertinent data. Non-antibiotic treatments currently being considered as adjunct therapeutic approaches are welcome. Nevertheless, they will hopefully substitute current antimicrobials in the future.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Konstantinos Pontikis
- ICU First Department of Respiratory Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Thomas Nitsotolis
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
35
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
36
|
Parisio EM, Camarlinghi G, Coppi M, Niccolai C, Antonelli A, Nardone M, Vettori C, Giani T, Mattei R, Rossolini GM. Evaluation of the commercial AD fosfomycin test for susceptibility testing of multidrug-resistant Enterobacterales and Pseudomonas aeruginosa. Clin Microbiol Infect 2020; 27:S1198-743X(20)30725-4. [PMID: 33285277 DOI: 10.1016/j.cmi.2020.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To compare fosfomycin susceptibility testing with the commercial agar dilution (AD) test, AD Fosfomycin (Liofilchem, Roseto degli Abruzzi, Italy) and the reference AD method, using a collection of multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa clinical isolates. METHODS The collection included 119 carbapenemase-producing Enterobacterales, 53 Enterobacterales producing acquired AmpC-type and/or extended-spectrum β-lactamases and 38 carbapenemase-producing P. aeruginosa, including representatives of different high-risk clones. AD Fosfomycin and AD reference method (ISO 20776-1:2019) were performed starting from the same microbial suspension. Results were interpreted according to EUCAST clinical breakpoints (10.0). Essential agreement (EA), category agreement (CA) and error rates were calculated as described by the International Organization for Standardization. RESULTS Of 172 Enterobacterales, 143 (83.1%, including 92.9% (52 of 56) of the NDM-producers and 84.2% (48 of 57) of the KPC-producers) were susceptible to fosfomycin using reference AD. A CA of 91.9% (158 of 172; 95% CI 87.1%-95.3%) and an EA of 92.5% (136 of 147; 95% CI 87.4%-96.0%), respectively, were calculated for the commercial AD Fosfomycin test, with 9.8% (14 of 128) of major errors and no very major errors (0 of 29). Overall, 86.8% (33 of 38) of P. aeruginosa showed a fosfomycin MIC ≤128 mg/L using reference AD. An EA of 84.8% (95% CI 66.3%-92.0%) was calculated for the commercial AD Fosfomycin test, with a CA of 100% (95% CI 93.6%-100%) when considering a tentative breakpoint at 128 mg/L. CONCLUSIONS AD Fosfomycin showed an overall good concordance compared with reference AD.
Collapse
Affiliation(s)
- Eva Maria Parisio
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Giulio Camarlinghi
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.
| | - Claudia Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Maria Nardone
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Chiara Vettori
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Romano Mattei
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
37
|
Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents 2020; 56:106196. [DOI: 10.1016/j.ijantimicag.2020.106196] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 01/17/2023]
|
38
|
Bassetti M, Vena A, Battaglini D, Pelosi P, Giacobbe DR. The role of new antimicrobials for Gram-negative infections in daily clinical practice. Curr Opin Infect Dis 2020; 33:495-500. [PMID: 33009142 DOI: 10.1097/qco.0000000000000686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To discuss a possible clinical reasoning for treating resistant Gram-negative bacteria (GNB) infections in daily clinical practice, as well as developing a research agenda for the field. RECENT FINDINGS Novel agents, both belonging to β-lactams and to other classes of antimicrobials, have recently become available, likely replacing polymyxins or polymyxin-based combination regimens as the preferred choices for the first-line treatment of severe resistant GNB infections in the near future. SUMMARY The peculiar characteristics of novel agents for severe resistant GNB infections have abruptly made the structure of previous therapeutic algorithms somewhat obsolete, in view of the differential activity of most of them against different classes of carbapenemases. Furthermore, other agents showing activity against resistant GNB are in late phase of clinical development. Optimizing the use of novel agents in order both to guarantee the best available treatment to patients and to delay the emergence and spread of resistance is an important task that cannot be postponed, especially considering the unavailability of well tolerated and fully efficacious options for treating resistant GNB infections that we faced in the last 15 years.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
