1
|
Puppel K, Slósarz J, Solarczyk P, Grodkowski G, Kostusiak P, Kalińska A, Balcerak M, Kunowska-Slósarz M, Gołębiewski M. Assessing the Usefulness of Interleukin-8 as a Biomarker of Inflammation and Metabolic Dysregulation in Dairy Cows. Int J Mol Sci 2024; 25:11129. [PMID: 39456911 PMCID: PMC11508773 DOI: 10.3390/ijms252011129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The study aimed to evaluate interleukin-8 (IL-8) as a biomarker for udder inflammation in dairy cows and to explore its associations with various metabolic parameters indicative of systemic inflammation and metabolic dysregulation. Dairy cows (multiparous) were categorized into five somatic cell count (SCC) classes: Class I (<100,000 cells/mL; n = 45), Class II (100,000-200,000 cells/mL; n = 62), Class III (201,000-400,000 cells/mL; n = 52), Class IV (401,000-1,000,000 cells/mL; n = 73), and Class V (>1,000,000 cells/mL; n = 56). The study quantified IL-8 levels and analyzed their correlations with NEFAs (non-esterified fatty acids), BHBA (beta-hydroxybutyrate), GGTP (gamma-glutamyltransferase), and AspAT (aspartate aminotransferase). IL-8 concentrations demonstrated a significant and progressive increase across the SCC classes, establishing a strong positive correlation with SCC (p < 0.01). Additionally, IL-8 levels exhibited positive correlations with GGTP (p < 0.01) and AspAT (p < 0.01), indicating that elevated IL-8 is associated with increased hepatic enzyme activities and potential liver dysfunction. Furthermore, IL-8 showed significant positive correlations with NEFAs (p < 0.01) and BHBA (p < 0.05), linking higher IL-8 levels to metabolic disturbances such as ketosis and negative energy balance. Variations in metabolic parameters, including NEFAs, BHBA, GGTP, and AspAT, across the SCC classes underscored the association between elevated SCC levels and metabolic dysregulation in dairy cows. These findings highlight the interrelated nature of the inflammatory responses and metabolic disturbances in dairy cattle, emphasizing that an elevated SCC not only signifies udder inflammation but also correlates with systemic metabolic alterations indicative of ketosis and liver damage.
Collapse
Affiliation(s)
- Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (P.S.); (G.G.); (P.K.); (A.K.); (M.B.); (M.K.-S.); (M.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ford HR, Mitchell TM, Scull T, Benitez OJ, Strieder-Barboza C. The Effect of Subclinical Ketosis on the Peripheral Blood Mononuclear Cell Inflammatory Response and Its Crosstalk with Depot-Specific Preadipocyte Function in Dairy Cows. Animals (Basel) 2024; 14:1995. [PMID: 38998107 PMCID: PMC11240650 DOI: 10.3390/ani14131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
During the periparturient period, cows undergo heightened energy demands at lactation onset, paired with reduced dry matter intake, leading to negative energy balance (NEB). Excessive lipolysis-driven adipose tissue remodeling, triggered by NEB, significantly contributes to ketosis in periparturient dairy cows. However, the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of ketosis and in modulating adipose tissue function remains poorly understood. Here, we investigated how ketosis affects the transcriptional profile and secretome of PBMCs and its influence on preadipocyte function in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Twenty-one postpartum Holstein dairy cows were categorized as either subclinical ketosis (SCK; BHB ≥ 1.0 mM) or control (CON; BHB < 0.8 mM) based on blood beta-hydroxybutyrate (BHB) concentration screening. Blood samples were collected intravenously for the isolation of PBMCs and serum metabolic profiling. Ketosis elevated circulating NEFA and BHB levels but reduced total WBC and neutrophil counts. Isolated PBMCs were evaluated for gene expression and used to produce conditioned media (PBMC-CM), during which PBMCs were stimulated with 10 ng/mL LPS. The overall phenotype of PBMCs was largely consistent between SCK and CON cows, with minimal differences detected in immunomodulatory cytokine expression and PBMC-CM composition following stimulation. Preadipocytes isolated from non-ketotic cows were treated with PBMC-CM to assess the effect of PBMC secretomes on adipose cell function. Preadipocytes treated with SCK PBMC-CM showed reduced lipid accumulation compared to those treated with CON PBMC-CM regardless of the depot. SAT preadipocytes had heightened expression of lipid metabolism-related genes, including DGAT1, LIPE, and FASN, compared to VAT when treated with SCK PBMC-CM. Preadipocytes treated with CM from PBMC stimulated by LPS exhibited upregulation in IL1B and IL6 regardless of the depot or source of PBMCs. Together, these results indicate that although PBMC profiles showed minimal differences, preadipocytes treated with PBMC-CM may be influenced by additional factors, leading to altered preadipocyte function and gene expression that may contribute to adipose cellular dysfunction.
