1
|
Keleher JG, Strope TA, Estrada NE, Griggs Mathis AM, Easson CG, Fiore C. Freshwater sponges in the southeastern U.S. harbor unique microbiomes that are influenced by host and environmental factors. PeerJ 2025; 13:e18807. [PMID: 39897492 PMCID: PMC11787800 DOI: 10.7717/peerj.18807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Marine, and more recently, freshwater sponges are known to harbor unique microbial symbiotic communities relative to the surrounding water; however, our understanding of the microbial ecology and diversity of freshwater sponges is vastly limited compared to those of marine sponges. Here we analyzed the microbiomes of three freshwater sponge species: Radiospongilla crateriformis, Eunapius fragilis, and Trochospongilla horrida, across four sites in western North Carolina, U.S.A. Our results support recent work indicating that freshwater sponges indeed harbor a distinct microbiome composition compared to the surrounding water and that these varied across sampling site indicating both environmental and host factors in shaping this distinct community. We also sampled sponges at one site over 3 months and observed that divergence in the microbial community between sponge and water occurs at least several weeks after sponges emerge for the growing season and that sponges maintain a distinct community from the water as the sponge tissue degrades. Bacterial taxa within the Gammproteobacteria, Alphproteobacteria, Bacteroidota (Flavobacteriia in particular), and Verrucomicrobia, were notable as enriched in the sponge relative to the surrounding water across sponge individuals with diverging microbial communities from the water. These results add novel information on the assembly and maintenance of microbial communities in an ancient metazoan host and is one of few published studies on freshwater sponge microbial symbiont communities.
Collapse
Affiliation(s)
| | - Taylor A. Strope
- Biology Department, Appalachian State University, Boone, NC, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Noah E. Estrada
- Biology Department, Appalachian State University, Boone, NC, United States
| | | | - Cole G. Easson
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Cara Fiore
- Biology Department, Appalachian State University, Boone, NC, United States
| |
Collapse
|
2
|
Bharti U, Gaur P, Kaur K, Singh M. Tracking genetically modified (GM) rice ingredients in samples of packed rice and food products from the marketplace in India: a pilot study for regulatory compliance. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:263-269. [PMID: 38887773 PMCID: PMC11180042 DOI: 10.1007/s40201-024-00892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/21/2024] [Indexed: 06/20/2024]
Abstract
Purpose More than 20 genetically modified (GM) food crops including rice have been approved in many countries. GM rice and derived products have not yet been approved in India so they are considered as unauthorized genetically modified organisms (GMOs) in the country. Therefore it is important to track whether the rice containing food items, available in the marketplace are GMO-free. Methods A pilot study was conducted to check the GM status of 30 samples of packed rice grains and processed food products with rice as an ingredient, using polymerase chain reaction (PCR) assays targeting Cauliflower Mosaic Virus 35 S promoter (P-35 S), nopaline synthase terminator (T-nos), phosphinothricin-N-acetyltransferase (pat) and cry1Ac gene, which could cover screening for all the globally approved GM rice events. Results Based on the results, none of the samples tested were found positive for P-35 S, T-nos, pat and cry1Ac. Conclusion The unauthorized presence of GM rice ingredients was not detected in the samples tested. Such studies may further be conducted for the testing of GM ingredients derived from cereals other than rice in the food products imported from the country where GM events of respective cereal crop are approved, as a part of regulatory requirement.
Collapse
Affiliation(s)
- Uma Bharti
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, Uttar Pradesh 211 007 India
| | - Priyanshi Gaur
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, Uttar Pradesh 211 007 India
| | - Kushaldeep Kaur
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - Monika Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| |
Collapse
|
3
|
Kaval A, Yılmaz H, Tunca Gedik S, Yıldız Kutman B, Kutman ÜB. The Fungal Root Endophyte Serendipita indica ( Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis. BIOLOGY 2023; 12:1098. [PMID: 37626984 PMCID: PMC10452518 DOI: 10.3390/biology12081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
While the importance of beneficial soil microorganisms for soil health and crop performance has been receiving ever-increasing attention, Serendipita indica has been widely studied as a fungal root endophyte with significant potential for increasing the stress tolerance of host plants. Boron (B) toxicity as an adverse soil condition is particularly prevalent in arid and semi-arid regions and threatens crop production. Studies on S. indica-wheat symbiosis are limited, and effects of S. indica on crops have never been reported in the context of B toxicity. Here, two pot experiments were conducted under greenhouse conditions to investigate the effects of S. indica on the growth and yield parameters of bread (Triticum aestivum) and durum wheat (Triticum durum) grown at different levels of B toxicity in native vs. sterilized soil, and parameters related to root colonization, membrane damage, oxidative stress, chlorophyll, and mineral nutrition were measured to elucidate the physiological mechanisms of damage and benefit. Boron toxicity decreased early vegetative growth and grain yield, but it did not affect the straw dry weight of mature plants, whereas S. indica significantly enhanced the vegetative growth, straw dry weight, and the grain number of both wheat species. Membrane damage as demonstrated by increased lipid peroxidation and relative electrolyte leakage was caused by B toxicity and alleviated by S. indica. The benefits provided by S. indica could not be attributed to any significant changes in tissue concentrations of B or other minerals such as phosphorus. Soil sterilization generally improved plant performance but it did not consistently strengthen or weaken the effects of S. indica. The presented results suggest that S. indica may be used as an effective microbial inoculant to enhance wheat growth under adverse soil conditions such as B toxicity through mechanisms that are possibly unrelated to mineral homeostasis.
