1
|
Rudolph TE, Roths M, Freestone AD, Yap SQ, Michael A, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. Biological sex impacts oxidative stress in skeletal muscle in a porcine heat stress model. Am J Physiol Regul Integr Comp Physiol 2024; 326:R578-R587. [PMID: 38708546 PMCID: PMC11381024 DOI: 10.1152/ajpregu.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; n = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; n = 8/sex) or 7 days (HS7; n = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; P < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (P = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (P = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (P ≤ 0.03) and HS7 males (P = 0.02). Notably, HS increased skeletal muscle Ca2+ deposition (P = 0.05) and was greater in HS1 females compared with TN females (P < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2a protein abundance (P < 0.01); however, Ca2+ ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.NEW & NOTEWORTHY Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Sau Qwan Yap
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Department of Vet Diagnostic & Production Animal Med, Iowa State University, Ames, Iowa, United States
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, Texas, United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
2
|
Sölzer N, Brügemann K, Yin T, König S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype × housing system interactions. J Dairy Sci 2024; 107:3724-3737. [PMID: 38216046 DOI: 10.3168/jds.2023-24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns [CON] and compost-bedded pack barns [CBPB]) to infer possible genotype × housing system interactions. The DD stages included 2,980 observations for the 3 traits DD-sick, DD-acute, and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system, and location, but with pronounced housing-system differences. Five other farms had a "mixed system" with 2 subherds, one representing CBPB and the other one CON. The CBPB system was represented by 899 cows (1,530 observations), and 811 cows (1,450 observations) represented the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute, and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute, and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole dataset, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic, and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole dataset were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype × housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP × housing system interaction effects were estimated simultaneously via GWAS, considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, that is, METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP × housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for the same traits in different environments and negligible genotype × housing system interactions indicate only minor effects on genetic evaluations for DD due to housing-system particularities.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
3
|
Estrada-Angulo A, Verdugo-Insúa M, Escobedo-Gallegos LDG, Castro-Pérez BI, Urías-Estrada JD, Ponce-Barraza E, Mendoza-Cortez D, Ríos-Rincón FG, Monge-Navarro F, Barreras A, Zinn RA, Corona-Gochi L, Plascencia A. Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature. Animals (Basel) 2024; 14:1391. [PMID: 38731393 PMCID: PMC11083129 DOI: 10.3390/ani14091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Forty-eight Pelibuey × Katahdin male intact lambs (25.12 ± 3.79 kg LW) were used in a 70-d growing-finishing trial. Dietary treatments consisted of total mixed corn-based diet supplemented with: (1) no feed additives (Control); (2) 150 mg of essential oils blend plus 0.10 mg of 25-hydroxy-Vit-D3/kg diet offered throughout the 70-d experimental period (EOD3); (3) Control diet fed during the first 35 days and zilpaterol hydrochloride (ZH) supplementation at 6 mg/kg diet offered during the final 35 days of the experiment (32 days with ZH with a withdrawal 3-d before harvest), and (4) basal diet supplemented with EOD3 during first 35 days finishing, and EOD3 in combination with ZH (EOD3 + ZH) during the subsequent 32-days with ZH withdrawal 3 days before harvest. The temperature-humidity index during the experiment averaged 80.4 ± 3.2. There were no treatment interactions (p > 0.20) on growth performance and carcass measures. Supplemental EOD3 did not affect (p = 0.43) dry matter intake (DMI), but increased (p < 0.01) carcass adjusted average daily gain (ADG, 9.2%), gain efficiency (GF, 6.7%), and observed vs. expected dietary net energy for maintenance (NEm, 4.8%) and for gain (NEg, 6.4%). Supplemental ZH did not affect dry matter intake (DMI, p = 0.50) but increased (p < 0.01) carcass adjusted ADG (14.5%), GF (13%) and observed vs. expected dietary NEm (9%) and NEg (11.7%). Compared to control lambs, the combination of both additives increased ADG (24.9%), GF (21.2%), and observed vs. expected dietary NEm and NEg (14.2% and 18.9%, respectively). There were no treatment interactions on carcass characteristics, visceral organ mass, or on gene expression of IGF1, IGF2 and mTOR in longissimus muscle (LM). Supplemental EOD3 increased hot carcass weight (HCW; 4.0%, p < 0.01) but did not affect other carcass measures. Supplemental EOD3 decreased (3%, p = 0.03) intestine mass weight (g intestine/kg empty body weight). Supplemental ZH increased HCW (6%, p < 0.01), dressing percentage (1.7%, p = 0.04), and LM area (9.7%, p < 0.01), and decreased kidney-pelvic-fat percentage (16.2%, p < 0.01), fat thickness (14.7%, p = 0.03), and visceral fat. Compared to controls, the combination of EOD3 with ZH increased HCW (10.2%). It is concluded that growth performance responses to supplemental EOD3 and ZH are additive. Both supplements can be fed in combination without detrimental effects on expected benefits when fed separately. In addition, ZH supplementation improves carcass traits.
