1
|
Guo L, Zheng C, Chen J, Du R, Li F. Phenylalanine Regulates Milk Protein Synthesis via LAT1-mTOR Signaling Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:13135. [PMID: 39684845 DOI: 10.3390/ijms252313135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs). The BMECs were treated with five concentrations (0, 0.22, 0.44, 0.88, 1.76 mM, and serum free). Rapamycin inhibitors and RNA interference (RNAi) were used to inhibit the phosphorylation of the mammalian target of rapamycin (mTOR) signaling pathway and the expression of relevant amino acid transporters, respectively. The results showed that 4×Phe (0.88 mM) significantly increased (p < 0.05) both the mRNA and protein expression of α-casein (CSN1S1), β-casein (CSN2), and κ-casein (CSN3), as well as L-type amino acid transporter-1 (LAT1) mRNA expression. Protein expression and modification assays of mTOR-related proteins showed that 4×Phe could increase (p < 0.05) the expression of α-casein and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and tended to increase the expression of ribosomal protein S6 protein kinase (S6K1, p = 0.054). The general control nonderepressible 2 (GCN2) signaling pathway factor, eukaryotic initiation factor 2 (eIF2α), was downregulated by 4×Phe treatment (p < 0.05). The rapamycin inhibition test showed that Phe regulated casein synthesis via the mTOR signaling pathway. RNAi experiments showed that LAT1 mediated the entry of Phe into cells. Moreover, 4×Phe treatment tended to decrease (0.05 < p < 0.10) the consumption of valine, leucine, histidine, tyrosine, cysteine, alanine, asparagine, and serine in the medium. Collectively, phenylalanine enhanced α-casein synthesis by regulating the phosphorylation of 4EBP1 and eIF2α and promoting the formation of the mTOR-centered casein translation initiation complex.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chen Zheng
- Animal Nutrition Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Jiao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruifang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
2
|
Nogalski Z, Momot M, Sobczuk-Szul M, Nogalska A. The Health-Related Fatty Acid Profile of Milk from Holstein-Friesian Cows as Influenced by Production System and Lactation Stage. Animals (Basel) 2024; 14:3492. [PMID: 39682457 DOI: 10.3390/ani14233492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to evaluate the effect of production system and lactation stage (LS) on the yield, centesimal composition, and fatty acid profile of milk from Holstein-Friesian cows. A total of 539 milk samples were collected in winter from cows in six certified organic dairy herds (ODHs) and eight conventional dairy herds (CDHs). The samples were collected randomly from up to 30% of cows at a given stage of lactation (7-45, 46-90, 91-135, 136-180, 181-225, 226-270, 271-315, and 316-360 days after calving). Milk samples were analyzed for proximate composition and the concentrations of fatty acids. The average daily milk yield was 11.4 kg higher (p < 0.01) in CDHs than in ODHs (28.1 kg vs. 16.7 kg). The concentrations of milk fat, protein, and lactose were also higher in CDHs than in ODHs. The fatty acid profile of milk fat was more desirable in ODHs than in CDHs (higher concentrations of polyunsaturated fatty acids (PUFAs), including n-3 PUFAs, trans-vaccenic acid, linolenic acid, and conjugated linoleic acid, and a higher desaturase index). Milk yield decreased (the decrease was more pronounced in ODHs), the concentrations of milk constituents increased, and the proportion of short-chain fatty acids in milk fat decreased (p < 0.05) with advancing lactation.
