1
|
Brai A, Neri C, Tarchi F, Poggialini F, Vagaggini C, Frosinini R, Simoni S, Francardi V, Dreassi E. Upcycling Milk Industry Byproducts into Tenebrio molitor Larvae: Investigation on Fat, Protein, and Sugar Composition. Foods 2024; 13:3450. [PMID: 39517234 PMCID: PMC11545053 DOI: 10.3390/foods13213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Edible insects represent a growing sector of the food industry and have a low carbon footprint. Noteworthy, insects can upcycle different leftovers and byproducts into high-quality nutrients. Herein, the larvae of the edible insect Tenebrio molitor (TML) were fed using local milk industry byproducts. Mozzarella whey and whey permeate obtained in cheese production were used to formulate three alternative diets. Both byproducts are rich in sugars, in particular the disaccharide lactose and the monosaccharides glucose and galactose. Two of the three diets did not interfere with biometric data and vitality, while the use of whey permeate alone significantly reduced development. At the end of the trial, the proximate composition of TML was strongly affected, with an increased protein content of up to +7% and a favorable fat composition. The analysis of secondary metabolites revealed the accumulation of different compounds, in particular monounsaturated fatty acids (MUFAs), amino acids, and the disaccharide trehalose, essential for the correct larval development and pupation. In conclusion, the present study demonstrates that milk industry byproducts can be upcycled as feed for TML, maintaining an optimal nutrient composition and favorably increasing the protein content.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Cassia Neri
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| | - Franca Tarchi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Federica Poggialini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Chiara Vagaggini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Riccardo Frosinini
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Sauro Simoni
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Valeria Francardi
- Research Centre for Plant Protection and Certification (CREA-DC), via di Lanciola 12/A, 50125 Firenze, Italy; (F.T.); (F.P.); (C.V.); (R.F.); (S.S.); (V.F.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro, 53100 Siena, Italy; (C.N.); (E.D.)
| |
Collapse
|
2
|
Jang KB, Kim Y, Ahn J, Lee JI, Park S, Choe J, Kim Y, Lee JH, Kyoung H, Song M. Dietary β-mannanase reduced post-weaning diarrhea of pigs by positively modulating gut microbiota and attenuating systemic immune responses. Anim Microbiome 2024; 6:59. [PMID: 39449102 PMCID: PMC11515408 DOI: 10.1186/s42523-024-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND After weaning, nursery pigs have difficulty digesting non-starch polysaccharides in their diets, which can result in growth and health problems. Among non-starch polysaccharides, β-mannan is easily found in various cereal grains that form the basis of livestock diets and interferes the digestion and utilization of nutrients. Supplementation of dietary β-mannanase in nursery diet can alleviate the negative effects on nutrient utilization efficiency caused by β-mannan and improve growth and health of pigs. This study was conducted to evaluate effects of dietary β-mannanase supplementation on growth performance, nutrient digestibility, intestinal morphology, fecal microbiota, and systemic immune responses of weaned pigs. RESULTS Dietary β-mannanase (MAN) improved average daily gain (P = 0.053), average daily feed intake (P < 0.05), and gain to feed ratio (P = 0.077) of pigs for 3 weeks after weaning and apparent total tract digestibility of crude protein (P = 0.060) and reduced post-weaning diarrhea (P < 0.05). The MAN did not affect the ileal morphology. Pigs fed with MAN had more diverse fecal microbiota based on the results of alpha diversity [the number of operational taxonomic units (OTUs; P = 0.061), Shannon (P = 0.071), and Simpson indices (P = 0.078)] and relative abundance of phylum Bacteroidetes (P = 0.064) and genus Prevotella (P < 0.05) than pigs fed control diet (CON). As a result of beta diversity, fecal microbiota was clustered (P < 0.05) into two distinct groups between dietary treatments. The MAN decreased (P < 0.05) packed cell volume (PCV), the number of white blood cells (WBC), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and cortisol of the pigs for 2 weeks after weaning compared with CON. CONCLUSION Dietary β-mannanase reduced post-weaning diarrhea of pigs by positively modulating gut microbiota and attenuating systemic immune responses.