Collapse
Affiliation(s)
- Alfredo Estrada-Angulo
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Moisés Verdugo-Insúa
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Lucía de G. Escobedo-Gallegos
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Beatriz I. Castro-Pérez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Jesús D. Urías-Estrada
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Elizama Ponce-Barraza
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Daniel Mendoza-Cortez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Francisco G. Ríos-Rincón
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| | - Francisco Monge-Navarro
- Veterinary Science Research Institute, Autonomous University of Baja California, Mexicali 21100, Baja California, Mexico; (F.M.-N.); (A.B.)
| | - Alberto Barreras
- Veterinary Science Research Institute, Autonomous University of Baja California, Mexicali 21100, Baja California, Mexico; (F.M.-N.); (A.B.)
| | - Richard A. Zinn
- Animal Science Department, University of California, Davis, CA 95616, USA;
| | - Luis Corona-Gochi
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Alejandro Plascencia
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80260, Sinaloa, Mexico; (A.E.-A.); (M.V.-I.); (L.d.G.E.-G.); (B.I.C.-P.); (J.D.U.-E.); (E.P.-B.); (D.M.-C.); (F.G.R.-R.)
| |
Collapse
|
4
|
Álvarez Cecco P, Balbi M, Bonamy M, Rogberg Muñoz A, Olivera H, Giovambattista G, Fernández ME. Skin transcriptome analysis in Brangus cattle under heat stress. J Therm Biol 2024; 121:103852. [PMID: 38615495 DOI: 10.1016/j.jtherbio.2024.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Heat stress is a major factor that negatively affects animal welfare and production systems. Livestock should adapt to tropical and subtropical areas and to meet this, composite breeds have been developed. This work aimed to evaluate gene expression profiles in the skin of Brangus cattle under heat stress using a case-control design, and to correlate this with skin histological characteristics. Two groups of bulls were set using rectal temperature as a criterion to define stress conditions: stressed (N = 5) and non-stressed (N = 5) groups. Skin transcriptomics was performed and correlations between breed composition, phenotypic and skin histological traits were evaluated. Results showed 4309 differentially expressed genes (P < 0.01), 2113 downregulated and 2196 upregulated. Enrichment and ontology analyses revealed 132 GO terms and 67 pathways (P < 0.01), including thermogenesis, glycolysis, gluconeogenesis, mitochondrial activity, antioxidant and immune response, and apoptosis. The identity of the terms and pathways indicated the diversity of mechanisms directed to relieve the animals' suffering, acting from simple passive mechanisms (conduction, convection and radiation) to more complex active ones (behavioural changes, evaporation, vasodilation and wheezing). Furthermore, significant differences between phenotypic and skin histological traits and correlations between pairs of traits suggested a direction towards heat dissipation processes. In this sense, number of vessels was positively correlated with number of sweat glands (P < 0.001) and both were positively correlated with zebuine genetic content (P < 0.05 and P < 0.01, respectively), gland size was positively correlated with epidermal thickness and negatively with hair length (P < 0.05), and epidermal thickness was negatively correlated with gland-epidermis distance (P < 0.0005). These results support the notion that response to heat stress is physiologically complex, producing significant changes in the expression of genes involved in several biological pathways, while the animal's ability to face it depends greatly on their skin features.