Collapse
Affiliation(s)
- Hunter R. Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Ty M. Mitchell
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Tanner Scull
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Oscar J. Benitez
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
3
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
4
|
Blond B, Majkić M, Spasojević J, Hristov S, Radinović M, Nikolić S, Anđušić L, Čukić A, Došenović Marinković M, Vujanović BD, Obradović N, Cincović M. Influence of Heat Stress on Body Surface Temperature and Blood Metabolic, Endocrine, and Inflammatory Parameters and Their Correlation in Cows. Metabolites 2024; 14:104. [PMID: 38392996 PMCID: PMC10890091 DOI: 10.3390/metabo14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to determine whether heat stress affected the values and correlations of metabolic, endocrinological, and inflammatory parameters as well as the rectal and body surface temperature of cows in the early and middle stages of lactation. This experiment was conducted in May (thermoneutral period), June (mild heat stress), and July (moderate to severe heat stress). In each period we included 15 cows in early lactation and 15 in mid-lactation. The increase in rectal and body surface temperatures (°C) in moderate to severe heat stress compared to the thermoneutral period in different regions was significant (p < 0.01) and the results are presented as mean and [95%CI]: rectal + 0.9 [0.81-1.02], eye + 6 [5.74-6.25], ear + 13 [11.9-14.0], nose + 3.5 [3.22-3.71], forehead + 6.6 [6.43-6.75], whole head + 7.5 [7.36-7.68], abdomen + 8.5 [8.25-8.77], udder + 7.5 [7.38-7.65], front limb + 6 [5.89-6.12], hind limb + 3.6 [3.46-3.72], and whole body + 9 [8.80-9.21]. During heat stress (in both mild and moderate to severe stress compared to a thermoneutral period), an increase in the values of extracellular heat shock protein 70 (eHsp70), tumor necrosis factor α (TNFα), cortisol (CORT), insulin (INS), revised quantitative insulin sensitivity check index (RQUICKI), urea, creatinine, total bilirubin, aspartate transpaminase (AST), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and creatin kinase (CK) occurred, as well as a decrease in the values of triiodothyronine (T3), thyroxine (T4), non-esterified fatty acids (NEFA), glucose (GLU), β-Hydroxybutyrate (BHB), calcium, phosphorus, total protein (TPROT), albumin (ALB), triglycerides (TGCs), and cholesterol (CHOL). In cows in early lactation compared to cows in mid-lactation, there was a significantly larger increase (p < 0.01) in the values of eHsp70, TNFα, GLU, RQUICKI, and GGT, while the INS increase was smaller during the three experimental periods. The decrease in the values of Ca, CHOL, and TGC was more pronounced in cows in early lactation compared to cows in mid-lactation during the three experimental periods. Rectal temperature was related to eHsp70 (r = 0.38, p < 0.001) and TNFα (r = 0.36, p < 0.01) and showed non-significant poor correlations with other blood parameters. Blood parameters correlate with body surface temperature, with the following most common results: eHsp70 and TNFα showed a moderately to strongly significant positive correlation (r = 0.79-0.96, p < 0.001); CORT, INS, and Creat showed fairly to moderately significant positive correlations; T3, T4, NEFA and GLU showed fairly to moderately significant negative correlations (r = 0.3-0.79; p < 0.01); RQUICKI, urea, AST, and GGT showed fairly and significantly positive correlations; and TGC, CHOL, TPROT, and ALB showed fairly and significantly negative correlations (r = 0.3-0.59; p < 0.01). Measuring the surface temperature of the whole body or head can be a useful tool in evaluating the metabolic response of cows because it has demonstrated an association with inflammation (TNFα, eHsp70), endocrine response (CORT, T3, T4), the increased use of glucose and decreased use of lipids for energy purposes (INS, NEFA, GLU, and RQUICKI), and protein catabolism (ALB, TPROT, urea, Creat), which underlies thermolysis and thermogenesis in cows under heat stress. In future research, it is necessary to examine the causality between body surface area and metabolic parameters.
Collapse
Affiliation(s)
- Bojan Blond
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Mira Majkić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Jovan Spasojević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Slavča Hristov
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Miodrag Radinović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Sandra Nikolić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Ljiljana Anđušić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | - Aleksandar Čukić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | | | | | - Nemanja Obradović
- Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Marko Cincović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Zhao X, Wang Y, Wang L, Sun S, Li C, Zhang X, Chen L, Tian Y. Differences of serum glucose and lipid metabolism and immune parameters and blood metabolomics regarding the transition cows in the antepartum and postpartum period. Front Vet Sci 2024; 11:1347585. [PMID: 38371596 PMCID: PMC10869552 DOI: 10.3389/fvets.2024.1347585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
This study aims to investigate differences in metabolism regarding the transition cows. Eight cows were selected for the test. Serum was collected on antepartum days 14th (ap14) and 7th (ap7) and postpartum days 1st (pp1), 7th (pp7), and 14th (pp14) to detect biochemical parameters. The experiment screened out differential metabolites in the antepartum (ap) and postpartum (pp) periods and combined with metabolic pathway analysis to study the relationship and role between metabolites and metabolic abnormalities. Results: (1) The glucose (Glu) levels in ap7 were significantly higher than the other groups (p < 0.01). The insulin (Ins) levels of ap7 were significantly higher than pp7 (p = 0.028) and pp14 (p < 0.01), and pp1 was also significantly higher than pp14 (p = 0.016). The insulin resistance (HOMA-IR) levels of ap7 were significantly higher than ap14, pp7, and pp14 (p < 0.01). The cholestenone (CHO) levels of ap14 and pp14 were significantly higher than pp1 (p < 0.01). The CHO levels of pp14 were significantly higher than pp7 (p < 0.01). The high density lipoprotein cholesterol (DHDL) levels of pp1 were significantly lower than ap14 (p = 0.04), pp7 (p < 0.01), and pp14 (p < 0.01), and pp14 was also significantly higher than ap14 and ap7 (p < 0.01). (2) The interferon-gamma (IFN-γ) and tumor necrosis factor α (TNF-α) levels of ap7 were significantly higher than pp1 and pp7 (p < 0.01); the immunoglobulin A (IgA) levels of pp1 were significantly higher than ap7 and pp7 (p < 0.01); the interleukin-4 (IL-4) levels of pp7 were significantly higher than ap7 and pp1 (p < 0.01), the interleukin-6 (IL-6) levels of ap7 and pp1 were significantly higher than pp7 (p < 0.01). (3) Metabolomics identified differential metabolites mainly involved in metabolic pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism, tyrosine metabolism, and lysine degradation. The main relevant metabolism was concentrated in lipid and lipid-like molecules, organic heterocyclic compounds, organic acids, and their derivatives. The results displayed the metabolic changes in the transition period, which laid a foundation for further exploring the mechanism of metabolic abnormalities in dairy cows in the transition period.
