1
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Pedretti N, Iseppi R, Condò C, Ghazanfar S, Messi P, Di Cerbo A, Sabia C. Characterization of virulence factors and antimicrobial resistance in Staphylococcus spp. isolated from clinical samples. Folia Microbiol (Praha) 2024; 69:1043-1052. [PMID: 38367164 DOI: 10.1007/s12223-024-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
The virulence factors, antibiotic resistance patterns, and the associated genetic elements have been investigated in Staphylococcus species. A total of 100 strains has been isolated from clinical samples in the Microbiology Laboratory of Hesperia Hospital, Modena, Italy, and identified as Staphylococcus aureus (65), Staphylococcus epidermidis (24), Staphylococcus hominis (3), Staphylococcus saprophyticus (3), and Staphylococcus warneri (5). All the strains were analyzed to determine phenotypic and genotypic characters, notably the virulence factors, the antibiotics susceptibility, and the genetic determinants. The highest percentage of resistance in Staphylococcus spp. was found for erythromycin and benzylpenicillin (87% and 85%, respectively). All S. aureus, two S. epidermidis (8.3%), and one S. saprophyticus (33.3%) strains were resistant to oxacillin. The methicillin resistance gene (mecA) was detected by polymerase chain reaction (PCR) amplification in 65 S. aureus strains and in 3 coagulase-negative staphylococci (CoNS) (8.6%). With regard to the virulence characteristics, all the S. aureus were positive to all virulence tests, except for slime test. Among the CoNS isolates, 19 (79.1%) S. epidermidis and one (33.3%) S. saprophyticus strains resulted positive for the slime test only. The results obtained are useful for a more in-depth understanding of the function and contribution of S. aureus and CoNS antibiotic resistance and virulence factors to staphylococcal infections. In particular, the production of slime is very important for CoNS, a virulence factor frequently found in infections caused by these strains. Further investigations on the genetic relatedness among strains of different sources will be useful for epidemiological and monitoring purposes and will enable us to develop new strategies to counteract the diffusion of methicillin-resistant S. aureus (MRSA) and CoNS strains not only in clinical field, but also in other related environments.
Collapse
Affiliation(s)
- Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, 45500, Islamabad, Pakistan
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
3
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Zhou W, Jin Y, Shen P, Chen W, Chen Y, Xiao Y. Novel SCCmec variants in clonal complex 398 and lineage-specific pseudo-SCCmec identified in ST88 MRSA from invasive bloodstream infections in China. J Antimicrob Chemother 2023; 78:2366-2375. [PMID: 37552647 DOI: 10.1093/jac/dkad250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Methicillin resistance in Staphylococcus aureus is primarily due to the mecA gene found in highly diverse staphylococcal cassette chromosome mec (SCCmec) elements, with an increasing number of variants being continually discovered. OBJECTIVES To characterize two novel SCCmec variants identified in clonal complex (CC) 398 strains and lineage-specific pseudo-SCCmec elements in the ST88 clone. METHODS WGS and comparative genomic analysis were used to elucidate the SCCmec element diversity of representative isolates. RESULTS The non-typeable 47 kb SCCmec found in the CC398 strain SKLX55795 represents a novel subtype of XIV, showing significant differences in structural organization and genetic content within the joining regions compared with the XIV element from the prototype strain SC792. This unique subtype comprised remnants from various mobile genetic elements that encode antimicrobial resistance genes, ultimately forming a large MDR region. Genome analysis of CC398 strain SKLX61416 revealed the presence of a novel 50 kb composite SCCmec with two distinct domains, carrying the ccr gene complexes 5/8 and containing genes for the detoxification of arsenic and sulphide. Further sequence analysis disclosed that 44.23% (23/52) of ST88 strains in our collection carried a lineage-specific pseudo-SCCmec, termed ΨSCCmecST88. This ΨSCCmecST88 harboured the mec gene complex C2, along with a series of genes associated with heavy metal resistance, but lacked an approximately 28 kb region encompassing the ccr gene complex. CONCLUSIONS Our findings provide evidence for the ongoing evolution of SCCmec elements within the CC398 and ST88 clones, underscoring the need for further surveillance to understand the biological significance of these elements.