Collapse
Affiliation(s)
- Ki Beom Jang
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yonghee Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jinmu Ahn
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae In Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jeehwan Choe
- Department of Animal Science, Korea National University of Agriculture and Fisheries, Jeonju, 54874, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | | | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea.
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
3
|
Gormley A, Garavito-Duarte Y, Kim SW. The Role of Milk Oligosaccharides in Enhancing Intestinal Microbiota, Intestinal Integrity, and Immune Function in Pigs: A Comparative Review. BIOLOGY 2024; 13:663. [PMID: 39336091 PMCID: PMC11428639 DOI: 10.3390/biology13090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The objective of this review was to identify the characteristics and functional roles of milk coproducts from human, bovine, and porcine sources and their impacts on the intestinal microbiota and intestinal immunity of suckling and nursery pigs. Modern pig production weans piglets at 3 to 4 weeks of age, which is earlier than pigs would naturally be weaned outside of artificial rearing. As a result, the immature intestines of suckling and nursery pigs face many challenges associated with intestinal dysbiosis, which can be caused by weaning stress or the colonization of the intestines by enteric pathogens. Milk oligosaccharides are found in sow milk and function as a prebiotic in the intestines of pigs as they cannot be degraded by mammalian enzymes and are thus utilized by intestinal microbial populations. The consumption of milk oligosaccharides during suckling and through the nursery phase can provide benefits to young pigs by encouraging the proliferation of beneficial microbial populations, preventing pathogen adhesion to enterocytes, and through directly modulating immune responses. Therefore, this review aims to summarize the specific functional components of milk oligosaccharides from human, bovine, and porcine sources, and identify potential strategies to utilize milk oligosaccharides to benefit young pigs through the suckling and nursery periods.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (A.G.); (Y.G.-D.)
| |
Collapse
|
4
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
5
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Rosseto M, Rigueto CVT, Gomes KS, Krein DDC, Loss RA, Dettmer A, Richards NSPDS. Whey filtration: a review of products, application, and pretreatment with transglutaminase enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3185-3196. [PMID: 38151774 DOI: 10.1002/jsfa.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Karolynne Sousa Gomes
- Graduate Program in Food Engineering and Science, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITec), University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
7
|
Jang KB, Kim YI, Duarte ME, Kim SW. Effects of β-mannanase supplementation on intestinal health and growth of nursery pigs. J Anim Sci 2024; 102:skae052. [PMID: 38422238 PMCID: PMC10957119 DOI: 10.1093/jas/skae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Two experiments were conducted using 120 pigs to test the hypothesis that supplementation of β-mannanase could reduce digesta viscosity, enhance nutrient digestion, and improve intestinal health and growth of nursery pigs. In experiment 1, 48 crossbred barrows were randomly allotted to four treatments with increasing levels of β-mannanase at 0, 200, 400, and 600 U/kg in feeds. All pigs were euthanized on day 12 to collect jejunal digesta to measure digesta viscosity and ileal digesta to measure apparent ileal digestibility (AID) of dry matter (DM), gross energy (GE), neutral detergent fiber (NDF), and acid detergent fiber (ADF). In experiment 2, 72 nursery pigs were randomly allotted to three treatments with increasing levels of β-mannanase at 0, 400, and 600 U/kg in feeds. Plasma collected on day 9 was used to measure tumor necrosis factor-α (TNF-α), immunoglobulin G (IgG), malondialdehyde (MDA), and protein carbonyl (PC). All pigs were euthanized on day 10 to collect duodenal and jejunal tissues to evaluate the production of TNF-α, IL-6, and MDA, morphology, crypt cell proliferation, and expression of tight junction proteins in the jejunum. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken-line analysis of SAS. In experiment 1, β-mannanase supplementation tended to have quadratic effects on digesta viscosity (P = 0.085) and AID of GE (P = 0.093) in the pigs. In experiment 2, jejunal digesta viscosity of the pigs was reduced (P < 0.05) when β-mannanase was supplemented at 360 U/kg of feed. β-Mannanase supplementation linearly reduced (P < 0.05) TNF-α, IgG, MDA, and PC in the duodenum, and TNF-α, IgG, and MDA in the jejunum of the pigs. β-Mannanase supplementation linearly increased (P < 0.05) villus height to crypt depth ratio and crypt cell proliferation in the jejunum. β-Mannanase supplementation tended to linearly improve (P = 0.083) expression of zonula occludens-1 in the jejunum. In conclusion, supplementation of β-mannanase at 360 U/kg reduced the digesta viscosity and up to 600 U/kg positively affected intestinal health and growth of pigs by reducing inflammation and oxidative stress whilst enhancing structure and barrier function in the jejunum.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Young Ihn Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Deng Z, Duarte ME, Kim SY, Hwang Y, Kim SW. Comparative effects of soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal replacing animal protein supplements in feeds on growth performance and intestinal health of nursery pigs. J Anim Sci Biotechnol 2023; 14:89. [PMID: 37393326 DOI: 10.1186/s40104-023-00888-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Deng Z, Jang KB, Jalukar S, Du X, Kim SW. Efficacy of Feed Additive Containing Bentonite and Enzymatically Hydrolyzed Yeast on Intestinal Health and Growth of Newly Weaned Pigs under Chronic Dietary Challenges of Fumonisin and Aflatoxin. Toxins (Basel) 2023; 15:433. [PMID: 37505702 PMCID: PMC10467124 DOI: 10.3390/toxins15070433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the efficacy of a feed additive containing bentonite and enzymatically hydrolyzed yeast on the intestinal health and growth of newly weaned pigs under chronic dietary exposure to fumonisin and aflatoxin. Newly weaned pigs were randomly allotted to one of four possible treatments: a control diet of conventional corn; a diet of corn contaminated with fumonisin and aflatoxin; a diet of mycotoxin-contaminated corn with 0.2% of feed additive; and a diet of mycotoxin contaminated corn with 0.4% of feed additive. We observed lower average weight gain and average daily feed intake in pigs that were fed only mycotoxin-contaminated corn compared to the control group. Feed additive supplementation linearly increased both average weight gain and feed intake, as well as tumor necrosis factor-alpha. In the jejunum, there was an observed decrease in immunoglobulin A and an increase in claudin-1. Additionally, feed additive supplementation increased the villus height to crypt depth ratio compared to the control. In conclusion, feed additives containing bentonite and enzymatically hydrolyzed yeast could mitigate the detrimental effects of mycotoxins on the growth performance of newly weaned pigs by improving intestinal integrity and positively modulating immune response.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Sangita Jalukar
- Arm & Hammer Animal and Food Production, Church & Dwight Co., Inc., Ewing, NJ 02628, USA;
| | - Xiangwei Du
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| |
Collapse
|
10
|
Duarte ME, Stahl CH, Kim SW. Intestinal Damages by F18 +Escherichia coli and Its Amelioration with an Antibacterial Bacitracin Fed to Nursery Pigs. Antioxidants (Basel) 2023; 12:antiox12051040. [PMID: 37237906 DOI: 10.3390/antiox12051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated intestinal oxidative damage caused by F18+Escherichia coli and its amelioration with antibacterial bacitracin fed to nursery pigs. Thirty-six weaned pigs (6.31 ± 0.08 kg BW) were allotted in a randomized complete block design. Treatments were: NC, not challenged/not treated; PC, challenged (F18+E. coli at 5.2 × 109 CFU)/not treated; AGP challenged (F18+E. coli at 5.2 × 109 CFU)/treated with bacitracin (30 g/t). Overall, PC reduced (p < 0.05) average daily gain (ADG), gain to feed ratio (G:F), villus height, and villus height