Collapse
Affiliation(s)
- Xinya Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Luyao Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shouqiang Sun
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Chaoyue Li
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Xuewei Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Long Chen
- Beijing Dongfang Lianming Technology Development Co., Ltd., Beijing, China
| | - Yujia Tian
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
6
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Catellani A, Mezzetti M, Minuti A, Cattaneo L, Trevisi E. Metabolic and inflammatory responses reveal different adaptation to the transition period challenges in Holstein, Brown Swiss, and Simmental dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2196995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- A. Catellani
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - M. Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - L. Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - E. Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
8
|
Beletić A, Kuleš J, Rešetar Maslov D, Farkaš V, Rubić I, Beer Ljubić B, Đuričić D, Žubčić D, Samardžija M, Mrljak V. Profiling the alterations of serum proteome in dairy cows with retained placenta using high-throughput tandem mass tags quantitative approach. Vet Q 2023; 43:1-13. [PMID: 36588465 PMCID: PMC9848263 DOI: 10.1080/01652176.2023.2164908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Retained placenta (RP), a quite common disorder in dairy cows, shows a high negative impact on their health status and milk production. AIM To investigate the difference in the serum proteome between the cows with RP and the physiologic puerperium (PP). MATERIAL & METHODS Analysis of serum samples from nine cows with RP and six with PP using high-resolution liquid chromatography-tandem mass spectrometry approach. The proteins differing in the relative abundance between the PP and RP groups were classified using the Protein Analysis Through Evolutionary Relationship tool. For the pathway enrichment analysis, the REACTOME tool, with the human genome as the background, was employed. The criterion for significance was the false discovery rate corrected P-value less than 0.05. RESULTS In total 651 proteins were identified with altered relative abundance of ten proteins. Among them, seven had higher, and three showed lower relative abundance in RP than in the PP group. The differently abundant proteins participated in 15 pathways: six related to hemostasis, three involved in lipoprotein metabolism, and the remaining ones associated with for instance redox homeostasis, post-translational modification, and scavenging. Finally, the validation of the proteomic results showed that haptoglobin and lipopolysaccharide-binding protein levels reliably differentiated between the RP and PP groups. CONCLUSION The pattern of serum proteome alterations in the cows with RP mirrored several interplaying mechanisms underlying the systematic response to the presence of RP, therefore representing a source to mine for predictive or prognostic biomarkers.
Collapse
Affiliation(s)
- Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Damir Žubčić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Samardžija
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Häussler S, Ghaffari MH, Seibt K, Sadri H, Alaedin M, Huber K, Frahm J, Dänicke S, Sauerwein H. Blood and liver telomere length, mitochondrial DNA copy number, and hepatic gene expression of mitochondrial dynamics in mid-lactation cows supplemented with l-carnitine under systemic inflammation. J Dairy Sci 2023; 106:9822-9842. [PMID: 37641324 DOI: 10.3168/jds.2023-23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).
Collapse
Affiliation(s)
- S Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - K Seibt
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - M Alaedin
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - K Huber
- Institute of Animal Science, Functional Anatomy of Livestock, University of Hohenheim, 70599 Stuttgart, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
10
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
11
|
Hassan FU, Rehman MSU, Javed M, Ahmad K, Fatima I, Safdar M, Ashraf N, Nadeem A. Identification of phytochemicals as putative ligands for the targeted modulation of peroxisome proliferator-activated receptor α (PPARα) in animals. J Biomol Struct Dyn 2023:1-12. [PMID: 37837423 DOI: 10.1080/07391102.2023.2268185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
The PPAR family of transcription factors are ligand-activated and regulate diverse functions including metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction in the body. Specifically, PPARα is known to play a role in reducing the levels of circulating triglycerides and regulating energy homeostasis in livestock animals. This study aimed to identify phytochemicals that could serve as ligands for modulation of the bovine nuclear peroxisome proliferator-activated receptor alpha (PPARα) using molecular docking studies. Therefore, we investigated 1000 flavonoids belonging to different groups for their ability to bind to PPARα using molecular docking. Out of 1000, 6 top lead compounds with maximum binding affinity, evaluated through molecular docking, were further analysed for physicochemical properties and drug-likeness attributes. The results revealed that two flavonoids, Quercetin-3-o-rhamnoside and (-)- epicatechingallate, which are known fatty acid synthase inhibitors, demonstrated high docking scores with PPARα (-8.66 kcal/mol and -8.49 kcal/mol, respectively) and low RMSD values with PPARα (1.61 kcal/mol and 1.28 kcal/mol, respectively) as compared to PPARα agonist (synthetic), fenofibrate (-6.24 kcal/mol and 2.19 kcal/mol) and thus analyzed further for prediction of stability of docked complexes through MD simulations. MD simulation studies predicted the stability of complexes and the complex of Quercetin-3-o-rhamnoside and (-)- epicatechingallate were found to be stable at 100 ns based on RSMD value and RMSF residue index. Through computational analysis, the screened compounds showed good pharmacokinetic parameters, including non-toxicity, non-carcinogenic, high gastrointestinal absorption and thus can serve as potential drug candidates. Finally, the findings suggest that these phytochemicals have the potential to act as potent PPARα pharmacological agonists to prevent disease mechanisms and their related complications, providing insights into the role of phytochemicals as feed additives in animals for modulating PPARα functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Department of Animal Breeding and Genetics, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - M Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Maryam Javed