Collapse
Affiliation(s)
- Zenon Nogalski
- Department of Animal Nutrition, Feed Science, and Cattle Breding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Martyna Momot
- Department of Animal Nutrition, Feed Science, and Cattle Breding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Monika Sobczuk-Szul
- Department of Animal Nutrition, Feed Science, and Cattle Breding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Anna Nogalska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury, ul. Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Song Y, Wang Z, Xu L, Han B, Sun D. Identification of Genetic Associations of IDH2, LDHA, and LDHB Genes with Milk Yield and Compositions in Dairy Cows. Life (Basel) 2024; 14:1228. [PMID: 39459528 PMCID: PMC11508787 DOI: 10.3390/life14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Previous study revealed that isocitrate dehydrogenase (NADP (+)) 2, mitochondrial (IDH2), lactate dehydrogenase A (LDHA), and lactate dehydrogenase B (LDHB) genes were significantly differentially expressed in liver tissues of Holstein cows among different lactation periods and associated with lipid and protein metabolism; hence, they were considered as candidates for milk production traits. Herein, the genetic effects of the three genes on milk yield, fat, and protein traits were studied by association analysis using 926 Chinese Holstein cows from 45 sire families. As a result, five single nucleotide polymorphisms (SNPs) in IDH2, one in LDHA, and three in LDHB were identified by re-sequencing, and subsequently, they were genotyped in 926 Chinese Holstein cows by genotyping by target sequencing (GBTS). With the animal model, single-locus association analysis revealed that four SNPs in IDH2 and one SNP in LDHA were significantly associated with milk, fat, and protein yields (p ≤ 0.0491), and three SNPs in LDHB were associated with milk yield, milk fat yield, and fat percentage (p ≤ 0.0285). Further, four IDH2 SNPs were found to form a haplotype block significantly associated with milk yield, fat yield, protein yield, and protein percentage (p ≤ 0.0249). In addition, functional predictions indicated that one SNP in LDHA, g.26304153G>A, may affect transcription factor binding and two SNPs, g.88544541A>G and g.88556310T>C could alter LDHB mRNA secondary structure. In summary, this study profiled the significant genetic effects of IDH2, LDHA, and LDHB on milk yield and composition traits and provided referable genetic markers for genomic selection programs in dairy cattle.
Collapse
Affiliation(s)
| | | | | | | | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, Agricultural University, Beijing 100193, China; (Y.S.); (Z.W.); (L.X.); (B.H.)
| |
Collapse
|
4
|
Kotsampasi B, Karatzia MA, Tsiokos D, Chadio S. Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals (Basel) 2024; 14:2573. [PMID: 39272358 PMCID: PMC11394234 DOI: 10.3390/ani14172573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Dairy ruminants provide a major part of the livestock and agriculture sectors. Due to the increase in world population and the subsequent increase in dairy product demands, the dairy sector has been intensified. Dairy farming intensification and the subsequent increase in animal nutritional demands and the increase in the average global temperature as well have subjected animals to various stress conditions that impact their health and welfare. Various management practices and nutritional strategies have been proposed and studied to alleviate these impacts, especially under heat stress, as well as during critical periods, like the transition period. Some of the nutritional interventions to cope with stress factors and ensure optimal health and production are the inclusion of functional fatty acids and amino acids and feed additives (minerals, prebiotics, probiotics, essential oils and herbs, phytobiotics, enzymes, etc.) that have been proven to regulate animals' metabolism and improve their antioxidant status and immune function. Thus, these nutritional strategies could be the key to ensuring optimum growth, milk production, and reproduction efficiency. This review summarizes and highlights key nutritional approaches to support the remarkable metabolic adaptations ruminants are facing during the transition period and to reduce heat stress effects and evaluate their beneficial effects on animal physiology, performance, health, as well as welfare.
Collapse
Affiliation(s)
- Basiliki Kotsampasi
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Maria Anastasia Karatzia
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Dimitrios Tsiokos
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organization-DIMITRA, 58100 Giannitsa, Greece
| | - Stella Chadio
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
5
|
Handarini R, Baharun A, Rahmi A, Sudrajat D, Anggraeni A, Nurcholis N, Iskandar H, Maulana T, Kaiin EM, Anwar S, Said S. Correlation of sperm motility, acrosome integrity, protamine deficiency, and DNA fragmentation in proven and unproven Friesian Holstein bulls. J Adv Vet Anim Res 2024; 11:796-802. [PMID: 39605780 PMCID: PMC11590584 DOI: 10.5455/javar.2024.k831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The evaluation of frozen semen quality is an essential aspect in determining male fertility for artificial insemination programs. This study aims to evaluate the characteristics of Friesian Holstein (FH) bull-frozen semen in different classes (proven and unproven) based on protein profiling and molecular evaluation. Materials and Methods This study used frozen semen straws from FH bulls selected according to criteria for proven (6 individuals) and unproven (6 individuals) bulls produced by the Singosari AI Center (AIC). Sperm motility parameters were assessed using Computer Assisted Semen Analysis (CASA Supervision®, Germany), while sperm viability and abnormality were evaluated through eosin-nigrosin staining under a microscope at 400´ magnifications. The integrity of the sperm plasma membrane was determined using the hypoosmotic swelling test, and acrosome integrity was analyzed using the fluorescein isothiocyanate PNA-propidium iodide staining method. Protamine deficiency was quantified using Chromomycin A3 fluorescence staining, while DNA fragmentation was assessed using the acridine orange technique. Results The findings demonstrated that there were no statistically significant differences (p > 0.05) in the assessed parameters of frozen semen quality between FH-proven and unproven bulls. Furthermore, in FH-proven bulls, a negative correlation was observed between protamine deficiency and acrosome integrity (r = -0.528) and between protamine deficiency and sperm DNA fragmentation (r = -0.467). The parameters of protamine deficiency in unproven bulls exhibited a positive correlation with sperm progressive motility. Conclusion The frozen semen quality of FH bulls in different classes (proven and unproven) was found to be equally good. Molecular-based analysis allows for a more accurate determination of semen quality. These findings are significant for bull breeding stations when comprehensively evaluating semen quality.