to crypt depth ratio (VH:CD), whereas AGP increased (p < 0.05) ADG, and G:F. PC increased (p < 0.05) fecal score, F18+E. coli in feces, and protein carbonyl in jejunal mucosa. AGP reduced (p < 0.05) fecal score and F18+E. coli in jejunal mucosa. PC reduced (p < 0.05) Prevotella stercorea populations in jejunal mucosa, whereas AGP increased (p < 0.05) Phascolarctobacterium succinatutens and reduced (p < 0.05) Mitsuokella jalaludinii populations in feces. Collectively, F18+E. coli challenge increased fecal score and disrupted the microbiota composition, harming intestinal health by increasing oxidative stress, and damaging the intestinal epithelium, ultimately impairing growth performance. Dietary bacitracin reduced reduced F18+E. coli populations and the oxidative damages they cause, thereby improving intestinal health and the growth performance of nursery pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chad H Stahl
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Tardiolo G, Romeo O, Zumbo A, Di Marsico M, Sutera AM, Cigliano RA, Paytuví A, D’Alessandro E. Characterization of the Nero Siciliano Pig Fecal Microbiota after a Liquid Whey-Supplemented Diet. Animals (Basel) 2023; 13:642. [PMID: 36830429 PMCID: PMC9951753 DOI: 10.3390/ani13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The utilization of dairy by-products as animal feed, especially in swine production, is a strategy to provide functional ingredients to improve gut health. This study explored the potential effect of a liquid whey-supplemented diet on the fecal microbiota of eleven pigs belonging to the Nero Siciliano breed. Five pigs were assigned to the control group and fed with a standard formulation feed, whereas six pigs were assigned to the experimental group and fed with the same feed supplemented with liquid whey. Fecal samples were collected from each individual before the experimental diet (T0), and one (T1) and two (T2) months after the beginning of the co-feed supplementation. Taxonomic analysis, based on the V3-V4 region of the bacterial 16S rRNA, showed that pig feces were populated by a complex microbial community with a remarkable abundance of Firmicutes, Bacteroidetes, and Spirochaetes phyla and Prevotella, Lactobacillus, Clostridium, and Treponema genera. Alpha and beta diversity values suggested that the experimental diet did not significantly affect the overall fecal microbiota diversity. However, analysis of abundance at different time points revealed significant variation in several bacterial genera, suggesting that the experimental diet potentially affected some genera of the microbial community.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | - Marco Di Marsico
- Sequentia Biotech SL, Carrer del Dr. Trueta 179, 08005 Barcelona, Spain
| | - Anna Maria Sutera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | | | - Andreu Paytuví
- Sequentia Biotech SL, Carrer del Dr. Trueta 179, 08005 Barcelona, Spain
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
12
|
Duarte ME, Kim SW. Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants (Basel) 2022; 11:antiox11102066. [PMID: 36290789 PMCID: PMC9598381 DOI: 10.3390/antiox11102066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to investigate the effects of phytobiotics on the intestinal health and growth performance of pigs. Totals of 40 newly-weaned pigs with 6.4 ± 0.3 kg BW (Exp. 1) and 120 growing pigs with 27.9 ± 2.3 kg BW (Exp. 2) were allotted in RCBD in a 2 × 2 factorial arrangement. The factors were: antibiotics as growth promoter (AGP) and phytobiotics (PHY). Pigs were fed experimental diets during 21 d (Exp. 1) and 42 d (Exp. 2). Growth performance, health parameters, and nutrient digestibility were evaluated. In Exp. 1, AGP diet increased (p < 0.05) ADG and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) TNF-α and IgG in the jejunum and protein carbonyl in plasma, whereas it increased (p < 0.05) the villus height. In Exp. 2, AGP or PHY diets increased (p < 0.05) ADG, ADFI, and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) IgG and PC in plasma. Collectively, AGP and PHY improved growth performance by reducing oxidative stress and enhancing immune status and jejunal morphology. However, the combinational use of phytobiotics with antibiotics suppressed their effect.