- Department of Health Sciences, Universiy of Genoa
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences
| |
Collapse
|
39
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
40
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
41
|
Del Barrio-Tofiño E, Zamorano L, Cortes-Lara S, López-Causapé C, Sánchez-Diener I, Cabot G, Bou G, Martínez-Martínez L, Oliver A. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J Antimicrob Chemother 2020; 74:1825-1835. [PMID: 30989186 DOI: 10.1093/jac/dkz147] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To undertake a Spanish nationwide survey on Pseudomonas aeruginosa molecular epidemiology and antimicrobial resistance. METHODS Up to 30 consecutive healthcare-associated P. aeruginosa isolates collected in 2017 from each of 51 hospitals were studied. MICs of 13 antipseudomonal agents were determined by broth microdilution. Horizontally acquired β-lactamases were detected by phenotypic methods and PCR. Clonal epidemiology was evaluated through PFGE and MLST; at least one XDR isolate from each clone and hospital (n = 185) was sequenced. RESULTS The most active antipseudomonals against the 1445 isolates studied were colistin and ceftolozane/tazobactam (both 94.6% susceptible, MIC50/90 = 1/2 mg/L) followed by ceftazidime/avibactam (94.2% susceptible, MIC50/90 = 2/8 mg/L). Up to 252 (17.3%) of the isolates were XDR. Carbapenemases/ESBLs were detected in 3.1% of the isolates, including VIM, IMP, GES, PER and OXA enzymes. The most frequent clone among the XDR isolates was ST175 (40.9%), followed by CC235 (10.7%), ST308 (5.2%) and CC111 (4.0%). Carbapenemase production varied geographically and involved diverse clones, including 16.5% of ST175 XDR isolates. Additionally, 56% of the sequenced XDR isolates showed horizontally acquired aminoglycoside-modifying enzymes, which correlated with tobramycin resistance. Two XDR isolates produced QnrVC1, but fluoroquinolone resistance was mostly caused by QRDR mutations. Beyond frequent mutations (>60%) in OprD and AmpC regulators, four isolates showed AmpC mutations associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam. CONCLUSIONS ST175 is the most frequent XDR high-risk clone in Spanish hospitals, but this nationwide survey also indicates a complex scenario in which major differences in local epidemiology, including carbapenemase production, need to be acknowledged in order to guide antimicrobial therapy.
Collapse
Affiliation(s)
- Ester Del Barrio-Tofiño
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Laura Zamorano
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Sara Cortes-Lara
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Irina Sánchez-Diener
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Gabriel Cabot
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Germán Bou
- Servicio de Microbiología, Hospital Universitario La Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), La Coruña, España
| | - Luis Martínez-Martínez
- Unidad de Gestión Clínica de Microbiología, Hospital Reina Sofía, Departamento de Microbiología, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | | |
Collapse
|
42
|
Dehbashi S, Tahmasebi H, Alikhani MY, Keramat F, Arabestani MR. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect Drug Resist 2020; 13:2037-2052. [PMID: 32636657 PMCID: PMC7335274 DOI: 10.2147/idr.s255292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background There are various phenotypic methods for identifying class B and class A β-lactamase enzymes in Pseudomonas aeruginosa. The purpose of this study was to compare the sensitivity and specificity of different phenotypic methods with HRMA assay to detect β-lactamase-producing P. aeruginosa strains. Methods Eighty-eight of P. aeruginosa isolates were collected from different specimens. Conventional double-disk test (DDT) and EDTA-imipenem microbiological (EIM) were