Collapse
Affiliation(s)
- Ali Kaval
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| | - Halil Yılmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye; (H.Y.); (S.T.G.)
| | - Sedef Tunca Gedik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye; (H.Y.); (S.T.G.)
| | - Bahar Yıldız Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| | - Ümit Barış Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| |
Collapse
|
4
|
Development of an Efficient Dye-Based qPCR System Still Functional for Low Levels of Transgenic DNA in Food Products. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Munir N, Hasnain M, Sarwar Z, Ali F, Hessini K, Abideen Z. Changes in environmental conditions are critical factors for optimum biomass, lipid pattern and biodiesel production in algal biomass. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Grazina L, Costa J, Amaral JS, Mafra I. High-Resolution Melting Analysis as a Tool for Plant Species Authentication. Methods Mol Biol 2021; 2264:55-73. [PMID: 33263903 DOI: 10.1007/978-1-0716-1201-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-resolution melting (HRM) analysis is a cost-effective, specific, and rapid tool that allows distinguishing genetically related plants and other organisms based on the detection of small nucleotide variations, which are recognized from melting properties of the double-stranded DNA. It has been widely applied in several areas of research and diagnostics, including botanical authentication of several food commodities and herbal products. Generally, it consists of the main steps: (1) in silico sequence analysis and primer design; (2) DNA extraction from plant material; (3) amplification by real-time PCR with an enhanced fluorescent dye targeting a specific DNA barcode or other regions of taxonomic interest (100-200 bp); (4) melting curve analysis; and (5) statistical data analysis using a specific HRM software. This chapter presents an overview of HRM analysis and application, followed by the detailed description of all the required reagents, instruments, and protocols for the successful and easy implementation of a HRM method to differentiate closely related plant species.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Haselmair-Gosch C, Nitarska D, Walliser B, Flachowsky H, Marinovic S, Halbwirth H. Event-specific qualitative polymerase chain reaction analysis for two T-DNA copies in genetically modified orange Petunia. PLANT CELL, TISSUE AND ORGAN CULTURE 2020; 142:415-424. [PMID: 32684656 PMCID: PMC7359168 DOI: 10.1007/s11240-020-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
In 2017, various orange coloured petunia on the market turned out to be genetically modified (GM) without an official authorization for commercialization. Sequence analysis suggested these undeclared plants most probably originated from a plant transformation experiment performed in the 1980s. For a deeper understanding how GM petunia entered classical breeding programmes worldwide, and whether they originated from a single source or not, we undertook a molecular genetic characterization of the T-DNA integration sites in different GM petunia cultivars and breeding lines. By means of genome walking, we isolated different T-DNA sequences, which are located at the junctions between the T-DNA(s) and the petunia DNA. Based on the results obtained we conclude that there are at least two T-DNA copies of different lengths. This is supported by Southern blot analysis. For T-DNA1, the 3'-junction sequence was isolated, whereas the 5'-junction remained unclear. In contrast, for T-DNA2, the 5'-junction sequence was isolated, whereas the sequence isolated from the 3'-region consists only of T-DNA, but did not include the junction from the T-DNA to the petunia DNA. We developed primers for event-specific PCRs and screened a set of three orange GM petunia cultivars and 126 GM offspring from a commercial breeding program. We show that both T-DNA copies are present in all our tested GM petunia samples, which underpins the assumption of a single transgenic origin of the undeclared GM petunia. Most likely, the two T-DNAs are integrated in close proximity into the petunia genome.
Collapse
Affiliation(s)
- Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Daria Nitarska
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
8
|
Bak A, Emerson JB. Cauliflower mosaic virus (CaMV) Biology, Management, and Relevance to GM Plant Detection for Sustainable Organic Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Venturelli GL, Bischoff JL, Scariot MC, Rossi GB, Arisi ACM. Applicability of quantitative polymerase chain reaction ( qPCR) assays for common bean authentication in processed food. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gustavo Luiz Venturelli
- CAL CCA UFSC, Molecular Biology Laboratory, Food Science and Technology Department Federal University of Santa Catarina Rod. Admar Gonzaga, 1346 88034‐001 Florianópolis Santa Catarina Brazil
| | - Joana Laura Bischoff
- CAL CCA UFSC, Molecular Biology Laboratory, Food Science and Technology Department Federal University of Santa Catarina Rod. Admar Gonzaga, 1346 88034‐001 Florianópolis Santa Catarina Brazil
| | - Mirella Christine Scariot
- CAL CCA UFSC, Molecular Biology Laboratory, Food Science and Technology Department Federal University of Santa Catarina Rod. Admar Gonzaga, 1346 88034‐001 Florianópolis Santa Catarina Brazil
| | - Gabriela Barbosa Rossi
- CAL CCA UFSC, Molecular Biology Laboratory, Food Science and Technology Department Federal University of Santa Catarina Rod. Admar Gonzaga, 1346 88034‐001 Florianópolis Santa Catarina Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Molecular Biology Laboratory, Food Science and Technology Department Federal University of Santa Catarina Rod. Admar Gonzaga, 1346 88034‐001 Florianópolis Santa Catarina Brazil
| |
Collapse
|
10
|
Devi S, Lin YC, Ho YP. Quantitative analysis of genetically modified soya using multiple reaction monitoring mass spectrometry with endogenous peptides as internal standards. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:50-57. [PMID: 30253653 DOI: 10.1177/1469066718802548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple label-free method was developed for the quantification of the herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase using multiple reaction monitoring liquid chromatography-mass spectrometry. Sample pretreatment procedures including ion exchange chromatography and CaCl2 precipitation were used to purify the 5-enolpyruvylshikimate-3-phosphate synthase protein. Quantification of various percentages of genetically modified soya (0.5-100%) was performed by selecting suitable endogenous soybean peptides as internal standards. Results indicated that Gly P (QGDVFVVPR) and Lec P (LQLNK) are useful internal standards for the quantification of low and high percentages of genetically modified soya, respectively. Linear regression analysis of both calibration curves yielded good linearity with R2 of 0.99. This approach is a convenient and accurate quantification method for genetically modified soya at a level as low as 0.5% (less than the current EU threshold for labeling genetically modified soya).