Collapse
|
13
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
15
|
Xu X, Duarte ME, Kim SW. Postbiotic effects of Lactobacillus fermentate on intestinal health, mucosa-associated microbiota, and growth efficiency of nursery pigs challenged with F18+Escherichia coli. J Anim Sci 2022; 100:6603433. [PMID: 35666999 PMCID: PMC9387594 DOI: 10.1093/jas/skac210] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
This study determined the supplemental effects of Lactobacillus fermentate (LBF, Adare Biome, France) on intestinal health and prevention of postweaning diarrhea caused by F18+Escherichia coli in nursery pigs. Sixty-four weaned pigs (6.6 ± 0.7 kg body weight) were allotted in a randomized complete block design to four treatments: NC: no challenge/no supplement; PC: E. coli challenge/no supplement; AGP: E. coli challenge/bacitracin (30 g/t feed); and PBT: E. coli challenge/LBF (2 kg/t feed). Bacitracin methylene disalicylate (BMD) was used as a source of bacitracin. On day 7, challenged groups were orally inoculated with F18+E. coli (2.4 × 1010 CFU), whereas NC received sterile saline solution. Growth performance was analyzed weekly, and pigs were euthanized at the end of 28 d feeding to analyze intestinal health. Data were analyzed using the Mixed procedure of SAS 9.4. During the post-challenge period, PC tended to decrease (P = 0.067) average daily gain (ADG) when compared with NC, whereas AGP increased (P < 0.05) when compared with PC; PBT tended to increase (P = 0.081) ADG when compared with PC. The PC increased fecal score (P < 0.05) during day 7 to 14 when compared with NC, whereas AGP decreased it (P < 0.05) during day 14 to 21 when compared with PC. The PC increased (P < 0.05) protein carbonyl, crypt cell proliferation, and the relative abundance of Helicobacter rodentium when compared with NC. However, AGP decreased (P < 0.05) crypt cell proliferation and H. rodentium and increased (P < 0.05) villus height, Bifidobacterium boum, Pelomonas spp., and Microbacterium ginsengisoli when compared with PC. The PBT reduced (P < 0.05) crypt cell proliferation and H. rodentium and increased (P < 0.05) Lactobacillus salivarius and Propionibacterium acnes when compared with PC. At the genus level, AGP and PBT increased (P < 0.05) the alpha diversity of jejunal mucosa-associated microbiota in pigs estimated with Chao1 richness estimator when compared with PC. Collectively, F18+E. coli reduced growth performance by adversely affecting microbiota and intestinal health. The LBF and BMD improved growth performance, and it was related to the enhanced intestinal health and increased diversity and abundance of beneficial microbiota in pigs challenged with F18+E. coli.
Collapse
Affiliation(s)
- Xiangyi Xu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
16
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Duarte ME, Kim SW. Intestinal microbiota and its interaction to intestinal health in nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:169-184. [PMID: 34977387 PMCID: PMC8683651 DOI: 10.1016/j.aninu.2021.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota–host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
18
|
Moita VHC, Duarte ME, Kim SW. Supplemental Effects of Phytase on Modulation of Mucosa-Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility, Intestinal Morphology, and Bone Parameters in Broiler Chickens. Animals (Basel) 2021; 11:3351. [PMID: 34944129 PMCID: PMC8698009 DOI: 10.3390/ani11123351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine supplemental effects of phytase on modulation of the mucosa-associated microbiota in the jejunum, intestinal morphology, nutrient digestibility, bone parameters, and growth performance of broiler chickens. Three hundred and sixty newly hatched broiler chickens (Ross 308) (44 ± 2 g BW) were randomly allotted in 6 treatments with 10 birds per cage based on a completely randomized design and fed for 27 d. The treatments consisted of one negative control (NC), diet formulated meeting the requirements suggested by Ross recommendations (2019), and without phytase supplementation. The other treatments consisted of a positive control diet (PC) formulated with 0.15% deficient Ca and P and split into 5 treatments with different phytase inclusion levels (0, 500, 1000, 2000, 4000 FTU/kg