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalil Ahmad
- Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Safdar
- Department of Animal Breeding and Genetics, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Noman Ashraf
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
12
|
Veshkini A, Gnott M, Vogel L, Kröger-Koch C, Tuchscherer A, Tröscher A, Bernabucci U, Trevisi E, Starke A, Mielenz M, Bachmann L, Hammon HM. Abomasal infusion of essential fatty acids and conjugated linoleic acid during late pregnancy and early lactation affects immunohematological and oxidative stress markers in dairy cows. J Dairy Sci 2023:S0022-0302(23)00231-X. [PMID: 37173257 DOI: 10.3168/jds.2022-22514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and inflammation, as natural parts of metabolic adaptations during the transition from late gestation to early lactation, are critical indicators of dairy cows' metabolic health. This study was designed to investigate the effects of abomasal infusion of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) on plasma, erythrocyte, and liver markers of oxidative stress in dairy cows during the transition period. Rumen-cannulated German Holstein cows (n = 38) in their second lactation (11,101 ± 1,118 kg milk/305 d, mean ± standard deviation) were abomasally infused with one of the following treatments from d -63 antepartum until d 63 postpartum (PP): CTRL (n = 9; 76 g/d coconut oil); EFA (n = 9; 78 g/d linseed plus 4 g/d safflower oil); CLA (n = 10; isomers cis-9,trans-11 and trans-10,cis-12 CLA; 38 g/d); and EFA+CLA (n = 10; 120 g/d). Hematological parameters as well as markers of oxidative status were measured in plasma, erythrocytes, and liver before and after calving. Immunohematological parameters, including erythrocyte number, hematocrit, hemoglobin, mean corpuscular hemoglobin, leukocytes, and basophils, were affected by time, and their peak levels were observed on the day after calving. The oxidative stress markers glutathione peroxidase 1 and reactive oxygen metabolites in plasma and erythrocytes were both affected by time, exhibiting the highest levels on d 1 PP, whereas β-carotene, retinol, and tocopherol were at their lowest levels at the same time. Immunohematological parameters were only marginally affected by fatty acid treatment in a time-dependent manner. As such, lymphocyte and atypical lymphocyte counts were both significantly highest in the groups that received EFA at d 1 PP. Moreover, EFA supplementation increased the mean corpuscular volume and showed a trend for induction of mean corpuscular hemoglobin compared with the CLA group during the transition period. The PP mean thrombocyte volume was higher in the EFA than in the CLA group (except for d 28) and both EFA and CLA reduced number of thrombocytes and thrombocrit at distinct time points. Hepatic mRNA abundance of markers related to oxidative status, including glutathione peroxidase (GPX-1) and catalase (CAT), was lower (P < 0.05) in EFA-treated than non-EFA-treated cows at d 28 PP. Dairy cows at the onset of lactation were characterized by induced markers of both oxidative stress and inflammation. Supplementing EFA and CLA had minor and time-dependent effects on markers of oxidative stress in plasma, erythrocytes, and liver. A comparison of EFA supplementation with CLA or CTRL showed higher immunohematological response at d 1 PP and lower hepatic antioxidant levels by d 28 PP. Supplementation with EFA+CLA had only a minor effect on oxidative markers, which were more similar to those with the EFA treatment. Altogether, despite the time-dependent differences, the current findings show only minor effects of EFA and CLA supplementation in the prevention of early lactation-induced oxidative stress.
Collapse
Affiliation(s)
- A Veshkini
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - U Bernabucci
- Department of Agronomic and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - M Mielenz
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agriculture and Food Sciences, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
13
|
LeBlanc SJ. Relationship of peripartum inflammation with reproductive health in dairy cows. JDS COMMUNICATIONS 2023; 4:230-234. [PMID: 37360118 PMCID: PMC10285243 DOI: 10.3168/jdsc.2022-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2023]
Abstract
Failure of a robust but well-regulated immune response may result in reproductive tract inflammatory disease, such as metritis, purulent vaginal discharge, or endometritis. Metritis is consistently associated with reduced diversity of the uterine microbiome. Similarly, purulent vaginal discharge at 4 to 6 wk postpartum is strongly associated with bacterial infection of the uterus. Conversely, the microbiome of healthy cows and those with subclinical endometritis is generally similar, so endometritis is thought to be a consequence of dysregulation of inflammation rather than changes in uterine microbiota. There is an emerging concept that inflammation is not only a reaction to injury or disease but that it can be a consequence of or precursor to metabolic disturbances. The degree of systemic inflammation is associated with the level of trauma and bacterial contamination of the uterus or mammary gland, the degree of fat mobilization and release of nonesterified fatty acids, and perhaps leaky gut, all of which result in the release of proinflammatory cytokines. Therefore, uterine inflammation may be exacerbated by systemic inflammation, but may also contribute to heightened systemic inflammation in transition cows. However, clarity and progress are limited by a lack of validated criteria to quantify systemic inflammation and to identify its sources.