Collapse
Affiliation(s)
- Shobha Devi
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- In memory of Professor Robert C. Dunbar who had endless enthusiasm for science
| | - Yi-Cheng Lin
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- In memory of Professor Robert C. Dunbar who had endless enthusiasm for science
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- In memory of Professor Robert C. Dunbar who had endless enthusiasm for science
| |
Collapse
|
11
|
Yeom WW, Kim HJ, Lee KR, Cho HS, Kim JY, Jung HW, Oh SW, Jun SE, Kim HU, Chung YS. Increased Production of α-Linolenic Acid in Soybean Seeds by Overexpression of Lesquerella FAD3-1. FRONTIERS IN PLANT SCIENCE 2019; 10:1812. [PMID: 32082356 PMCID: PMC7005135 DOI: 10.3389/fpls.2019.01812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/27/2019] [Indexed: 05/20/2023]
Abstract
Soybean is a major crop that is used as a source of vegetable oil for human use. To develop transgenic soybean with high α-linolenic acid (ALA; 18:3) content, the FAD3-1 gene isolated from lesquerella (Physaria fendleri) was used to construct vectors with two different seed-specific promoters, soybean β-conglycinin (Pβ-con) and kidney bean phaseolin (Pphas), and one constitutive cauliflower mosaic virus 35S promoter (P35S). The corresponding vectors were used for Agrobacterium-mediated transformation of imbibed mature half seeds. The transformation efficiency was approximately 2%, 1%, and 3% and 21, 7, and 17 transgenic plants were produced, respectively. T-DNA insertion and expression of the transgene were confirmed from most of the transgenic plants by polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), reverse transcription PCR (RT-PCR), and Southern blot analysis. The fatty acid composition of soybean seeds was analyzed by gas chromatography. The 18:3 content in the transgenic generation T1 seeds was increased 7-fold in Pβ-con:PfFAD3-1, 4-fold in Pphas : PfFAD3-1, and 1.6-fold in P35S:PfFAD3-1 compared to the 18:3 content in soybean "Kwangankong". The increased content of 18:3 in the Pβ-con:PfFAD3-1 soybean (T1) resulted in a 52.6% increase in total fatty acids, with a larger decrease in 18:1 content than 18:2 content. The increase in 18:3 content was also maintained and reached 42% in the Pphas : PfFAD3-1 transgenic generation T2. Investigations of the agronomic traits of 12 Pβ-con:PfFAD3-1 transgenic lines (T1) revealed that plant height, number of branches, nodes, pods, total seeds, and total seed weight were significantly higher in several transgenic lines than those in non-transgenic soybean. Especially, an increase in seed size was observed upon expression of the PfFAD3-1 gene with the β-conglycinin promoter, and 6%-14% higher seed lengths were measured from the transgenic lines.
Collapse
Affiliation(s)
- Wan Woo Yeom
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Hye Jeong Kim
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Hyun Suk Cho
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Jin-Young Kim
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Ho Won Jung
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Seon-Woo Oh
- Biosafety Division, National Institute of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Sang Eun Jun
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Hyun Uk Kim, ; Young-Soo Chung,
| | - Young-Soo Chung
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hyun Uk Kim, ; Young-Soo Chung,
| |
Collapse
|
12
|
Transcriptional regulator XYR1 activates the expression of cellobiose synthase to promote the production of cellulase from glucose. Biotechnol Lett 2018; 40:973-979. [PMID: 29680932 DOI: 10.1007/s10529-018-2549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/31/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the transcriptional regulation of cellobiose synthase (CBS) in Rhizopus stolonifer. RESULTS Transcription factor XYR1 was identified as responsible for the activation of cbs. In comparison with wild-type R. stolonifer, the deletion of XYR1 resulted in transcriptional down-regulation of cbs by approximately 40%, while XYR1 over-expression increased cbs transcription up to 175%. The highest FPA activity (1.8 IU/ml) was obtained in the XYR1-overexpressing strain OExyr1 cultivated in a 2% (m/V) glucose media, corresponding to a 96% increase compared with that of the parent strain (0.92 IU/ml). Moreover, cellulase synthesis was inhibited after cbs-inactivation mutation in OExyr1. CONCLUSION XYR1 directly activates the transcription of cbs to promote cellulase production in R. stolonifer utilizing glucose as a substrate.