Collapse
Affiliation(s)
- Ristika Handarini
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Abdullah Baharun
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Annisa Rahmi
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Deden Sudrajat
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Anggraeni Anggraeni
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | | | - Hikmayani Iskandar
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Tulus Maulana
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | | | - Saiful Anwar
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
6
|
Ravelo AD, Ferm P, Guo Y, Omontese BO, Morley PS, Chen C, Noyes NR, Caixeta LS. Using a multi-omics approach to explore potential associations with rumen content and serum of cows with different milk production levels based on genomic predicted transmitting ability for milk and phenotypic milk production. PLoS One 2024; 19:e0305674. [PMID: 39024228 PMCID: PMC11257365 DOI: 10.1371/journal.pone.0305674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
This study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.
Collapse
Affiliation(s)
- Anay D. Ravelo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Peter Ferm
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Yue Guo
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bobwealth O. Omontese
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Paul S. Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, Texas, United States of America
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Noelle R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Luciano S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
7
|
Gao Y, Liu GE, Ma L, Fang L, Li CJ, Baldwin RL. Transcriptomic profiling of gastrointestinal tracts in dairy cattle during lactation reveals molecular adaptations for milk synthesis. J Adv Res 2024:S2090-1232(24)00257-1. [PMID: 38925453 DOI: 10.1016/j.jare.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
During lactation, dairy cattle's digestive tract requires significant adaptations to meet the increased nutrient demands for milk production. As we attempt to improve milk-related traits through selective pressure, it is crucial to understand the biological functions of the epithelia of the rumen, small intestine, and colonic tissues in response to changes in physiological state driven by changes in nutrient demands for milk synthesis. In this study, we obtained a total of 108 transcriptome profiles from three tissues (epithelia of the colon, duodenum, and rumen) of five Holstein cows, spanning eight time points from the early, mid, late lactation periods to the dry period. On average 97.06% of reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We analyzed 27,607 gene expression patterns at multiple periods, enabling direct comparisons within and among tissues during different lactation stages, including early and peak lactation. We identified 1645, 813, and 2187 stage-specific genes in the colon, duodenum, and rumen, respectively, which were enriched for common or specific biological functions among different tissues. Time series analysis categorized the expressed genes within each tissue into four clusters. Furthermore, when the three tissues were analyzed collectively, 36 clusters of similarly expressed genes were identified. By integrating other comprehensive approaches such as gene co-expression analyses, functional enrichment, and cell type deconvolution, we gained profound insights into cattle lactation, revealing tissue-specific characteristics of the gastrointestinal tract and shedding light on the intricate molecular adaptations involved in nutrient absorption, immune regulation, and cellular processes for milk synthesis during lactation.