Collapse
Affiliation(s)
- Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weiwei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wang W, Hu Y, Baker M, Dottorini T, Li H, Dong Y, Bai Y, Fanning S, Li F. Novel SCCmec type XV (7A) and two pseudo-SCCmec variants in foodborne MRSA in China. J Antimicrob Chemother 2022; 77:903-909. [PMID: 35040979 DOI: 10.1093/jac/dkab500] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Staphylococcal cassette chromosome mec (SCCmec) elements are highly diverse and have been classified into 14 types. Novel SCCmec variants have been frequently detected from humans and animals but rarely from food. OBJECTIVES To characterize a novel SCCmec type and two SCCmec variants identified from food-associated MRSA in China. METHODS Three MRSA (NV_1, NT_611 and NT_8) collected from retail foods in China were subjected to WGS and the SCCmec elements were determined. RESULTS The novel SCCmecXV identified in NV_1 carried the mec gene complex class A (mecI-mecR1-mecA-IS431) and the ccr gene complex 7 (ccrA1B6), and a Tn558-mediated phenicol exporter gene fexA was detected in this SCCmecXV cassette. The pseudo-SCCmec elements ΨSCCmecNT_611 and ΨSCCmecNT_8 showed a truncated SCCmec pattern, carrying the class C2 mec gene complex but missing the ccr genes. The ΨSCCmecNT_611 element shared more similarities with those of Staphylococcus haemolyticus (AB478934.1) and carried a heavy metal resistance gene cluster cadD-cadX-arsC-arsB-arsR-copA. The ΨSCCmecNT_8 MRSA exhibited a highly resistant phenotype, showing the absence of a 19.3 kb segment compared with the reference SCCmecXII element (CP019945.1). Notably, a 46 kb region containing multiple transposons encoding antimicrobial or metal resistance genes flanked by IS431 or IS256 was identified ∼30 kb downstream from the mec gene complex in ΨSCCmecNT_8, which might explain such high resistance in MRSA NT_8. CONCLUSIONS Our finding of novel and pseudo-SCCmec elements reflected the ongoing intra/interspecies genetic rearrangements in staphylococci. Further study will be needed to investigate the biological significance and prevalence of those SCCmec variants along the food chain.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire, UK
| | - Hui Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast, Northern Ireland
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
6
|
Jiang N, Wyres KL, Li J, Feßler AT, Krüger H, Wang Y, Holt KE, Schwarz S, Wu C. Evolution and genomic insight into methicillin-resistant Staphylococcus aureus ST9 in China. J Antimicrob Chemother 2021; 76:1703-1711. [PMID: 33822977 DOI: 10.1093/jac/dkab106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To reconstruct the evolutionary history and genomic epidemiology of Staphylococcus aureus ST9 in China. METHODS Using WGS analysis, we described the phylogeny of 131 S. aureus ST9 isolates collected between 2002 and 2016 from 11 provinces in China, including six clinical samples from Taiwan. We also investigated the complex structure and distribution of the lsa(E)-carrying multiresistance gene cluster, and genotyped prophages in the genomes of the ST9 isolates. RESULTS ST9 was subdivided into one major (n = 122) and one minor (n = 9) clade. Bayesian phylogeny predicted the divergence of ST9 isolates in pig farming in China as early as 1987, which then evolved rapidly in the following three decades. ST9 isolates shared similar multiresistance properties, which were likely acquired before the ST9 emergence in China. The accessory genome is highly conserved, and ST9 harboured similar sets of phages, but lacked certain virulence genes. CONCLUSIONS Host exchange and regional transmission of ST9 have occurred between pigs and humans. Pig rearing and trading might have favoured gene exchanges between ST9 isolates. Resistance genes, obtained from the environment and other isolates, were stably integrated into the chromosomal DNA. The abundance of resistance genes among ST9 is likely attributed to the extensive use of antimicrobial agents in livestock. Phages are present in the genomes of ST9 and may play a role in the rapid evolution of this ST. Although human ST9 infections are rare, ST9 isolates may constitute a potential risk to public health as a repository of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Nansong Jiang
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jun Li
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Stefan Schwarz
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Nataraj BH, Ramesh C, Mallappa RH. Characterization of Antibiotic Resistance and Virulence Traits Present in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Curr Microbiol 2021; 78:2001-2014. [PMID: 33860841 DOI: 10.1007/s00284-021-02477-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious superbug which poses serious health threats to humanity. The severity of the infections depends on the prevalence of virulence factors and antibiotic resistance. In this study, attempts have been made to nominate the two most virulent and multidrug-resistant MRSA isolates demonstrating the preliminary features of intestinal adhesion for the futuristic applications of probiotics and postbiotics as antagonists to combat MRSA infections. In this context, six clinical isolates of MRSA were polyphasically characterized for their identity, multidrug resistance, and few selected virulence determinates such as hemolytic activity and production of coagulase, nuclease, and capsule. The gut colonizing ability of MRSA isolates was assessed by mucoadhesion, auto-aggregation, and cell surface hydrophobicity. An antibiogram of MRSA isolates suggested the resistance towards several antibiotics with multiple antibiotic resistance (MAR) index >0.5 (12/241, 12/206, and 5/255) as well as their genome portraying mecA mediated methicillin resistance. Besides exhibiting strong biofilm formation ability, all the isolates exhibited positive responses towards tested virulence assays coupled with their genome displaying Coa, NucA, and CapE genes. On the other hand, isolates exhibited different levels of auto-aggregation (37.90 ± 1.8 to 51.53 ± 3.1%) and mucin adhesion ability (68.93 ± 0.61% to 86.62 ± 1.96%) with a significant (P ≤ 0.05) variation in adhesion to different hydrocarbons. Finally, multivariate Principal Component Analysis and Hierarchical Cluster Analysis (HCA) heatmap using Euclidean distance measurement indicated MRSA 12/206 and 5/255 as most resistant and virulent isolates with the potential to adhere to the hydrophobic gut niche.
Collapse
Affiliation(s)
| | - Chette Ramesh
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|