1
|
Huang J, Xu Z, He P, Lin Z, Peng R, Yu Z, Li P, Deng Q, Liu X. Repurposing TAK-285 as An Antibacterial Agent against Multidrug-Resistant Staphylococcus aureus by Targeting Cell Membrane. Curr Microbiol 2024; 82:8. [PMID: 39585416 DOI: 10.1007/s00284-024-04001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Infections and antimicrobial resistance are becoming serious global public health crises. Multidrug-resistant Staphylococcus aureus (S. aureus) infections necessitate novel antimicrobial development. In this study, we demonstrated TAK-285, a novel dual HER2/EGFR inhibitor, exerted antibacterial activity against 17 clinical methicillin-resistant S. aureus (MRSA) and 15 methicillin sensitive S. aureus (MSSA) isolates in vitro, with a minimum inhibitory concentration (MIC) of 13.7 μg/mL. At 1 × MIC, TAK-285 completely inhibited the growth of S. aureus bacterial planktonic cells, and at 2 × MIC, it exhibited a superior inhibitory effect on intracellular S. aureus SA113-GFP compared to linezolid. Moreover, TAK-285 effectively inhibited biofilm formation at sub-MIC, eradicated mature biofilm and eliminated bacteria within biofilms, as confirmed by CLSM. Furthermore, the disruption of cell membrane permeability and potential was found by TAK-285 on S. aureus, suggesting its targeting of cell membrane integrity. Global proteomic analysis demonstrated that TAK-285 disturbed the metabolic processes of S. aureus, interfered with biofilm-related gene expression, and disrupted membrane-associated proteins. Conclusively, we repurposed TAK-285 as an antimicrobial with anti-biofilm properties against S. aureus by targeting cell membrane. This study provided strong evidence for the potential of TAK-285 as a promising antimicrobial agent against S. aureus.
Collapse
Affiliation(s)
- Jinlian Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Peikun He
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Renhai Peng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Qiwen Deng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
2
|
Ndukwe ARN, Qin J, Wiedbrauk S, Boase NRB, Fairfull-Smith KE, Totsika M. In Vitro Activities of Oxazolidinone Antibiotics Alone and in Combination with C-TEMPO against Methicillin-Resistant Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:1706. [PMID: 38136740 PMCID: PMC10741017 DOI: 10.3390/antibiotics12121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells. Linezolid and, by extension, theoxazolidinones have been developed to treat infections caused by Gram-positive bacteria such as MRSA. However, the clinical development of these antibiotics has mainly assessed the susceptibility of planktonic cells to the drug. Previous studies evaluating the anti-biofilm activity of theoxazolidinones have mainly focused on the biofilm inhibition of Enterococcus faecalis and methicillin-sensitive Staphylococcus aureus, with only a few studies investigating the activity of oxazolidinones for eradicating established biofilms for these species. Very little is known about the ability of oxazolidinones to eradicate MRSA biofilms. In this work, five oxazolidinones were assessed against MRSA biofilms using a minimum biofilm eradication concentration (MBEC) assay. All oxazolidinones had inherent antibiofilm activity. However, only ranbezolid could completely eradicate MRSA biofilms at clinically relevant concentrations. The susceptibility of the MRSA biofilms to ranbezolid was synergistically enhanced by coadministration with the nitroxide biofilm dispersal agent C-TEMPO. We presume that ranbezolid acts as a dual warhead drug, which combines the mechanism of action of the oxazolidinones with a nitric oxide donor or cytotoxic drug.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia; (S.W.); (N.R.B.B.); (K.E.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; (A.R.N.N.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
3
|
Antypenko L, Antypenko O, Karnaukh I, Rebets O, Kovalenko S, Arisawa M. 5,6-Dihydrotetrazolo[1,5-c]quinazolines: Toxicity prediction, synthesis, antimicrobial activity, molecular docking, and perspectives. Arch Pharm (Weinheim) 2023. [PMID: 36864600 DOI: 10.1002/ardp.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Antimicrobial resistance is a never-ending challenge, which should be considered seriously, especially when using unprescribed "over-the-counter" drugs. The synthesis and investigation of novel biologically active substances is among the directions to overcome this problem. Hence, 18 novel 5,6-dihydrotetrazolo[1,5-c]quinazolines were synthesized, their identity, purity, and structure were elucidated by elemental analysis, IR, LC-MS, 1 Н, and 13 C NMR spectra. According to the computational estimation, 15 substances were found to be of toxicity Class V, two of Class IV, and only one of Class II. The in vitro serial dilution method of antimicrobial screening against Escherichia coli, Staphylococcus aureus, Klebsiella aerogenes, Pseudomonas aeruginosa, and Candida albicans determined b3, c1, c6, and c10 as the "lead-compounds" for further modifications to increase the level of activity. Substance b3 demonstrated antibacterial activity that can be related to the calculated high affinity toward all studied proteins: 50S ribosomal protein L19 (PDB ID: 6WQN), sterol 14-alpha demethylase (PDB ID: 5TZ1), and ras-related protein Rab-9A (PDB ID: 1WMS). The structure-activity and structure-target affinity relationships are discussed. The targets for further investigations and the anatomical therapeutic chemical codes of drug similarity are predicted.