Collapse
|
13
|
Haselmair-Gosch C, Miosic S, Nitarska D, Roth BL, Walliser B, Paltram R, Lucaciu RC, Eidenberger L, Rattei T, Olbricht K, Stich K, Halbwirth H. Great Cause-Small Effect: Undeclared Genetically Engineered Orange Petunias Harbor an Inefficient Dihydroflavonol 4-Reductase. FRONTIERS IN PLANT SCIENCE 2018; 9:149. [PMID: 29541079 PMCID: PMC5835687 DOI: 10.3389/fpls.2018.00149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/29/2018] [Indexed: 05/22/2023]
Abstract
A recall campaign for commercial, orange flowering petunia varieties in spring 2017 caused economic losses worldwide. The orange varieties were identified as undeclared genetically engineered (GE)-plants, harboring a maize dihydroflavonol 4-reductase (DFR, A1), which was used in former scientific transgenic breeding attempts to enable formation of orange pelargonidin derivatives from the precursor dihydrokaempferol (DHK) in petunia. How and when the A1 cDNA entered the commercial breeding process is unclear. We provide an in-depth analysis of three orange petunia varieties, released by breeders from three countries, with respect to their transgenic construct, transcriptomes, anthocyanin composition, and flavonoid metabolism at the level of selected enzymes and genes. The two possible sources of the A1 cDNA in the undeclared GE-petunia can be discriminated by PCR. A special version of the A1 gene, the A1 type 2 allele, is present, which includes, at the 3'-end, an additional 144 bp segment from the non-viral transposable Cin4-1 sequence, which does not add any functional advantage with respect to DFR activity. This unequivocally points at the first scientific GE-petunia from the 1980s as the A1 source, which is further underpinned e.g., by the presence of specific restriction sites, parts of the untranslated sequences, and the same arrangement of the building blocks of the transformation plasmid used. Surprisingly, however, the GE-petunia cannot be distinguished from native red and blue varieties by their ability to convert DHK in common in vitro enzyme assays, as DHK is an inadequate substrate for both the petunia and maize DFR. Recombinant maize DFR underpins the low DHK acceptance, and, thus, the strikingly limited suitability of the A1 protein for a transgenic approach for breeding pelargonidin-based flower color. The effect of single amino acid mutations on the substrate specificity of DFRs is demonstrated. Expression of the A1 gene is generally lower than the petunia DFR expression despite being under the control of the strong, constitutive p35S promoter. We show that a rare constellation in flavonoid metabolism-absence or strongly reduced activity of both flavonol synthase and B-ring hydroxylating enzymes-allows pelargonidin formation in the presence of DFRs with poor DHK acceptance.
Collapse
Affiliation(s)
- Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Silvija Miosic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Daria Nitarska
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Barbara L. Roth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Renate Paltram
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Rares C. Lucaciu
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lukas Eidenberger
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Klaus Olbricht
- Thaer-Institute of Agricultural and Horticultural Sciences Humboldt University Berlin, Berlin, Germany
| | - Karl Stich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- *Correspondence: Heidi Halbwirth
| |
Collapse
|
14
|
Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi. Methods Enzymol 2018; 604:441-498. [DOI: 10.1016/bs.mie.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Pacheco Coello R, Pestana Justo J, Factos Mendoza A, Santos Ordoñez E. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food. BMC Res Notes 2017; 10:758. [PMID: 29262852 PMCID: PMC5738804 DOI: 10.1186/s13104-017-3083-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Objectives In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). Results Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador. Electronic supplementary material The online version of this article (10.1186/s13104-017-3083-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Pacheco Coello
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jorge Pestana Justo
- Agencia Nacional de Regulación, Control y Vigilancia Sanitaria, ARCSA, Ciudadela Samanes, Av. Francisco de Orellana y Av. Paseo del Parque, Bloque 5, Guayaquil, Ecuador
| | - Andrés Factos Mendoza
- Biosafety Unit, National Biodiversity Direction, Ministry of Environment, Madrid y Andalucía, Quito, Ecuador
| | - Efrén Santos Ordoñez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador. .,ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo, Km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| |
Collapse
|
16
|
Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Sci Rep 2017; 7:10161. [PMID: 28860637 PMCID: PMC5579273 DOI: 10.1038/s41598-017-10964-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
Cellulolytic fungi have evolved a sophisticated genetic regulatory network of cellulase synthesis to adapt to the natural environment. Even in the absence of lignocellulose, it still secretes low levels of “constitutive” cellulase for standby application. However, the mechanisms of this constitutive expression remain incompletely understood. Here we identified a cellobiose synthetase (CBS) from Rhizopus stolonifer, which has the capacity to catalyse the synthesis of cellobiose from uridine diphosphate glucose (UDPG). Through the construction of R. stolonifer Δcbs strain, we found that CBS plays a key role in the synthesis of cellulase. Further analysis of cellulase synthesis under glucose culture reveals that the cellobiose-responsive regulator CLR1 was activated by CBS-synthesized cellobiose, thereby promoting the expression of CLR2 and finally opening the transcription of cellulase genes. Our results suggest that R. stolonifer can be induced by self-synthesized cellobiose to produce cellulase, which can be used to reconstruct the expression regulation network to achieve rapid production of cellulase using simple carbon source. Based on our data, the “constitutive expression” of cellulase actually derives from the induction of cellobiose that synthesized by CBS from carbohydrate metabolites, which updates our knowledge of cellulase, and provides a novel insight into the regulation of cellulase synthesis.
Collapse
|
17
|
Zhan F, Liao X, Gao F, Qiu W, Wang Q. Electroactive crown ester-Cu 2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s. Biosens Bioelectron 2017; 92:589-595. [PMID: 27829553 DOI: 10.1016/j.bios.2016.10.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023]
Abstract
A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu2+) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication.