feed). Titanium dioxide (0.4%) was added to feeds as an indigestible marker to measure apparent ileal digestibility (AID) of nutrients. On d 27, 3 birds were randomly selected from each cage and euthanized to collect samples for analyzing the mucosa-associated microbiota in the jejunum, oxidative stress status, AID, and bone parameters. Data were analyzed using the proc Mixed of SAS 9.4. Phytase supplementation tended to have a quadratic effect (p = 0.078) on the overall ADG (maximum: 41 g/d at 2833 FTU/kg of feed). Supplementation of phytase at 2,000 FTU/kg increased (p < 0.05) the relative abundance of Lactobacillus and reduced (p < 0.05) Pelomonas. Moreover, it tended to reduce Helicobacter (p = 0.085), Pseudomonas (p = 0.090) Sphingomonas (p = 0.071). Phytase supplementation increased (p < 0.05) the villus height and the AID of CP; and tended to increase (p = 0.086) the AID of P. Phytase supplementation increased (p < 0.05) breaking strength and P content in the tibia. In conclusion, phytase supplementation showed potential benefits on the modulation of the mucosa-associated microbiota in the jejunum by tending to reduce harmful bacteria (Pelomonas, Helicobacter, and Pseudomonas) and increase beneficial bacteria (Lactobacillus). In addition, it showed positive effects increasing apparent ileal digestibility of CP and P, enhancing intestinal morphology (villus height), and improving the bone parameters (bone breaking strength, ash, and P content). Phytase supplementation at a range of 38 to 59 FTU/d or 600 to 950 FTU/kg of feed provided the most benefits related to nutrient digestibility.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (V.H.C.M.); (M.E.D.)
| |
Collapse
|
19
|
Jang KB, Duarte ME, Purvis JM, Kim SW. Impacts of weaning age on dietary needs of whey permeate for pigs at 7 to 11 kg body weight. J Anim Sci Biotechnol 2021; 12:111. [PMID: 34782016 PMCID: PMC8594115 DOI: 10.1186/s40104-021-00637-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW. Altering weaning ages could cause different length of early-weaner phases until 7 kg BW and thus it would influence the dietary need of whey permeate during 7 to 11 kg BW of pigs. This study aimed to evaluate if weaning ages would affect the dietary needs of whey permeate for optimum growth performance of pigs at 7 to 11 kg BW. Methods A total of 1,632 pigs were weaned at d 21 (d 21.2 ± 1.3) or d 25 (d 24.6 ± 1.1) after birth. All pigs had a common early-weaner feeds until they reached 7 kg BW. When pigs reached 7 kg BW within a weaning age group, they were allotted in a randomized complete block design (2 × 4 factorial). Two factors were weaning age groups (21 and 25 d of age) and varying whey permeate levels (7.50%, 11.25%, 15.00%, and 18.75%). Data were analyzed using the GLM and NLIN procedures of SAS for slope-ratio and broken-line analyses to determine the growth response to whey permeate and optimal daily whey permeate intake for the growth of the pigs weaned at different ages. Results Pigs weaned at 21 d of age had a common diet for 11 d to reach 7 kg BW whereas pigs weaned at 25 d of age needed 2 d. The G:F of pigs weaned at 25 d of age responded to increased daily whey permeate intake greater (P < 0.05) than pigs weaned at 21 d of age. Breakpoints were obtained (P < 0.05) at 88 and 60 g/d daily whey permeate intake or 17.0% and 14.4% of whey permeate for G:F of pigs weaned at 21 and 25 d of age, respectively. Conclusion Pigs weaned at an older age with a short early-weaner phase had a greater growth response to whey permeate intake compared with pigs weaned at a younger age with a long early-weaner phase. Altering weaning ages affected dietary needs of whey permeate for optimum growth performance of pigs from 7 to 11 kg BW.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
20
|