performed to detect ESBL and MBL-producing strains, respectively. Meanwhile, the Modified Hodge test and Carba-NP test were performed on all carbapenem-resistant strains. HRMA method and sensitivity and specificity of primers were determined based on the melt curve temperature range. In all comparisons, PCR was considered as the gold standard. Results Of the 402 isolates collected from different clinical specimens, 88 isolates of P. aeruginosa were identified. However, 43 strains were (48.88%) ESBL-producing, and 7 strains (7.95%) were MBL-producing. Also, using the Modified Hodge test and Carba-NP method, 11 (12.5%) and 19 (21.59%) strains were carbapenemase-producing, respectively. The results of the HRMA test revealed that genes coding for bla SHV, bla TEM, bla KPC, bla IMP, bla VIM, and bla GES were detected in 44.31%, 22.72%, 13.63%, 14.7%, 5.6%, and 2.27% of P. aeruginosa isolates. Nonetheless, for bla KPC and bla GES genes, sensitivity and specificity of the Carba-NP test were 90.47%, 94.87%, and 83.36%, 94.80%, respectively. However, sensitivity and specificity of MHT was 91.66%, 98.70%, and 77.77%, 96.42%, respectively. For bla SHV and bla TEM genes, sensitivity and specificity of DDT were 95.55%, 95.55%, and 86%, 83.50%, respectively. However, sensitivity and specificity of EMI were 77.77%, 97.59%, and 91.66%, 97.43% for bla VIM and bla IMP, respectively. Conclusion The HRMA is a powerful, accurate, closed-tube, rapid method for detecting β-lactamase genes in P. aeruginosa. The high sensitivity and specificity of this method, along with phenotypic tests, play a useful role in increasing the predictive value of clinical reports.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- Microbiology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
43
|
Wang J, Chen H, Lin X, Ji C, Chen B. Multiple cross displacement amplification-a more applicable technique in detecting Pseudomonas aeruginosa of ventilator-associated pneumonia (VAP). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:306. [PMID: 32513206 PMCID: PMC7276953 DOI: 10.1186/s13054-020-03003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
Background Early and rapid identification of Pseudomonas aeruginosa (P. aeruginosa) in patients with suspected ventilator-associated pneumonia (VAP) provides theoretical clinical advantages in therapeutic optimization strategies. Methods The P. aeruginosa-multiple cross displacement amplification (PA-MCDA) assay was conducted at an isothermal temperature during the amplification stage, and products were visually detected by color changes. The entire process was completed within 1 h. A total of 77 strains, including P. aeruginosa species and various other species of non-P. aeruginosa, were used to evaluate PA-MCDA assays. Bronchoalveolar lavage fluid (BALF) of suspected VAP patients was examined by the MCDA assay. Results The MCDA assay exhibited a 100% analytical specificity in detecting PA from all 77 strains, and the limit of detection was as low as 100 fg DNA per reaction. A temperature of 65 °C was recommended as standard during the amplification stage. The agreement between PA-MCDA and bacteria culture was 91.18% (κ = 0.787; p = 0.000) in the identification of P. aeruginosa in BALF from suspected VAP. The PA-MCDA assay showed values of 92.31%, 90.78%, 77.41%, and 97.18% for sensitivity, specificity, positive predictive value, and negative predictive value, respectively. PA-MCDA had a higher detective rate of P. aeruginosa than bacteria culture in patients with antipseudomonal therapy. Conclusions The instrument-free platform of the MCDA assay makes it a simple, rapid, and applicable procedure for “on-site” diagnosis and point-of-care testing for the presence of P. aeruginosa without the need for specific bacterial culture.
Collapse
Affiliation(s)
- Juxiang Wang
- Department of Intensive Care Unit, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Huimin Chen
- Department of Intensive Care Unit, The Third Hospital of Xiamen, Xiamen, Fujian, China
| | - Xiaomin Lin
- Department of Intensive Care Unit, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| | - Chengyi Ji
- Department of Intensive Care Unit, The Third Hospital of Xiamen, Xiamen, Fujian, China
| | - Bin Chen
- Department of Healthcare, Xiamen Port Clinic of Xiamen Customs, Xiamen, Fujian, China.