Collapse
|
14
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J Dairy Sci 2023; 106:4353-4365. [PMID: 37080789 DOI: 10.3168/jds.2022-23046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Dairy cows have to face several nutritional challenges during the transition period, and live yeast supplementation appears to be beneficial in modulating rumen activity. In this study, we evaluated the effects of live yeast supplementation on rumen function, milk production, and metabolic and inflammatory conditions. Ten Holstein multiparous cows received either live Saccharomyces cerevisiae (strain Sc47; SCY) supplementation from -21 to 21 d from calving (DFC) or a control diet without yeast supplementation. Feed intake, milk yield, and rumination time were monitored until 35 DFC, and rumen fluid, feces, milk, and blood samples were collected at different time points. Compared with the control diet, SCY had increased dry matter intake (16.7 vs. 19.1 ± 0.8 kg/d in wk 2 and 3) and rumination time postpartum (449 vs. 504 ± 19.9 min/d in wk 5). Milk yield tended to be greater in SCY (40.1 vs. 45.2 ± 1.7 kg/d in wk 5), protein content tended to be higher, and somatic cell count was lower. In rumen fluid, acetate molar proportion was higher and that of propionate lower at 21 DFC, resulting in increased acetate:propionate and (acetate + butyrate):propionate ratios. Cows in the SCY group had lower fecal dry matter but higher acetate and lower propionate proportions on total volatile fatty acids at 3 DFC. Plasma analysis revealed a lower degree of inflammation after calving in SCY (i.e., lower haptoglobin concentration at 1 and 3 DFC) and a likely better liver function, as suggested by the lower γ-glutamyl transferase, even though paraoxonase was lower at 28 DFC. Plasma IL-1β concentration tended to be higher in SCY, as well as Mg and P. Overall, SCY supplementation improved rumen and hindgut fermentation profiles, also resulting in higher dry matter intake and rumination time postpartum. Moreover, the postcalving inflammatory response was milder and liver function appeared to be better. Altogether, these effects also led to greater milk yield and reduced the risk of metabolic diseases.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
15
|
Cattaneo L, Rocchetti G, Piccioli-Cappelli F, Zini S, Trevisi E, Minuti A. Impact of dry-off and lyophilized Aloe arborescens supplementation on plasma metabolome of dairy cows. Sci Rep 2023; 13:5256. [PMID: 37002349 PMCID: PMC10066363 DOI: 10.1038/s41598-023-31922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Positive effects have been observed as a result of Aloe arborescens supplementation in the dry-off phase in dairy cows. Metabolomic approaches can provide additional information about animal physiology. Thus, we characterized plasma metabolome around dry-off in 12 cows supplemented (AL) or not (CTR) with 10 g/d of lyophilized A. arborescens with an untargeted metabolomic approach. Overall, 1658 mass features were annotated. Regardless of treatment, multivariate statistics discriminated samples taken before and after dry-off. Overall, 490 metabolites were different between late lactation and early dry period, of which 237 were shared between AL and CTR. The most discriminant compounds (pentosidine and luteolin 7-O-glucoside) were related to the more fibrous diet. Pathway analysis indicated that pyrimidine and glycerophospholipid metabolisms were down-accumulated, suggesting reduced rumen microbial activity and liver load. Samples from AL were discriminated from CTR either the day of dry-off or 7 days after. At dry-off, aloin and emodin were the most discriminant metabolites, indicating that Aloe's bioactive compounds were absorbed. Seven days later, 534 compounds were different between groups, and emodin was among the most impacted. Pathway analysis highlighted that glycerophospholipid, pyrimidine, and folate metabolisms were affected. These results might indicate that Aloe has positive effects on liver function and a modulatory effect on rumen fermentation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - G Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - S Zini
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, 25121, Brescia, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122, Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
16
|
Effects of Tea Tree Oil on Production Performance, Serum Parameter Indices, and Immunity in Postpartum Dairy Cows. Animals (Basel) 2023; 13:ani13040682. [PMID: 36830470 PMCID: PMC9952486 DOI: 10.3390/ani13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Tea tree oil (TTO) plays an important role in regulating lipid metabolism and has anti-inflammatory properties. In postpartum dairy cows, dry matter intake (DMI) is dramatically decreased, resulting in lipid metabolism disorder and the systemic pro-inflammatory response. However, the effects of TTO on glucolipid metabolism and immunity in postpartum dairy cows remain uninvestigated. Therefore, this study aimed to evaluate the effects of TTO on production performance, serum biochemical indicators, and immunity in postpartum dairy cows. Our results demonstrate that DMI tended to increase (p = 0.07) in the total mixed ration (TMR) diets supplemented with 0.01% TTO/dry matter (DM) basis relative to that in the control group. The 4% fat-corrected milk (FCM) content in the 0.01% and 0.02% TTO groups showed an increase (p = 0.09) compared with that in the control. Remarkably, the levels of globulin (GLO) and immunoglobulin G (IgG) were elevated (p < 0.05) in the TMR diet supplemented with 0.02% TTO compared to those in the control group. The TTO caused no profound changes in cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), or low-density lipoprotein (LDL). Notably, 0.02% TTO increased (p < 0.05) the serum glucose concentration relative to that in the control group. In conclusion, our results demonstrate that TTO could improve glucolipid metabolism and enhance immunity in postpartum dairy cows. It may be a novel resolution strategy for body condition recovery and the improvement of milk performance.
Collapse
|
17
|
Wang Z, Wang Q, Tang C, Yuan J, Luo C, Li D, Xie T, Sun X, Zhang Y, Yang Z, Guo C, Cao Z, Li S, Wang W. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front Immunol 2023; 14:1018867. [PMID: 36776875 PMCID: PMC9911908 DOI: 10.3389/fimmu.2023.1018867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows' health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status.