Collapse
Affiliation(s)
- Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
8
|
Sullivan R, Confair A, Hicks SD. Milk levels of transforming growth factor beta 1 identify mothers with low milk supply. PLoS One 2024; 19:e0305421. [PMID: 38870243 PMCID: PMC11175467 DOI: 10.1371/journal.pone.0305421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Human milk is optimal for infant nutrition. However, many mothers cease breastfeeding because of low milk supply (LMS). It is difficult to identify mothers at risk for LMS because its biologic underpinnings are not fully understood. Previously, we demonstrated that milk micro-ribonucleic acids (miRNAs) may be related to LMS. Transforming growth factor beta (TGFβ) also plays an important role in mammary involution and may contribute to LMS. We performed a longitudinal cohort study of 139 breastfeeding mothers to test the hypothesis that milk levels of TGFβ would identify mothers with LMS. We explored whether TGFβ impacts the expression of LMS-related miRNAs in cultured human mammary epithelial cells (HMECs). LMS was defined by maternal report of inadequate milk production, and confirmed by age of formula introduction and infant weight trajectory. Levels of TGF-β1 and TGF-β2 were measured one month after delivery. There was a significant relationship between levels of TGF-β1 and LMS (X2 = 8.92, p = 0.003) on logistic regression analysis, while controlling for lactation stage (X2 = 1.28, p = 0.25), maternal pre-pregnancy body mass index (X2 = 0.038, p = 0.84), and previous breastfeeding experience (X2 = 7.43, p = 0.006). The model accounted for 16.8% of variance in the data (p = 0.005) and correctly predicted LMS for 84.6% of mothers (22/26; AUC = 0.72). Interactions between TGF-β1 and miR-22-3p displayed significant effect on LMS status (Z = 2.67, p = 0.008). Further, incubation of HMECs with TGF-β1 significantly reduced mammary cell number (t = -4.23, p = 0.003) and increased levels of miR-22-3p (t = 3.861, p = 0.008). Interactions between TGF-β1 and miR-22-3p may impact mammary function and milk levels of TGF-β1 could have clinical utility for identifying mothers with LMS. Such information could be used to provide early, targeted lactation support.
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States of America
| | - Alexandra Confair
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States of America
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States of America
| |
Collapse
|
9
|
Cao Y, Hu G, Long X, Li F, Wang J, Sun M, Xie Y, Ge Y, Guo W, Liu J, Fu S. Valine promotes milk synthesis by regulating PKM2 nuclear accumulation and histone H3 acetylation through the TAS1R1-mTOR-DDX39B signaling pathway. Int J Biol Macromol 2024; 254:127786. [PMID: 37918588 DOI: 10.1016/j.ijbiomac.2023.127786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
Valine, a branched-chain amino acid found in dairy cows, has been recognized for its critical role in milk synthesis. However, the precise effect of valine on lactation in dairy cows remains an area of investigation. In our study, bovine mammary epithelial cells (BMECs) were isolated to explore the mechanism through which valine enhances milk synthesis. The results showed that 100 μM valine significantly boosted the milk synthesis via TAS1R1-mTOR-DDX39B signaling pathway in BMECs. Subsequent investigations revealed that DDX39B governs the accumulation of PKM2 in the nuclei of BMECs. This nuclear buildup of PKM2 weakened the interaction between HDAC3 and histone H3, leading to an increase in the acetylation levels of histone H3. In an vivo context, the 0.25 % valine-enriched drinking water notably elevated in the expression of milk protein and fat in these mice. Further examination showed that 0.25 % valine drinking water considerably augmented the protein expression levels of DDX39B, PKM2, and p-mTOR in the mice mammary glands. In summary, our results suggest that valine, by modulating the TAS1R1-mTOR-DDX39B signaling pathway, directs the accumulation of PKM2 in the nucleus. This, in turn, escalates the acetylation levels of histone H3, promoting the synthesis of both milk protein and fat.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingyang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
González-Warleta M, Castro-Hermida JA, Figueira M, López J, Conesa D, López-Quílez A, Ubeira FM, Mezo M. Bayesian hierarchical modelling of the geospatial distribution of fasciolosis in dairy cattle and the impact on production: Application to the main milk-producing region (Galicia) in Spain. Vet Parasitol 2024; 325:110091. [PMID: 38056318 DOI: 10.1016/j.vetpar.2023.