| |
Collapse
|
44
|
PÉrez-VÁzquez M, Sola-Campoy PJ, Zurita ÁM, Ávila A, GÓmez-Bertomeu F, SolÍs S, LÓpez-Urrutia L, GÓnzalez-BarberÁ EM, Cercenado E, Bautista V, Lara N, Aracil B, Oliver A, Campos J, Oteo-Iglesias J. Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244 carrying bla VIM-2, bla VIM-1, bla IMP-8, bla VIM-20 and bla KPC-2. Int J Antimicrob Agents 2020; 56:106026. [PMID: 32450200 DOI: 10.1016/j.ijantimicag.2020.106026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Carbapenemase-producing (CP) Pseudomonas aeruginosa is rare compared with mutation-driven carbapenem-resistance, but this situation may be changing. A collection of CP P. aeruginosa isolates was characterized in this study. In 2016, 232 unduplicated carbapenem-resistant P. aeruginosa isolates, of which 71 (30.6%) carried carbapenemase genes, were submitted to the Spanish antibiotic reference laboratory and were further analysed by whole-genome sequencing (WGS). Of the 71 CP P. aeruginosa, 39 (54.9%) carried blaVIM-2, 14 (19.7%) blaVIM-1, 8 (11.3%) blaIMP-8, 6 (8.5%) blaVIM-20, 2 (2.8%) blaVIM-2 plus blaKPC-2, one (1.4%) blaIMP-13 and one (1.4%) blaVIM-1 plus blaIMP-18. Four sequence types (ST175, ST244, ST815 and ST155) encompassed 83.1% of the 71 CP P. aeruginosa; ST175 was detected in hospitals from seven provinces. Using core genome multilocus sequence typing (cgMLST), four clusters were detected: Cluster 1 included nine ST815/VIM-2 isolates; Cluster 2 included five ST175/VIM-2 isolates; Cluster 3 included seven ST244 isolates (five VIM-2 and two VIM-2 plus KPC-2); and Cluster 4 included 11 ST175 isolates (seven VIM-2 and four IMP-8). The average number of acquired resistance genes was significantly higher in the blaVIM-1-carying isolates (7.1 ± 0.94) than in the blaVIM-2-carrying isolates (4.5 ± 0.20). CP P. aeruginosa isolates are spreading in Spain, mainly due to the dissemination of high-risk clones such as ST175 and ST244 producing VIM and IMP carbapenemases. Emergence of CP P. aeruginosa is a cause of clinical and epidemiological concern.
Collapse
Affiliation(s)
- María PÉrez-VÁzquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro J Sola-Campoy
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Ángela María Zurita
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Alicia Ávila
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | | | - Sonia SolÍs
- Microbiology Department, Hospital Universitario de Guadalajara, Spain
| | - Luis LÓpez-Urrutia
- Microbiology Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Emilia Cercenado
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Verónica Bautista
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - José Campos
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
45
|
Genovese C, La Fauci V, D'Amato S, Squeri A, Anzalone C, Costa GB, Fedele F, Squeri R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:256-273. [PMID: 32420962 PMCID: PMC7569612 DOI: 10.23750/abm.v91i2.9176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Healthcare-associated infections (HAIs) are the most frequent and severe complication acquired in healthcare settings with high impact in terms of morbidity, mortality and costs. Many bacteria could be implicated in these infections, but, expecially multidrug resistance bacteria could play an important role. Many microbial typing technologies have been developed until to the the bacterial whole-genome sequencing and the choice of a molecular typing method therefore will depend on the skill level and resources of the laboratory and the aim and scale of the investigation. In several studies the molecular investigation of pathogens involved in HAIs was performed with many microorganisms identified as causative agents such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Clostridium difficile, Acinetobacter spp., Enterobacter spp., Enterococcus spp., Staphylococcus aureus and several more minor species. Here, we will describe the most and least frequently reported clonal complex, sequence types and ribotypes with their worldwide geographic distribution for the most important species involved in HAIs.