Collapse
Affiliation(s)
- Zhonghan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuanlan Tang
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tian Xie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Carpinelli NA, Halfen J, Michelotti TC, Rosa F, Trevisi E, Chapman JD, Sharman ES, Osorio JS. Yeast Culture Supplementation Effects on Systemic and Polymorphonuclear Leukocytes' mRNA Biomarkers of Inflammation and Liver Function in Peripartal Dairy Cows. Animals (Basel) 2023; 13:ani13020301. [PMID: 36670844 PMCID: PMC9854537 DOI: 10.3390/ani13020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study evaluated the effects of feeding a commercial yeast culture on blood biomarkers and polymorphonuclear leukocyte (PMNL) gene expression in dairy cows during the transition period until 50 d postpartum. Forty Holstein dairy cows were used in a randomized complete block design from -30 to 50 d. At -30 d, cows were assigned to a basal diet plus 114 g/d of top-dressed ground corn (control; n = 20) or 100 g/d of ground corn and 14 g/d of a yeast culture product (YC; n = 20). Blood samples were collected at various time points from -30 to 30 DIM to evaluate blood biomarkers and PMNL gene expression related to inflammation, liver function, and immune response. Liver function biomarkers, gamma-glutamyl transferase (GGT) and albumin were greater and lower, respectively, in YC cows in comparison to control. However, these biomarkers remained within physiological levels, indicating an active inflammatory process. Genes in PMNL expression related to inflammation (NFKB1, TNFA, TRAF6), anti-inflammation (IL10), and cell membrane receptors (SELL) were upregulated in the YC group in comparison to control. These results suggest that YC could stimulate a more active inflammatory response with signs of a resolution of inflammation in transition cows.
Collapse
Affiliation(s)
- Nathaly Ana Carpinelli
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Jessica Halfen
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
- Nucleo de Pesquisa, Ensino e Extensao em Pecuaria, Universidade Federal de Pelotas, Pelotas 96010610, Rio Grande do Sul, Brazil
| | | | - Fernanda Rosa
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | | | - Johan S. Osorio
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
- Correspondence: ; Tel.: +1-5402311710
| |
Collapse
|
19
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
20
|
Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022; 12:metabo12080733. [PMID: 36005606 PMCID: PMC9412388 DOI: 10.3390/metabo12080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to determine blood and milk metabolic parameters and their correlations for the purpose of evaluating metabolic status in dairy cows. Blood and milk samples were collected from 100 Holstein dairy cows during morning milking. The cows were allocated to four groups according to the production period, including cows in early (n = 18), full (n = 26), mid (n = 25) and late (n = 31) lactation. The value of non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), glucose, triglycerides (TG), total cholesterol (TChol), total protein (TP), albumin, globulin, urea, total bilirubin (TBil), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and lactate dexydrogenase (LDH) in the blood were determined. The following milk parameters were measured: fat, protein, lactose, urea, AST, ALT, ALP, GGT, LDH and BHB. Blood serum NEFA, BHB, TBil, AST, ALT, ALP and LDH were higher in early lactation cows, whereas glucose, TP, globulin and urea levels were significantly lower in early lactation cows. Milk fat and lactose levels were lower in early lactation cows, whereas milk protein and the activities of AST, ALT, ALP and LDH in milk were highly greater in early lactation cows. Milk fat was positively correlated with glucose, TP and TG, and negatively correlated with BHB, NEFA, TBil, ALT, LDH and ALP levels in the blood. Enzyme activities in milk were positively correlated with those in blood and with blood NEFA, BHB and TBil levels, and negatively correlated with blood glucose, TChol and TG. A significant positive correlation existed between blood and milk BHB values. Many correlations showed the same slope during all lactation periods. In conclusion, similar changes in blood and milk metabolite concentration during lactation and milk to blood correlations confirm that milk has great potential in predicting of blood metabolites and metabolic status of cows.
Collapse
|
21
|
Wang LL, Li ZH, Wang H, Kwak-Kim J, Liao AH. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. J Reprod Immunol 2022; 151:103627. [DOI: 10.1016/j.jri.2022.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
|
22
|
Giannuzzi D, Toscano A, Pegolo S, Gallo L, Tagliapietra F, Mele M, Minuti A, Trevisi E, Ajmone Marsan P, Schiavon S, Cecchinato A. Associations between Milk Fatty Acid Profile and Body Condition Score, Ultrasound Hepatic Measurements and Blood Metabolites in Holstein Cows. Animals (Basel) 2022; 12:ani12091202. [PMID: 35565628 PMCID: PMC9104722 DOI: 10.3390/ani12091202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Dairy cows have high incidences of metabolic disturbances, which often lead to disease, having a subsequent significant impact on productivity and reproductive performance. As the milk fatty acid (FA) profile represents a fingerprint of the cow’s nutritional and metabolic status, it could be a suitable indicator of metabolic status at the cow level. In this study, we obtained milk FA profile and a set of metabolic indicators (body condition score, ultrasound liver measurements, and 29 hematochemical parameters) from 297 Holstein–Friesian cows. First, we applied a multivariate factor analysis to detect latent structure among the milk FAs. We then explored the associations between these new synthetic variables and the morphometric, ultrasonographic and hematic indicators of immune and metabolic status. Significant associations were exhibited by the odd-chain FAs, which were inversely associated with β-hydroxybutyrate and ceruloplasmin, and positively associated with glucose, albumin, and γ-glutamyl transferase. Short-chain FAs were inversely related to predicted triacylglycerol liver content. Rumen biohydrogenation intermediates were associated with glucose, cholesterol, and albumin. These results offer new insights into the potential use of milk FAs as indicators of variations in energy and nutritional metabolism in early lactating dairy cows.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