Collapse
Affiliation(s)
- Paulo Álvarez Cecco
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Marianela Balbi
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Martín Bonamy
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Andrés Rogberg Muñoz
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ, Buenos Aires, Argentina
| | - Hernán Olivera
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - María Elena Fernández
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina.
| |
Collapse
|
5
|
Mahasneh ZMH, Abuajamieh M, Abedal-Majed MA, Al-Qaisi M, Abdelqader A, Al-Fataftah ARA. Effects of medical plants on alleviating the effects of heat stress on chickens. Poult Sci 2024; 103:103391. [PMID: 38242055 PMCID: PMC10828596 DOI: 10.1016/j.psj.2023.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024] Open
Abstract
Over the past decades, global climate change has led to a significant increase in the average ambient temperature causing heat stress (HS) waves. This increase has resulted in more frequent heat waves during the summer periods. HS can have detrimental effects on poultry, including growth retardation, imbalance in immune/antioxidant pathways, inflammation, intestinal dysfunction, and economic losses in the poultry industry. Therefore, it is crucial to find an effective, safe, applicable, and economically efficient method for reducing these negative influences. Medicinal plants (MPs) contain various bioactive compounds with antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory effects. Due to the biological activities of MPs, it could be used as promising thermotolerance agents in poultry diets during HS conditions. Nutritional supplementation with MPs has been shown to improve growth performance, antioxidant status, immunity, and intestinal health in heat-exposed chickens. As a result, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. Therefore, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. This review aims to discuss the negative consequences of HS in poultry and explore the use of different traditional MPs to enhance the health status of chickens.
Collapse
Affiliation(s)
- Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan.
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
6
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
7
|
Kim WS, Daddam JR, Keng BH, Kim J, Kim J. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J Anim Sci 2023; 101:skad303. [PMID: 37688555 PMCID: PMC10629447 DOI: 10.1093/jas/skad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jayasimha R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jaehwan Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Smith ZK, Eckhardt E, Kim WS, Menezes ACB, Rusche WC, Kim J. Temperature Fluctuations Modulate Molecular Mechanisms in Skeletal Muscle and Influence Growth Potential in Beef Steers. J Anim Sci 2023; 101:skad343. [PMID: 37791975 PMCID: PMC10583992 DOI: 10.1093/jas/skad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Our investigation elucidated the effects of severe temperature fluctuations on cellular and physiological responses in beef cattle. Eighteen Red Angus beef steers with an average body weight of 351 ± 24.5 kg were divided into three treatment groups: 1) Control (CON), exposed to a temperature-humidity index (THI) of 42 for 6 h without any temperature changes; 2) Transport (TP), subjected to a one-mile trailer trip with a THI of 42 for 6 h; and 3) Temperature swing (TS), exposed to a one-mile trailer trip with a THI shift from 42 to 72-75 for 3 h. Our findings indicate that TS can induce thermal stress in cattle, regardless of whether the overall temperature level is excessively high or not. Behavioral indications of extreme heat stress in the cattle were observed, including extended tongue protrusion, reduced appetite, excessive salivation, and increased respiratory rate. Furthermore, we observed a pronounced overexpression (P < 0.05) of heat shock proteins (HSPs) 20, 27, and 90 in response to the TS treatment in the longissimus muscle (LM). Alterations in signaling pathways associated with skeletal muscle growth were noted, including the upregulation (P < 0.01) of Pax7, Myf5, and myosin heavy chain (MHC) isoforms. In addition, an increase (P < 0.05) in transcription factors associated with adipogenesis was detected (P < 0.05), such as PPARγ, C/EBPα, FAS, and SCD in the TS group, suggesting the potential for adipose tissue accumulation due to temperature fluctuations. Our data illustrated the potential impacts of these temperature fluctuations on the growth of skeletal muscle and adipose tissue in beef cattle.