Collapse
Affiliation(s)
- Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelina Anzalone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Francesco Fedele
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | | |
Collapse
|
46
|
Ceftazidime-Avibactam Resistance Associated with Increased bla KPC-3 Gene Copy Number Mediated by pKpQIL Plasmid Derivatives in Sequence Type 258 Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.01816-19. [PMID: 31964792 DOI: 10.1128/aac.01816-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
This study reports on the characterization of two ceftazidime-avibactam (CZA)-resistant KPC-producing Klebsiella pneumoniae strains (KP-14159 and KP-8788) sequentially isolated from infections occurred in a patient never treated with CZA. Whole-genome sequencing characterization using a combined short- and long-read sequencing approach showed that both isolates belonged to the same ST258 strain, had altered outer membrane porins (a truncated OmpK35 and an Asp137Thr138 duplication in the L3 loop of OmpK36), and carried novel pKpQIL plasmid derivatives (pIT-14159 and pIT-8788, respectively) harboring two copies of the Tn4401a KPC-3-encoding transposon. Plasmid pIT-8788 was a cointegrate of pIT-14159 with a ColE replicon (that was also present in KP-14159) apparently evolved in vivo during infection. pIT-8788 was maintained at a higher copy number than pIT-14159 and, upon transfer to Escherichia coli DH10B, was able to increase the CZA MIC by 32-fold. The present findings provide novel insights about the mechanisms of acquired resistance to CZA, underscoring the role that the evolution of broadly disseminated pKpQIL plasmid derivatives may have in increasing the bla KPC gene copy number and KPC-3 expression in bacterial hosts. Although not self-transferable, similar elements, with multiple copies of Tn4401 and maintained at a high copy number, could mediate transferable CZA resistance upon mobilization.
Collapse
|
47
|
García-Fernández S, García-Castillo M, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V, Vieira AR, Ramalheira E, Sancho L, Diogo J, Ferreira R, Silva D, Chaves C, Pássaro L, Paixão L, Cantón R. In vitro activity of ceftolozane-tazobactam against Enterobacterales and Pseudomonas aeruginosa causing urinary, intra-abdominal and lower respiratory tract infections in intensive care units in Portugal: The STEP multicenter study. Int J Antimicrob Agents 2020; 55:105887. [DOI: 10.1016/j.ijantimicag.2020.105887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
|
48
|
Maraolo AE, Mazzitelli M, Trecarichi EM, Buonomo AR, Torti C, Gentile I. Ceftolozane/tazobactam for difficult-to-treat Pseudomonas aeruginosa infections: A systematic review of its efficacy and safety for off-label indications. Int J Antimicrob Agents 2020; 55:105891. [PMID: 31923569 DOI: 10.1016/j.ijantimicag.2020.105891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023]
Abstract
Ceftolozane/tazobactam (C/T) is a novel β-lactam/β-lactamase inhibitor combination targeting Enterobacteriaceae and Pseudomonas aeruginosa (PA). It is approved in adult patients for complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) as well as for nosocomial pneumonia. It displays excellent activity against PA, even multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The aim of this systematic review (PROSPERO protocol no. CRD42019117350) was to summarise the available evidence from observational studies regarding the efficacy and safety of off-label use of C/T when administered to treat MDR- or XDR-PA infections. The MEDLINE and Embase databases were screened from inception up to 30 June 2019. Studies were deemed eligible if they described real-life use of C/T in the case of MDR- or XDR-PA infections for non-approved indications. Exclusion criteria were cIAIs, cUTIs, pneumonia (unless occurring in a paediatric population) and infections by non-MDR/XDR-PA. Thirty articles fulfilled the inclusion criteria. In total, 130 cases of MDR- or XDR-PA infections treated with C/T in 128 patients were described. The most relevant off-label uses were skin and soft-tissue infection (49/30; 37.7%), bone and joint infection (42/130; 32.3%) and bloodstream infection (23/130; 17.7%). Five cases involved paediatric patients. The overall clinical success rate was 76.2%. The most common adverse event was hypokalaemia (4.2%, in 48 evaluable cases). C/T may be a useful therapeutic option for difficult-to-treat infections by PA even outside the framework of approved indications. Further studies are necessary to better define new indications for the drug.