Collapse
Affiliation(s)
- Fengping Zhan
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaolei Liao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Weiwei Qiu
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
18
|
Caldwell JM. Food Analysis Using Organelle DNA and the Effects of Processing on Assays. Annu Rev Food Sci Technol 2017; 8:57-74. [DOI: 10.1146/annurev-food-030216-030216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Miaw C, Amâncio G, Rocha V, Madeira J, Souza S. Single-laboratory validation of a method for detection of Roundup Ready soy in soybeans: application of new strategies for qualitative validation. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2017. [DOI: 10.3920/qas2015.0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- C.S.W. Miaw
- Department of Food Science, Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Campus da UFMG, Pampulha, Belo Horizonte, MG 31270-010, Brazil
| | - G.C.S. Amâncio
- Molecular Biology Laboratory, Ezequiel Dias Foundation (FUNED), R. Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, MG 30510-010, Brazil
| | - V.N. Rocha
- Molecular Biology Laboratory, Ezequiel Dias Foundation (FUNED), R. Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, MG 30510-010, Brazil
| | - J.E.G.C. Madeira
- Molecular Biology Laboratory, Ezequiel Dias Foundation (FUNED), R. Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, MG 30510-010, Brazil
| | - S.V.C. Souza
- Department of Food Science, Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Campus da UFMG, Pampulha, Belo Horizonte, MG 31270-010, Brazil
| |
Collapse
|
20
|
|
21
|
Longin C, Guilloux-Benatier M, Alexandre H. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR. Front Microbiol 2016; 7:831. [PMID: 27313572 PMCID: PMC4887704 DOI: 10.3389/fmicb.2016.00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022] Open
Abstract
Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage.
Collapse
Affiliation(s)
- Cédric Longin
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Michèle Guilloux-Benatier
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Hervé Alexandre
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| |
Collapse
|
22
|
Lin Y, Yanhua J, Qingjiao L, Zhe S, Lianzhu W, Yuxiu Z. A Comparison of Eight Methods for DNA Etraction from Processed Seafood Products. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yao Lin
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| | - Jiang Yanhua
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| | - Li Qingjiao
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| | - Sui Zhe
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| | - Wang Lianzhu
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| | - Zhai Yuxiu
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
| |
Collapse
|
23
|
Cruz-Reyes R, Ávila-Sakar G, Sánchez-Montoya G, Quesada M. Experimental assessment of gene flow between transgenic squash and a wild relative in the center of origin of cucurbits. Ecosphere 2015. [DOI: 10.1890/es15-00304.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Kahl SM, Ulrich A, Kirichenko AA, Müller MEH. Phenotypic and phylogenetic segregation of Alternaria infectoria from small-spored Alternaria species isolated from wheat in Germany and Russia. J Appl Microbiol 2015; 119:1637-50. [PMID: 26381081 DOI: 10.1111/jam.12951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
Abstract
AIMS To identify the taxonomic differences between phytopathogenic small-spored Alternaria strains isolated from wheat kernels in Germany and Russia by a polyphasic approach. METHODS AND RESULTS Ninety-five Alternaria (A.) strains were characterized by their colony colour, their three-dimensional sporulation patterns, mycotoxin production and phylogenetic relationships based on sequence variation in translation elongation factor 1-α (TEF1-α). The examination of toxin profiles and the phylogenetic features via TEF1-α resulted in two distinct clusters, in each case containing Alternaria infectoria isolates (92 and 96% respectively) in the first and the Alternaria alternata, Alternaria arborescens and Alternaria tenuissima isolates (77 and 79% respectively) in the other combined cluster. The production of Alternariol, Altertoxin and Altenuene has not been reported previously in the A. infectoria species group. The isolates from Germany and Russia differ slightly in species composition and mycotoxin production capacity. CONCLUSIONS We identified that the A. infectoria species group can be differentiated from the A. alternata, A. arborescens and A. tenuissima species group by colour, low mycotoxin production and by the sequence variation in TEF1-α gene. SIGNIFICANCE AND IMPACT OF THE STUDY These results allow a reliable toxic risk assessment when detecting different Alternaria fungi on cereals.
Collapse
Affiliation(s)
- S M Kahl
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - A Ulrich
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - A A Kirichenko
- Novosibirsk State Agricultural University (NSAU), Novosibirsk, Russia
| | - M E H Müller
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
25
|
Ilha EC, Scariot MC, Treml D, Pereira TP, Sant′Anna ES, Prudêncio ES, Arisi ACM. Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1137-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Muñoz-Colmenero M, Klett-Mingo M, Díaz E, Blanco O, Martínez JL, Garcia-Vazquez E. Evolution of hake mislabeling niches in commercial markets. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Caldwell JM, Pérez-Díaz IM, Sandeep KP, Simunovic J, Harris K, Osborne JA, Hassan HM. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials. J Food Sci 2015; 80:M1804-14. [PMID: 26235411 DOI: 10.1111/1750-3841.12937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/13/2015] [Indexed: 11/30/2022]
Abstract
Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products.
Collapse
Affiliation(s)
- Jane M Caldwell
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Ilenys M Pérez-Díaz
- USDA-Agriculture Research Service, SAA, Food Science Research Unit, 322 Schaub Hall-NCSU, Raleigh, NC, 27695, U.S.A
| | - K P Sandeep
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Josip Simunovic
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Keith Harris
- Dept. of Food, Bioprocessing, and Nutrition Sciences, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Jason A Osborne
- Dept. of Statistics, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| | - Hosni M Hassan
- Prestage Dept. of Poultry Science, North Carolina State Univ, Raleigh, NC, 27695, U.S.A
| |
Collapse
|
28
|
|
29
|
Guven B, Boyaci IH, Tamer U, Acar-Soykut E, Dogan U. Development of rolling circle amplification based surface-enhanced Raman spectroscopy method for 35S promoter gene detection. Talanta 2015; 136:68-74. [PMID: 25702987 DOI: 10.1016/j.talanta.2014.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 02/03/2023]
Abstract
In this study, we developed the genetically modified organism detection method by using the combination of rolling circle amplification (RCA) and surface-enhanced Raman spectroscopy (SERS). An oligonucleotide probe which is specific for 35S DNA promoter target was immobilised onto the gold slide and a RCA reaction was performed. A self-assembled monolayer was formed on gold nanorods using 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and the second probe of the 35S DNA promoter target was immobilised on the activated gold coated slide surfaces. Probes on the nanoparticles were hybridised with the target oligonucleotide. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. SERS spectra of target molecules were enhanced through the RCA reaction and the detection limit was found to be 6.3fM. The sensitivity of the developed RCA-SERS method was compared with another method which had been performed without using RCA reaction, and the detection limit was found to be 0.1pM. The correlation between the target concentration and the SERS signal was found to be linear, within the range of 1pM to 10nM for the traditional assay and 100fM to 100nM for the RCA assay. For the developed RCA-SERS assay, the specificity tests were performed using the 35S promoter of Bt-176 maize gene. It was found out that the developed RCA-SERS sandwich assay method is quite sensitive, selective and specific for target sequences in model and real systems.