- Correspondence:
| | - Alessandro Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Marcello Mele
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56124 Pisa, Italy;
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
- Nutrigenomics and Proteomics Research Center, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| |
Collapse
|
23
|
Bayat A, Razzaghi A, Sari M, Kairenius P, Tröscher A, Trevisi E, Vilkki J. The effect of dietary rumen-protected trans-10,cis-12 conjugated linoleic acid or a milk fat-depressing diet on energy metabolism, inflammation, and oxidative stress of dairy cows in early lactation. J Dairy Sci 2022; 105:3032-3048. [DOI: 10.3168/jds.2021-20543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
|
24
|
Cattaneo L, Mezzetti M, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Gene network expression of whole blood leukocytes in dairy cows with different milk yield at dry-off. PLoS One 2021; 16:e0260745. [PMID: 34882732 PMCID: PMC8659302 DOI: 10.1371/journal.pone.0260745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Dairy cows at dry-off undergo several management and physiological changes, resulting in alterations in plasma biomarkers of inflammation, oxidative stress, and immune system. High milk yield at the end of lactation exacerbates these responses. The underlying mechanism of these changes has yet to be elucidated. We hypothesized altered leukocyte gene expression after dry-off and different responses in cows with different milk yield. Thirteen Holstein dairy cows were sampled at the turn of dry-off to investigated whole blood leukocyte gene expression and were grouped according to the average milk yield during the last week of lactation: low (< 15 kg/d) and high milk yield (> 15 kg/d). Blood samples were collected in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) at -7, 7, and 34 days from dry-off (DFD) to measure mRNA abundance of 37 genes. Normalized gene abundance data were subjected to MIXED model ANOVA (SAS Institute Inc., Cary, NC). Compared with -7 DFD, at 7 DFD RNA abundance of lipoxygenase genes (ALOX5, ALOX15) and myeloperoxidase (MPO) increased, and that of the antioxidant gene (SOD2) decreased. Meanwhile, genes related to recognition and immune mediation (CD16, MYD88, TLR2), migration and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), and the antimicrobial gene MMP9 were downregulated at 7 or 34 DFD, whereas the antimicrobial IDO1 gene was upregulated. Compared with low-producing cows, cows with high milk yield at dry-off cows had upregulated expression of the pro-inflammatory cytokines IL8 and IL18 and a greater reduction in transcript abundance of the toll-like receptor (TLR) recognition-related gene TLR2. Overall, the dry-off confirmed to be a phase of intense changes, triggering an inflammatory response and somewhat suppressing leukocyte immune function. In cows with high milk yield during the week before dry-off, the inflammatory response was exacerbated.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- * E-mail:
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
25
|
Age-Related Changes in Acute Phase Reaction, Cortisol, and Haematological Parameters in Ewes in the Periparturient Period. Animals (Basel) 2021; 11:ani11123459. [PMID: 34944236 PMCID: PMC8697918 DOI: 10.3390/ani11123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The acute phase response (APR), which comprises a series of specific physiological reactions, is a systemic reaction of the organism to disturbances in its homeostasis caused by infection, inflammation, tissue damage, and stress. Even in healthy ewes, during pregnancy and the transition period, corticosteroids are released which cause the physiological acute phase response. Both in humans and animals, the immune system, like many other physiological systems, is dysregulated with age and a process known as immunoaging occurs. Knowledge of APPs, cortisol, and haematological parameters and factors that influence their alteration could be useful for establishing herd health in ewes during the periparturient period. Understanding how these factors interact with the immune system will help in developing disease control and management strategies that will aid in maintaining good health in ewes and lambs, resulting in greater reproduction. Abstract A well-functioning immune system is the basis for protection against infectious and metabolic diseases, and a smooth return to homeostasis. The periparturient period is considered critical because major changes in the endocrine, behavioural, digestive, and immune systems dysregulate immune function, leading to immunosuppression. With age, the immune system could become dysregulated. The purpose of the present investigation was to compare changes in plasma concentrations of acute phase proteins, cortisol, and haematological parameters in the peripheral blood of two age-related groups of healthy ewes to get a better understanding of changes around lambing. Two groups of ewes were enrolled in the study: 3-year-old (young; n = 9) and 7-year-old ewes (old; n = 9). All females were synchronised and inseminated. In blood plasma, serum amyloid A (SAA) and cortisol concentrations were measured using ELISA tests, a spectrophotometric method to determine haptoglobin (Hp), and a thrombin clottable estimation to determine the fibrinogen (Fb) concentration. The blood parameters were examined using an automated haematological analyser. In clinically healthy ewes, no significant effect of age was observed in SAA, Hp, Fb and cortisol concentration in most of analysed terms. SAA, Hp, Fb, and cortisol fluctuations typical for the periparturient period were observed. There were no age-associated differences in red or white blood cell parameters.