Collapse
Affiliation(s)
- Zachary K Smith
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Erika Eckhardt
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | | | - Warren C Rusche
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Jongkyoo Kim
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Lu J, Li H, Yu D, Zhao P, Liu Y. Heat stress inhibits the proliferation and differentiation of myoblasts and is associated with damage to mitochondria. Front Cell Dev Biol 2023; 11:1171506. [PMID: 37113771 PMCID: PMC10126414 DOI: 10.3389/fcell.2023.1171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Heat stress is harmful to the health of humans and animals, more and more common, as a consequence of global warming, while the mechanism that heat stress modulates skeletal development remains unknown. Hence, we conducted a model of heat stress in vitro. Methods: We used Hu sheep myoblasts as the research object, real-time quantitative PCR (RT-qPCR) and western blot (WB) were conducted to detect the expression of mRNA and protein in heat-stressed myoblasts. The would-healing assay was used to detect the migration of myoblasts. The mitochondria were observed by a transmission electron microscope. Results: mRNA and protein expression of HSP60 was significantly enriched in the heat-stressed myoblasts during proliferation and differentiation (p < 0.05). In our study, we indicated that heat stress enriched the intracellular ROS of the myoblasts (p < 0.001), leading to an increase in autophagy in the myoblasts to induce apoptosis. The results demonstrated that the protein expression of LC3B-1 and BCL-2 was significantly increased in myoblasts under heat stress during proliferation and differentiation (p < 0.05). Additionally, heat stress inhibited mitochondrial biogenesis and function and reduced the mitochondrial membrane potential and downregulated the expression of mtCo2, mtNd1 and DNM1L (p < 0.05) in myoblasts during proliferation and differentiation. Consequently, heat stress inhibited the proliferation and differentiation of the myoblasts, in accordance with the downregulation of the expression of PAX7, MYOD, MYF5, MYOG and MYHC (p < 0.05). Moreover, heat stress also inhibited the cell migration of the myoblasts. Discussion: This work demonstrates that heat stress inhibits proliferation and differentiation, and accelerates apoptosis by impairing mitochondrial function and promoting autophagy, which provides a mechanism to understand heat stress affects the development of the skeletal muscle.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Xizang, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Sieck RL, Treffer LK, Fuller AM, Ponte Viana M, Khalimonchuk O, Schmidt TB, Yates DT, Petersen JL. Short Communication: Beta-adrenergic agonists alter oxidative phosphorylation in primary myoblasts. J Anim Sci 2022; 100:6652322. [PMID: 35908785 PMCID: PMC9339305 DOI: 10.1093/jas/skac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023] Open
Abstract
Beta-adrenergic agonists (β-AAs) are widely used supplements in beef and pork production to improve feed efficiency and increase lean muscle mass, yet little is known about the molecular mechanism by which β-AAs achieve this outcome. Our objective was to identify the influence of ractopamine HCl and zilpaterol HCl on mitochondrial respiratory activity in muscle satellite cells isolated from crossbred beef steers (N = 5), crossbred barrows (N = 2), Yorkshire-cross gilts (N = 3), and commercial weather lambs (N = 5). Real-time measurements of oxygen consumption rates (OCRs) were recorded using extracellular flux analyses with a Seahorse XFe24 analyzer. After basal OCR measurements were recorded, zilpaterol HCl, ractopamine HCl, or no β-AA was injected into the assay plate in three technical replicates for each cell isolate. Then, oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, and rotenone were injected into the assay plate sequentially, each inducing a different cellular state. This allowed for the measurement of OCR at these states and for the calculation of the following measures of mitochondrial function: basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, adenosine triphosphate (ATP)-linked respiration, and spare respiratory capacity. Incubation of bovine cells with either zilpaterol HCl or ractopamine HCl increased maximal respiration (P = 0.046) and spare respiratory capacity (P = 0.035) compared with non-supplemented counterparts. No difference (P > 0.05) was observed between zilpaterol HCl and ractopamine HCl for maximal respiration and spare respiratory capacity in bovine cell isolates. No measures of mitochondrial function (basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, ATP-linked respiration, and spare respiratory capacity) were altered by β-AA treatment in ovine or porcine cells. These findings indicate that β-AAs in cattle may improve the efficiency of oxidative metabolism in muscle satellite cells by modifying mitochondrial respiratory activity. The lack of response by ovine and porcine cells to β-AA incubation also demonstrates differing physiological responses to β-AA across species, which helps to explain the variation in its effectiveness as a growth supplement.
Collapse
Affiliation(s)
- Renae L Sieck
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Leah K Treffer
- Biology Department, Nebraska Wesleyan University, Lincoln, NE 68504, USA
| | - Anna M Fuller
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | | |
Collapse
|