Collapse
Affiliation(s)
- Burcu Guven
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Food Research Center, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| | - Esra Acar-Soykut
- Food Research Center, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Uzeyir Dogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| |
Collapse
|
30
|
Wu Y, Wang Y, Li J, Li W, Zhang L, Li Y, Li X, Li J, Zhu L, Wu G. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods. Sci Rep 2014; 4:7358. [PMID: 25483893 PMCID: PMC4258656 DOI: 10.1038/srep07358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/19/2014] [Indexed: 11/11/2022] Open
Abstract
The Cauliflower mosaic virus (CaMV) 35S promoter (P35S) is a commonly used target for detection of genetically modified organisms (GMOs). There are currently 24 reported detection methods, targeting different regions of the P35S promoter. Initial assessment revealed that due to the absence of primer binding sites in the P35S sequence, 19 of the 24 reported methods failed to detect P35S in MON88913 cotton, and the other two methods could only be applied to certain GMOs. The rest three reported methods were not suitable for measurement of P35S in some testing events, because SNPs in binding sites of the primer/probe would result in abnormal amplification plots and poor linear regression parameters. In this study, we discovered a conserved region in the P35S sequence through sequencing of P35S promoters from multiple transgenic events, and developed new qualitative and quantitative detection systems targeting this conserved region. The qualitative PCR could detect the P35S promoter in 23 unique GMO events with high specificity and sensitivity. The quantitative method was suitable for measurement of P35S promoter, exhibiting good agreement between the amount of template and Ct values for each testing event. This study provides a general P35S screening method, with greater coverage than existing methods.
Collapse
Affiliation(s)
- Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Yulei Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- College of Life Sciences, Hubei University, No. 368 Friendship Avenue, Wuhan 430062, People's Republic of China
| | - Jun Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Wei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Li Zhang
- School of Life Science, South-Central University for Nationalities, Min-Yuan Road 708, Wuhan 430074, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Jun Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Li Zhu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
- Supervision and Test Center (Wuhan) for Environmental Safety of Genetically Modified Plants, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, People's Republic of China
| |
Collapse
|
31
|
Abdolmaleki F, Assadi MM, Ezzatpanah H, Honarvar M. Impact of fruit processing methods on DNA extraction from transgenic frozen banana products. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2246-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Venturelli GL, Brod FCA, Rossi GB, Zimmermann NF, Oliveira JP, Faria JC, Arisi ACM. A Specific Endogenous Reference for Genetically Modified Common Bean (Phaseolus vulgaris L.) DNA Quantification by Real-Time PCR Targeting Lectin Gene. Mol Biotechnol 2014; 56:1060-8. [DOI: 10.1007/s12033-014-9786-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Stefanova P, Taseva M, Georgieva T, Gotcheva V, Angelov A. A Modified CTAB Method for DNA Extraction from Soybean and Meat Products. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Alternative for improving gut microbiota: use of Jerusalem artichoke and probiotics in diet of weaned piglets. Pol J Vet Sci 2014; 17:61-9. [DOI: 10.2478/pjvs-2014-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe aim of the study was to determine the effect of Jerusalem artichoke and probiotics on defence activity of intestinal cells of weaning pigs. One hundred eighty piglets (7 weeks old) were fed with basal feed supplemented with Jerusalem artichoke, Lactobacillus reuteri and Pediococcus pentosaceus. After 5 weeks, the piglets were slaughtered and the gastrointestinal contents and intestine samples were taken for analysis. Results demonstrated that in pigs fed basal diet with both probiotics and Jerusalem artichoke (5% of basal diet) (T3 group) had less (P<0.05) faecal Enterobacteriaceae microorganisms and coliforms and had more (P<0,05) faecal Lactobacillus than in pigs from other groups. Increase by 2% of Enterobacteriaceae and E.coli levels were seen only in control piglets (T1 group). E.coli O157 was found at the closing stage in the piglets fed basal diet with only Jerusalem artichoke powder (T2 group), but Salmonella enteritidis - only in T1 group. In jejunum of T2 group piglets, large deterioration of crypts, a moderate inflammation process and plasmocytes were seen, but in jejunum of T3 group piglets - branching of apical surface of villi, moderate degeneration and mitosis of enterocytes were observed. A moderate number of apoptotic cells in T2 group was found mainly in colon inflammation cells and plasmocytes, but for T3 group piglets - both in jejunum enterocytes and migrating cells. Our study indicated that β-defensin 2 and 3 expression in jejunum and colon segments were incresed in T1 and T2 groups. Findings suggest that feeding with probiotics and Jerusalem artichoke significantly improves the microbial contents, defence and regeneration processes in the intestine of pigs.