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Oleksii Antypenko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Iryna Karnaukh
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Oksana Rebets
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Mieko Arisawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Abstract
Tedizolid is an oxazolidinone antibiotic with high potency against Gram-positive bacteria and currently prescribed in bacterial skin and skin-structure infections. The aim of the review was to summarize and critically review the key pharmacokinetic and pharmacodynamic aspects of tedizolid. Tedizolid displays linear pharmacokinetics with good tissue penetration. In in vitro susceptibility studies, tedizolid exhibits activity against the majority of Gram-positive bacteria (minimal inhibitory concentration [MIC] of ≤ 0.5 mg/L), is four-fold more potent than linezolid, and has the potential to treat pathogens being less susceptible to linezolid. Area under the unbound concentration-time curve (fAUC) related to MIC (fAUC/MIC) was best correlated with efficacy. In neutropenic mice, fAUC/MIC of ~ 50 and ~ 20 induced bacteriostasis in thigh and pulmonary infection models, respectively, at 24 h. The presence of granulocytes augmented its antibacterial effect. Hence, tedizolid is currently not recommended for immunocompromised patients. Clinical investigations with daily doses of 200 mg for 6 days showed non-inferiority to twice-daily dosing of linezolid 600 mg for 10 days in patients with acute bacterial skin and skin-structure infections. In addition to its use in skin and skin-structure infections, the high pulmonary penetration makes it an attractive option for respiratory infections including Mycobacterium tuberculosis. Resistance against tedizolid is rare yet effective antimicrobial surveillance and defining pharmacokinetic/pharmacodynamic targets for resistance suppression are needed to guide dosing strategies to suppress resistance development.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Aliki Milioudi
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany.
| |
Collapse
|
5
|
Bassetti M, Mularoni A, Giacobbe DR, Castaldo N, Vena A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:280-294. [PMID: 35088403 DOI: 10.1055/s-0041-1740605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent one of the most common hospital-acquired infections, carrying a significant morbidity and risk of mortality. Increasing antibiotic resistance among the common bacterial pathogens associated with HAP and VAP, especially Enterobacterales and nonfermenting gram-negative bacteria, has made the choice of empiric treatment of these infections increasingly challenging. Moreover, failure of initial empiric therapy to cover the causative agents associated with HAP and VAP has been associated with worse clinical outcomes. This review provides an overview of antibiotics newly approved or in development for the treatment of HAP and VAP. The approved antibiotics include ceftobiprole, ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. Their major advantages include their high activity against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Division of Infectious Diseases, Department of Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
7
|
Zhao Q, Xin L, Liu Y, Liang C, Li J, Jian Y, Li H, Shi Z, Liu H, Cao W. Current Landscape and Future Perspective of Oxazolidinone Scaffolds Containing Antibacterial Drugs. J Med Chem 2021; 64:10557-10580. [PMID: 34260235 DOI: 10.1021/acs.jmedchem.1c00480] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The widespread use of antibiotics has made the problem of bacterial resistance increasingly serious, and the study of new drug-resistant bacteria has become the main direction of antibacterial drug research. Among antibiotics, the fully synthetic oxazolidinone antibacterial drugs linezolid and tedizolid have been successfully marketed and have achieved good clinical treatment effects. Oxazolidinone antibacterial drugs have good pharmacokinetic and pharmacodynamic characteristics and unique antibacterial mechanisms, and resistant bacteria are sensitive to them. This Perspective focuses on reviewing oxazolidinones based on the structural modification of linezolid and new potential oxazolidinone drugs in the past 10 years, mainly describing their structure, antibacterial activity, safety, druggability, and so on, and discusses their structure-activity relationships, providing insight into the reasonable design of safer and more potent oxazolidinone antibacterial drugs.