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Fasciolosis caused by Fasciola hepatica is a common parasitic infection among cattle in many countries. Although infected adult cows rarely show overt clinical signs, milk production may be impaired. Thus, significant production losses may occur in dairy herds with a high prevalence of fasciolosis. In this study, Bayesian hierarchical modelling was used to estimate the geospatial distribution of dairy cattle fasciolosis and its impact on milk production. The study was conducted in Galicia, the main milk producing region in Spain and a geographically heterogeneous area. The aims were: 1) to model the geospatial distribution of fasciolosis in dairy herds in the study area, 2) to identify clusters of herds with a high prevalence of fasciolosis, and 3) to assess the effect of fasciolosis on milk yield and quality. A large number of dairy cattle farms (n = 4907), of which 1660 provided production records, were surveyed. Fasciola infection status was determined by applying the MM3-SERO ELISA test to bulk tank milk samples. A high probability of infection was predicted in several zones, particularly in the centre, northeast and southeast of Galicia. Conversely, the predicted probability was very low in some parts of the northwest of the region. Infections with high within-herd prevalence (> 25% lactating cows infected) predominated. High within-herd prevalence was associated with loss of milk production (-1.387 kg/cow/ day, on average). No association between Fasciola infection and either milk fat or protein content was observed. This study has generated the first maps of the spatial distribution of the probability of Fasciola infection in dairy cattle herds in Galicia. The maps presented here can be used for reference purposes, enabling the design of better targeted fasciolosis control programmes in the region. Use of Bayesian hierarchical statistical analysis enabled us to ascertain the uncertainty of the predictions and to account for the spatial autocorrelation in the data. It also enabled us to generate maps showing the residual spatial variation in milk production, a topic that may deserve more detailed study.
Collapse
Affiliation(s)
- Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, Abegondo, A Coruña, Spain
| | - José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, Abegondo, A Coruña, Spain
| | - Mario Figueira
- Valencia Bayesian Research Group, Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Jesúa López
- Valencia Bayesian Research Group, Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - David Conesa
- Valencia Bayesian Research Group, Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Antonio López-Quílez
- Valencia Bayesian Research Group, Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, Abegondo, A Coruña, Spain.
| |
Collapse
|
11
|
Jermann PM, Wagner LA, Fritsche D, Gross JJ, Wellnitz O, Bruckmaier RM. Acute phase reaction to lipopolysaccharide-induced mastitis in early lactation dairy cows fed nitrogenic, glucogenic, or lipogenic diets. J Dairy Sci 2023; 106:9879-9891. [PMID: 37678770 DOI: 10.3168/jds.2023-23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
The availability of certain macronutrients is likely to influence the capacity of the immune system. Therefore, we investigated the acute phase response to intramammary (i.mam.) lipopolysaccharide (LPS) in dairy cows fed a nitrogenic diet (n = 10) high in crude protein, a glucogenic diet (n = 11) high in carbohydrates and glucogenic precursors, or a lipogenic diet (n = 11) high in lipids. Thirty-two dairy cows were fed one of the dietary concentrates directly after calving until the end of trial at 27 ± 3 days in milk (mean ± standard deviation). In wk 3 of lactation, 20 µg of LPS was i.mam. injected in one quarter, and sterile NaCl (0.9%) in the contralateral quarter. Milk samples of the LPS-challenged and control quarter were taken hourly from before (0 h) until 9 h after LPS challenge and analyzed for milk amyloid A (MAA), haptoglobin (HP), and IL-8. In addition, blood samples were taken in the morning, and composite milk samples at morning and evening milkings, from 1 d before until 3 d after LPS challenge, and again on d 9, to determine serum amyloid A (SAA) and HP in blood, and MAA and HP in milk. The mRNA abundance of various immunological and metabolic factors in blood leukocytes was quantified by quantitative reverse-transcription PCR from samples taken at -18, -1, 6, 9, and 23 h relative to LPS application. The dietary concentrates did not affect any of the parameters in blood, milk, and leukocytes. The IL-8 was increased from 2 h, HP from 2 to 3 h, and MAA from 6 h relative to the LPS administration in the milk of the challenged quarter and remained elevated until 9 h. The MAA and HP were also increased at 9 h after LPS challenge in whole-udder composite milk, whereas HP and SAA in blood were increased only after 23 h. All 4 parameters were decreased again on d 9. Similar for all groups, the mRNA abundance of HP and the heat shock protein family A increased after the LPS challenge, whereas the mRNA expression of the tumor necrosis factor α and the leukocyte integrin β 2 subunit (CD18) were decreased at 6 h after LPS challenge. The glucose transporter (GLUT)1 mRNA abundance decreased after LPS, whereas that of the GLUT3 increased, and that of the GLUT4 was not detectable. The mRNA abundance of GAPDH was increased at 9 h after LPS and remained elevated. The acute phase protein response was detected earlier in milk compared with blood indicating mammary production. However, immunological responses to LPS were not affected by the availability of specific macronutrients provided by the different diets.