Collapse
|
35
|
Deryabin AN, Berdichevets IN, Burakhanova EA, Trunova TI. Characteristics of extracellular invertase of Saccharomyces cerevisiae in heterologous expression of the suc2 Gene in Solanum tuberosum plants. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 2014; 9:e84750. [PMID: 24416275 PMCID: PMC3885605 DOI: 10.1371/journal.pone.0084750] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/26/2013] [Indexed: 01/29/2023] Open
Abstract
Soil salinity and alkalinity are important abiotic components that frequently have critical effects on crop growth, productivity and quality. Developing soybean cultivars with high salt tolerance is recognized as an efficient way to maintain sustainable soybean production in a salt stress environment. However, the genetic mechanism of the tolerance must first be elucidated. In this study, 257 soybean cultivars with 135 SSR markers were used to perform epistatic association mapping for salt tolerance. Tolerance was evaluated by assessing the main root length (RL), the fresh and dry weights of roots (FWR and DWR), the biomass of seedlings (BS) and the length of hypocotyls (LH) of healthy seedlings after treatments with control, 100 mM NaCl or 10 mM Na2CO3 solutions for approximately one week under greenhouse conditions. A total of 83 QTL-by-environment (QE) interactions for salt tolerance index were detected: 24 for LR, 12 for FWR, 11 for DWR, 15 for LH and 21 for BS, as well as one epistatic QTL for FWR. Furthermore, 86 QE interactions for alkaline tolerance index were found: 17 for LR, 16 for FWR, 17 for DWR, 18 for LH and 18 for BS. A total of 77 QE interactions for the original trait indicator were detected: 17 for LR, 14 for FWR, 4 for DWR, 21 for LH and 21 for BS, as well as 3 epistatic QTL for BS. Small-effect QTL were frequently observed. Several soybean genes with homology to Arabidopsis thaliana and soybean salt tolerance genes were found in close proximity to the above QTL. Using the novel alleles of the QTL detected above, some elite parental combinations were designed, although these QTL need to be further confirmed. The above results provide a valuable foundation for fine mapping, cloning and molecular breeding by design for soybean alkaline and salt tolerance.
Collapse
Affiliation(s)
- Wen-Jie Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Crop Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yuan Niu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Su-Hong Bu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Li
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian-Ying Feng
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jin Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sheng-Xian Yang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Medrine Mmayi Odinga
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Ping Wei
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Feng Liu
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuan-Ming Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Wang F, Zhang X, Feng J, Wang Z, Wang P. Establishment of a quadruplex real-time PCR for screening of genetically modified tomatoes. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-013-2145-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Safdar M, Abasıyanık M. Development of fast multiplex real-time PCR assays based on EvaGreen fluorescence dye for identification of beef and soybean origins in processed sausages. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Xu J, Zheng Q, Yu L, Liu R, Zhao X, Wang G, Wang Q, Cao J. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25. Food Sci Nutr 2013; 1:432-8. [PMID: 24804053 PMCID: PMC3951539 DOI: 10.1002/fsn3.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/07/2022] Open
Abstract
The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.
Collapse
Affiliation(s)
- Junyi Xu
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Qiuyue Zheng
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Ling Yu
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Ran Liu
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Xin Zhao
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Gang Wang
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| | - Qinghua Wang
- Department of Life Science, Dalian polytechnic University Dalian, 116034, China
| | - Jijuan Cao
- Food Inspection Center, Liaoning Entry-Exit Inspection and Quarantine Bureau Dalian, 116001, China
| |
Collapse
|
40
|
|
41
|
Viljoen C, Marx G. The implications for mandatory GM labelling under the Consumer Protection Act in South Africa. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Production of horsegram (Dolichos biflorus) Bowman-Birk inhibitor by an intein mediated protein purification system. Protein Expr Purif 2013; 89:16-24. [DOI: 10.1016/j.pep.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 01/19/2023]
|
43
|
Deng M, Jiang C, Jia L. N-methylimidazolium modified magnetic particles as adsorbents for solid phase extraction of genomic deoxyribonucleic acid from genetically modified soybeans. Anal Chim Acta 2013; 771:31-6. [PMID: 23522109 DOI: 10.1016/j.aca.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/18/2013] [Accepted: 02/02/2013] [Indexed: 11/24/2022]
Abstract
N-Methylimidazolium modified magnetic particles (MIm-MPs) were prepared and applied in the solid phase extraction of genomic deoxyribonucleic acid (DNA) from genetically modified soybeans. The adsorption of MIm-MPs for DNA mainly resulted from the strong electrostatic interaction between the positively charged MPs and the negatively charged DNA. The elution of DNA from MPs-DNA conjugates using phosphate buffer resulted from the stronger electrostatic interaction of phosphate ions with MPs than DNA. In the extraction procedure, no harmful reagents (e.g. phenol, chloroform and isopropanol, etc.) used, high yield (10.4 μg DNA per 30 mg sample) and high quality (A260/A280=1.82) of DNA can be realized. The as-prepared DNA was used as template for duplex-polymerase chain reaction (PCR) and the PCR products were analyzed by a sieving capillary electrophoresis method. Quick and high quality extraction of DNA template, and fast and high resolution detection of duplex PCR products can be realized using the developed method. No toxic reagents are used throughout the method.
Collapse
Affiliation(s)
- Manchen Deng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
44
|
Feng JY, Zhang J, Zhang WJ, Wang SB, Han SF, Zhang YM. An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars. PLoS One 2013; 8:e59541. [PMID: 23593144 PMCID: PMC3614919 DOI: 10.1371/journal.pone.0059541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
Many important phenotypic traits in plants are ordinal. However, relatively little is known about the methodologies for ordinal trait association studies. In this study, we proposed a hierarchical generalized linear mixed model for mapping quantitative trait locus (QTL) of ordinal traits in crop cultivars. In this model, all the main-effect QTL and QTL-by-environment interaction were treated as random, while population mean, environmental effect and population structure were fixed. In the estimation of parameters, the pseudo data normal approximation of likelihood function and empirical Bayes approach were adopted. A series of Monte Carlo simulation experiments were performed to confirm the reliability of new method. The result showed that new method works well with satisfactory statistical power and precision. The new method was also adopted to dissect the genetic basis of soybean alkaline-salt tolerance in 257 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 6 main-effect QTL and 3 QTL-by-environment interactions were identified.