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Xi'an Xuri Shengchang Pharmaceutical Technology Co., Ltd., High-tech Zone, Xi'an 710075, P. R. China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanlin Jian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People's Hospital, Urumqi 830002, P. R. China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| |
Collapse
|
8
|
Romandini A, Pani A, Schenardi PA, Pattarino GAC, De Giacomo C, Scaglione F. Antibiotic Resistance in Pediatric Infections: Global Emerging Threats, Predicting the Near Future. Antibiotics (Basel) 2021; 10:antibiotics10040393. [PMID: 33917430 PMCID: PMC8067449 DOI: 10.3390/antibiotics10040393] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Antibiotic resistance is a public health threat of the utmost importance, especially when it comes to children: according to WHO data, infections caused by multidrug resistant bacteria produce 700,000 deaths across all ages, of which around 200,000 are newborns. This surging issue has multipronged roots that are specific to the pediatric age. For instance, the problematic overuse and misuse of antibiotics (for wrong diagnoses and indications, or at wrong dosage) is also fueled by the lack of pediatric-specific data and trials. The ever-evolving nature of this age group also poses another issue: the partly age-dependent changes of a developing system of cytochromes determine a rather diverse population in terms of biochemical characteristics and pharmacokinetics profiles, hard to easily codify in an age- or weight-dependent dosage. The pediatric population is also penalized by the contraindications of tetracyclines and fluoroquinolones, and by congenital malformations which often require repeated hospitalizations and pharmacological and surgical treatments from a very young age. Emerging threats for the pediatric age are MRSA, VRSA, ESBL-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae and the alarming colistin resistance. Urgent actions need to be taken in order to step back from a now likely post-antibiotic era, where simple infections might cause infant death once again.
Collapse
Affiliation(s)
- Alessandra Romandini
- Department of Oncology and Hemato-Oncology, Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, 20122 Milan, Italy; (A.R.); (P.A.S.)
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (A.P.); (F.S.)
| | - Paolo Andrea Schenardi
- Department of Oncology and Hemato-Oncology, Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, 20122 Milan, Italy; (A.R.); (P.A.S.)
| | | | - Costantino De Giacomo
- Maternal and Infantile Department of Pediatrics, ASST Grande Ospedale Metropolitano Niguarda, 20122 Milan, Italy;
- Correspondence: ; Tel.: +39-02-6444-2432
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (A.P.); (F.S.)
| |
Collapse
|
9
|
Wojda I, Staniec B, Sułek M, Kordaczuk J. The greater wax moth Galleria mellonella: biology and use in immune studies. Pathog Dis 2020; 78:ftaa057. [PMID: 32970818 PMCID: PMC7683414 DOI: 10.1093/femspd/ftaa057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
The greater wax moth Galleria mellonella is an invertebrate that is increasingly being used in scientific research. Its ease of reproduction, numerous offspring, short development cycle, and finally, its known genome and immune-related transcriptome provide a convenient research model for investigation of insect immunity at biochemical and molecular levels. Galleria immunity, consisting of only innate mechanisms, shows adaptive plasticity, which has recently become the subject of intensive scientific research. This insect serves as a mini host in studies of the pathogenicity of microorganisms and in vivo tests of the effectiveness of single virulence factors as well as new antimicrobial compounds. Certainly, the Galleria mellonella species deserves our attention and appreciation for its contribution to the development of research on innate immune mechanisms. In this review article, we describe the biology of the greater wax moth, summarise the main advantages of using it as a model organism and present some of the main techniques facilitating work with this insect.
Collapse
Affiliation(s)
- Iwona Wojda
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Bernard Staniec
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Zoology and Nature Protection, Akademicka 19, 20-033 Lublin, Poland
| | - Michał Sułek
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Jakub Kordaczuk
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|