Collapse
|
26
|
Shao W, Zheng B, Zhou G, Sun L. Effects of bilateral early breast sucking and unilateral early breast sucking within 2 h after delivery on lactation, breast distending pain and postpartum lochia. Am J Transl Res 2021; 13:13003-13009. [PMID: 34956517 PMCID: PMC8661153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the effects of bilateral early breast sucking and unilateral early breast sucking within 2 h after delivery on lactation, breast distending pain and postpartum lochia. METHODS The clinical data of 128 parturients were analyzed retrospectively. According to the different ways of early breast suction, the parturients were divided into control group (n=64) and observation group (n=64). Among them, unilateral early sucking was performed within 2 h after delivery in the control group, while bilateral early sucking was carried out in the observation group. We compared the lactation, breast distending pain, postpartum lochia, nutritional status, coagulation index, complications and breast feeding success rate. RESULTS The lactation amount of the observation group was higher than that of the control group on the 3rd, 5th and 7th day after delivery; the VAS scores showed opposite trends; the amount of lochia in the observation group was less than that in the control group; the ALb, PA and Hb levels in the observation group were higher on the 7th day after delivery. Compared with the control group, the FIB, PT and APTT time was shorter and the D-D level was higher; the incidence of postpartum hemorrhage, galactostasis and postpartum depression in the observation group was lower, and the success rate of feeding on the 1st, 3rd and 7th day after delivery was higher in the observation group seven days after intervention. CONCLUSION Bilateral early breast sucking within 2 h after delivery is helpful to increase lactation and reduce breast distending pain and postpartum lochia. It also promotes maternal nutritional status and coagulation function, reduces the incidence of postpartum complications, and improves the breastfeeding rate.
Collapse
Affiliation(s)
- Wei Shao
- Department of Obstetrics, Jiaozhou Central Hospital of Qingdao Qingdao 266300, Shandong Province, China
| | - Bingxin Zheng
- Department of Obstetrics, Jiaozhou Central Hospital of Qingdao Qingdao 266300, Shandong Province, China
| | - Guoxia Zhou
- Department of Obstetrics, Jiaozhou Central Hospital of Qingdao Qingdao 266300, Shandong Province, China
| | - Lin Sun
- Department of Obstetrics, Jiaozhou Central Hospital of Qingdao Qingdao 266300, Shandong Province, China
| |
Collapse
|
27
|
The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. DAIRY 2021. [DOI: 10.3390/dairy2040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent research on the transition period (TP) of dairy cows has highlighted the pivotal role of immune function in affecting the severity of metabolic challenges the animals face when approaching calving. This suggests that the immune system may play a role in the etiology of metabolic diseases occurring in early lactation. Several studies have indicated that the roots of immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks after calving), extending the time frame deemed as “risky” for the development of early lactation disorders at the period around the dry-off. Several distressing events occurring during the TP (i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the likelihood of developing diseases. Based on this background, several operational and nutritional strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level. Furthermore, several prognostic behavioral and physiological indicators could help in identifying subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through specific modulatory treatments. Recent genomic advances in understanding the linkage between metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune system efficiency or resilience against metabolic disorders) could be expected in the future. Despite these encouraging steps forward in understanding the physiological mechanisms driving metabolic responses of dairy cows during their transition to calving, it is evident that these processes still require further investigation, and that the TP—likely extended from dry-off—continues to be “the final frontier” for research in dairy sciences.
Collapse
|
28
|
Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals (Basel) 2021; 11:ani11061714. [PMID: 34201201 PMCID: PMC8226749 DOI: 10.3390/ani11061714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study investigates the changes occurring in plasma analytes of healthy multiparous Holstein dairy cows during the dry, the postpartum, the early and the late lactation phases. A welfare assessment at the herd level and a retrospective subclinical diseases screening were used as blocking factors for the selection of reference individuals. Thus, this study provides measurements of the physiological variations affecting plasma analytes concentrations during the pivotal stages of the lactation cycle in a healthy, high welfare-raised subset of reference individuals and suggest an explanation for the underlying processes involved. Finally, we propose reference intervals for plasma analytes in the stages investigated. Abstract Here, we tested the changes occurring in several plasma analytes during different stages of the lactation cycle of high welfare raised multiparous Holstein cows, and provided reference intervals (RI) for plasma analytes concentrations. Eleven high-welfare farms (HWF) located in Northern Italy were selected and their herds used to recruit 361 clinically healthy cows undergoing the dry (from −30 to −10 days from real calving; DFC), the postpartum (from 3 to 7 DFC), the early lactation (from 28 to 45 DFC) and the late lactation phases (from 160 to 305 DFC). Cows affected by subclinical diseases (SCD) were retrospectively excluded, and a subset of 285 cows was selected. Data of plasma analytes underwent ANOVA testing using physiological phases as predictors. The individual effect of each phase was assessed using a pairwise t-test assuming p ≤ 0.05 as a significance limit. A bootstrap approach was used to define the reference interval (RI) for each blood analyte within physiological phases having a pairwise t-test p ≤ 0.05. The concentration of nonesterified fatty acids, albumin, cholesterol, retinol, paraoxonase and tocopherol changed throughout all the physiological phases, whereas the concentration of K, alkaline phosphatase and thiol groups remained stable. Triglycerides, Zn, and ferric ion reducing antioxidant power in the dry phase and BHB, Ca, myeloperoxidase, haptoglobin, reactive oxygen metabolites and advanced oxidation of protein product in postpartum differed compared with other physiological phases. During the dry phase, Packed cell volume, Cl, and urea concentrations were similar to during the postpartum phase. Similarly, Na, γ-glutamyl transferase and β-carotene concentrations were similar to during the early lactation phase; fructosamine and bilirubin concentrations were similar to during the late lactation phase. During the postpartum phase, fructosamine and P concentrations were similar to during the early lactation phase, and the aspartate transaminase concentration was similar to during the late lactation phase. During the early lactation phase, Mg, creatinine, total protein, globulin and ceruloplasmin concentrations were similar to during the postpartum phase, while the urea concentration was similar to during the late lactation phase. All these plasma analytes differed among the other phases. This study identifies physiological trends affecting plasma analytes concentrations during the different stages of the lactation cycle and provides a guideline for the duration and magnitude of their changes when animals are healthy and raised in optimal welfare conditions.
Collapse
|