Duarte ME, Sparks C, Kim SW. Modulation of jejunal mucosa-associated microbiota in relation to intestinal health and nutrient digestibility in pigs by supplementation of β-glucanase to corn-soybean meal-based diets with xylanase. J Anim Sci 2021; 99:skab190. [PMID: 34125212 PMCID: PMC8292963 DOI: 10.1093/jas/skab190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the effects of increasing levels of β-glucanase on the modulation of jejunal mucosa-associated microbiota in relation to nutrient digestibility and intestinal health of pigs fed diets with 30% corn distiller's dried grains with solubles and xylanase. Forty pigs at 12.4 ± 0.5 kg body weight (BW) were allotted in a randomized complete block design with initial BW and sex as blocks. Dietary treatments consisted of a basal diet with xylanase (1,500 endo-pentosanase units [EPU]/kg) and increasing levels of β-glucanase (0, 200, 400, and 600 U/kg) meeting nutrient requirements and fed to pigs for 21 d. Blood samples were collected on day 19. On day 21, all pigs were euthanized to collect intestinal tissues and digesta. Tumor necrosis factor-alpha, interleukin (IL)-6, and malondialdehyde were measured in the plasma and mid-jejunal mucosa. Viscosity was determined using digesta from the distal jejunum. Ileal and rectal digesta were evaluated to determine apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients. Mucosa samples from the mid-jejunum were utilized for microbiota sequencing. Data were analyzed using the MIXED procedure on SAS 9.4. Overall, increasing dietary β-glucanase tended to increase (linear; P = 0.077) the average daily gain of pigs. Increasing dietary β-glucanase affected (quadratic; P < 0.05) the relative abundance of Bacteroidetes, reduced (linear; P < 0.05) Helicobacter rappini, and increased (linear, P < 0.05) Faecalibacterium prausnitzii. β-Glucanase supplementation (0 vs. others) tended to increase (P = 0.096) the AID of crude protein in the diet, whereas increasing dietary β-glucanase tended to increase (linear; P = 0.097) the ATTD of gross energy in the diet and increased (linear; P < 0.05) the concentration of IL-6 in the plasma of pigs. In conclusion, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg) modulated mucosa-associated microbiota by increasing the relative abundance of beneficial bacteria and reducing potentially harmful bacteria. Furthermore, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg feed) enhanced the status of the intestinal environment and nutrient utilization, as well as reduced systemic inflammation of pigs, collectively resulting in moderate improvement of growth performance. Supplementing β-glucanase at a range of 312 to 410 U/kg with xylanase at 1,500 EPU/kg feed showed the most benefit on jejunal mucosa-associated microbiota and reduced systemic inflammation of pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chris Sparks
- Huvepharma, Inc., Peachtree City, GA, 30269, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Kim SW, Duarte ME. Understanding intestinal health in nursery pigs and the relevant nutritional strategies. Anim Biosci 2021; 34:338-344. [PMID: 33705620 PMCID: PMC7961202 DOI: 10.5713/ab.21.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the modern pig production, pigs are weaned at early age with immature intestine. Dietary and environmental factors challenge the intestine, specifically the jejunum, causing inflammation and oxidative stress followed by destruction of epithelial barrier and villus structures in the jejunum. Crypt cell proliferation increases to repair damages in the jejunum. Challenges to maintain the intestinal health have been shown to be related to changes in the profile of mucosa-associated microbiota in the jejunum of nursery pigs. All these processes can be quantified as biomarkers to determine status of intestinal health related to growth potential of nursery pigs. Nursery pigs with impaired intestinal health show reduced ability of nutrient digestion and thus reduced growth. A tremendous amount of research effort has been made to determine nutritional strategies to maintain or improve intestinal health and microbiota in nursery pigs. A large number of feed additives have been evaluated for their effectiveness on improving intestinal health and balancing intestinal microbiota in nursery pigs. Selected prebiotics, probiotics, postbiotics, and other bioactive compounds can be used in feeds to handle issues with intestinal health. Selection of these feed additives should aim modulating biomarkers indicating intestinal health. This review aims to define intestinal health and introduce examples of nutritional approaches to handle intestinal health in nursery pigs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Marcos E. Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| |
Collapse
|