Collapse
Affiliation(s)
- Alberto Enrico Maraolo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples 'Federico II', via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy; Chelsea and Westminster Hospital Foundation Trust, London, UK
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples 'Federico II', via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples 'Federico II', via Sergio Pansini, 5, I-80131 Naples, Italy
| |
Collapse
|
49
|
Bouslah Z. Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa. Med Mal Infect 2020; 50:466-479. [PMID: 31899068 DOI: 10.1016/j.medmal.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The Carba NP test is a biochemical chromogenic assay developed to detect carbapenemase activity. Variable performance has been reported according to the type of carbapenemase and bacterial species involved. We aimed to describe the benefit of the Carba NP test and its commercial version, the RAPIDEC® CARBA NP, to detect carbapenemase-producing Pseudomonas aeruginosa. METHODS PubMed and ScienceDirect databases were searched. The following data was collected from each included study: research protocol, molecular profile of the tested strains, and sensitivity and specificity of the test used to detect carbapenemase-producing P. aeruginosa. RESULTS Thirty-four studies were included. The most frequently tested strains were metallo-beta-lactamase producers. The pooled sensitivity to detect carbapenemase-producing P. aeruginosa with the original Carba NP test, the Clinical and Laboratory Standards Institute (CLSI) Carba NP test, and the RAPIDEC® CARBA NP was 92%, 95%, and 96%, respectively. The pooled specificity was 99% with the original and the CLSI Carba NP tests, and 92% with the RAPIDEC® CARBA NP. Several studies evaluated modified versions of the Carba NP test to detect carbapenemase-producing P. aeruginosa, with reported sensitivity and specificity exceeding 90% in most cases. CONCLUSION The Carba NP test allows for fast screening and easy handling as well as optimal performance to detect carbapenemase-producing P. aeruginosa. These findings should be confirmed by further studies including a larger cohort of isolates and various types of carbapenemases, mainly non-metallo-beta-lactamases.
Collapse
Affiliation(s)
- Z Bouslah
- Faculté de médecine de Tunis, université de Tunis El Manar, 15, rue Djebel Lakhdhar, 1007 La Rabta, Tunis, Tunisie.
| |
Collapse
|
50
|
Garazzino S, Altieri E, Silvestro E, Pruccoli G, Scolfaro C, Bignamini E. Ceftolozane/Tazobactam for Treating Children With Exacerbations of Cystic Fibrosis Due to Pseudomonas aeruginosa: A Review of Available Data. Front Pediatr 2020; 8:173. [PMID: 32432060 PMCID: PMC7214539 DOI: 10.3389/fped.2020.00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Ceftolozane-tazobactam is a novel fifth-generation cephalosporin/β-lactamase inhibitor combination recently approved for treatment of both complicated intra-abdominal and urinary tract infections in adults. Considering its potent bactericidal activity against Pseudomonas aeruginosa, it might represent an important option also for treating children with exacerbations of cystic fibrosis due to Pseudomonas aeruginosa when other alternative treatments have been exhausted. We hereby review available data on the use of ceftolozane-tazobactam in children, focusing on cystic fibrosis.
Collapse
Affiliation(s)
- Silvia Garazzino
- Department of Child Pathology and Treatment "Regina Margherita", Unit of Infectious Diseases, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Elena Altieri
- Department of Child Pathology and Treatment "Regina Margherita", Unit of Infectious Diseases, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Erika Silvestro
- Department of Child Pathology and Treatment "Regina Margherita", Unit of Infectious Diseases, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giulia Pruccoli
- Postgraduate School of Pediatrics, University of Turin, Turin, Italy
| | - Carlo Scolfaro
- Department of Child Pathology and Treatment "Regina Margherita", Unit of Infectious Diseases, University of Turin, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Elisabetta Bignamini
- Division of Pulmonology, Pediatric Cystic Fibrosis Centre, Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|