Collapse
Affiliation(s)
- Jian-Ying Feng
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jin Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen-Jie Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Bo Wang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shi-Feng Han
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuan-Ming Zhang
- Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Samson MC, Gullí M, Marmiroli N. Multiplex real-time PCR assays for simultaneous detection of maize MON810 and GA21 in food samples. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Wang X, Teng D, Guan Q, Tian F, Wang J. Detection of Roundup Ready soybean by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Rao DH, Vishweshwaraiah YL, Gowda LR. The enzymatic lectin of field bean (Dolichos lablab): salt assisted lectin-sugar interaction. PHYTOCHEMISTRY 2012; 83:7-14. [PMID: 22959225 DOI: 10.1016/j.phytochem.2012.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Field bean seed contains a Gal/GalNAc lectin (DLL-II) that exhibits associated polyphenol oxidase (PPO) activity and does not bind to its sugar specific affinity matrix. The molecular basis for this lack of binding is not known. The DLL-II gene was therefore cloned and its sequence analyzed. A conserved aromatic residue in the sugar binding site required for a stacking interaction with the apolar backbone of Gal is replaced by His in DLL-II, which explains the lack of binding. However, specific sugar binding is achieved by including (NH₄)₂SO₄ in the buffer. Interestingly two other salts of the Hofmeister series, K₂HPO₄ and Na₂SO₄ also assist binding to immobilized galactose. In the presence of (NH₄)₂SO₄ the surface hydrophobicity of DLL-II and dissociation constant for 8-anilino 1-naphthalene sulfonic acid were enhanced three fold. This increased surface hydrophobicity in the presence of salt is probably the cause for assisted sugar binding in legume lectins that lack aromatic stacking interactions. Accordingly, two other lectins which lack the conserved aromatic residue show similar salt assisted binding. The salt concentrations required for Gal/GalNAc binding are not physiologically relevant in vivo, suggesting that the role of DLL-II per se in the seed is primarily that of a PPO purportedly for plant defense.
Collapse
Affiliation(s)
- Devavratha H Rao
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | | | | |
Collapse
|
48
|
Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modified soybean and in their offsprings. Animal 2012; 4:1662-71. [PMID: 22445119 DOI: 10.1017/s1751731110000728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The presence of DNA fragments in blood and milk from goats fed conventional (control) or Roundup Ready® soybean meal solvent extracted (s.e.; treated) was investigated by using a polymerase chain reaction approach. The same investigation was carried out on blood, skeletal muscle and organs from kids of both groups fed only dams' milk until weaning. Moreover, the possible effects on cell metabolism were evaluated by determination of several specific enzymes in serum, heart, skeletal muscle, liver and kidney. Fragments of the multicopy chloroplast (trnL) gene were found in blood and milk samples from goats of both groups. In kids, the chloroplast fragments were found in samples of both groups. In samples, which proved positive for the presence of chloroplast DNA, fragments of the specific soybean single copy gene (lectin) were detected in several blood and milk samples. The same fragment was also found in control and treated groups of kids. Transgenic fragments were not found in those samples, which were found positive for chloroplast fragments of control groups of either goats or kids. On the contrary, in blood and milk of treated goats, fragments both of the 35S promoter and the CP4 epsps gene were detected. These fragments were also found in treated kids with a significant detection of the 35S promoter in liver, kidney and blood, and of the CP4 epsps gene fragment in liver, kidney, heart and muscle. A significant increase in lactic dehydrogenase, mainly concerning the lactic dehydrogenase-1 isoenzyme was found in heart, skeletal muscle and kidney of treated kids, thus suggesting a change in the local production of the enzyme. Finally, no significant differences were detected concerning kid body and organ weight.
Collapse
|
49
|
Xiao X, Wu H, Zhou X, Xu S, He J, Shen W, Zhou G, Huang M. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs. J Food Sci 2012; 77:C603-8. [PMID: 22591269 DOI: 10.1111/j.1750-3841.2012.02718.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. PRACTICAL APPLICATION The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs.
Collapse
Affiliation(s)
- Xiao Xiao
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural Univ, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dinon AZ, Brod FCA, Mello CS, Oliveira EMM, Faria JC, Arisi ACM. Primers and probes development for specific PCR detection of genetically modified common bean (Phaseolus vulgaris) Embrapa 5.1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4672-4677. [PMID: 22506690 DOI: 10.1021/jf3011257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genetically modified common bean Embrapa 5.1, developed by Brazilian Agricultural Research Corporation (Embrapa), is the first commercial GM plant produced in Latin America. It presents high resistance to the Bean golden mosaic virus. In this work, primers and probes targeting a taxon-specific reference DNA sequence for the common bean (Phaseolus vulgaris L.) and a construct-specific DNA sequence of Embrapa 5.1 GM common bean were successfully developed. The primers and probes showed high specificity for the target detection. Both methods showed suitable efficiency and performance to be used as an endogenous target for detection of common bean DNA and for construct-specific detection of GM common bean Embrapa 5.1, respectively. Both real-time PCR assays proved to be valuable for future assessment of interlaboratory studies.
Collapse
Affiliation(s)
- Andréia Z Dinon
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-001, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|