Collapse
Affiliation(s)
- P M Jermann
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - L A Wagner
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - D Fritsche
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
12
|
Guo H, Li J, Wang Y, Cao X, Lv X, Yang Z, Chen Z. Progress in Research on Key Factors Regulating Lactation Initiation in the Mammary Glands of Dairy Cows. Genes (Basel) 2023; 14:1163. [PMID: 37372344 DOI: 10.3390/genes14061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Lactation initiation refers to a functional change in the mammary organ from a non-lactating state to a lactating state, and a series of cytological changes in the mammary epithelium from a non-secreting state to a secreting state. Like the development of the mammary gland, it is regulated by many factors (including hormones, cytokines, signaling molecules, and proteases). In most non-pregnant animals, a certain degree of lactation also occurs after exposure to specific stimuli, promoting the development of their mammary glands. These specific stimuli can be divided into two categories: before and after parturition. The former inhibits lactation and decreases activity, and the latter promotes lactation and increases activity. Here we present a review of recent progress in research on the key factors of lactation initiation to provide a powerful rationale for the study of the lactation initiation process and mammary gland development.
Collapse
Affiliation(s)
- Haoyue Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
13
|
Gross JJ. Hepatic Lipidosis in Ruminants. Vet Clin North Am Food Anim Pract 2023; 39:371-383. [PMID: 37032295 DOI: 10.1016/j.cvfa.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Hepatic lipidosis (ie, fatty liver) occurs primarily during the first weeks of lactation in dairy cows because of excessive lipolysis overwhelming the concomitant capacity for beta-oxidation and hepatic export of triglycerides. Besides economic losses due to reduced lactational and reproductive performance, close associations with concomitantly occurring infectious and metabolic health disorders, in particular ketosis, exist. Hepatic lipidosis is not only a consequence from the postpartal negative energy balance but also acts as a disease component for further health disorders.
Collapse
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Salzano A, Fioriniello S, D'Onofrio N, Balestrieri ML, Aiese Cigliano R, Neglia G, Della Ragione F, Campanile G. Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage. BMC Genomics 2023; 24:133. [PMID: 36941576 PMCID: PMC10029215 DOI: 10.1186/s12864-023-09215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.
Collapse
Affiliation(s)
- Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy.
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
15
|
Abstract
A herd-based approach and interpretative perspective is necessary in using metabolic profile testing in contrast to individual animal disease diagnostics. Metabolic profile testing requires formulating a question to be answered, followed by the appropriate selection of animals for testing. A range of blood analytes and nutrients can be determined with newer biomarkers being developed. Sample collection and handling and herd-based reference criteria adjusted to time relative to parturition are critical for interpretation. The objective of this article is to review the concepts and practical applications of metabolic profile testing in ruminants.
Collapse
Affiliation(s)
- Robert J Van Saun
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, Pennsylvania State University, 108 C Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16802-3500, USA.
| |
Collapse
|
16
|
Ibrahim IAE, Yehia WMB, Saleh FH, Lamlom SF, Ghareeb RY, El-Banna AAA, Abdelsalam NR. Impact of Plant Spacing and Nitrogen Rates on Growth Characteristics and Yield Attributes of Egyptian Cotton ( Gossypium barbadense L.). FRONTIERS IN PLANT SCIENCE 2022; 13:916734. [PMID: 35646020 PMCID: PMC9135022 DOI: 10.3389/fpls.2022.916734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
This current study was performed to determine the influences of plant spacing, Nitrogen (N) fertilization rate and their effect, on growth traits, yield, and yield components of cotton (Gossypium barbadense L.) cv. Giza 97 during the 2019 and 2020 seasons. A split plot experiment in three replicates was utilized whereas the cotton seeds were planted at 20, 30, and 40 cm, as main plots and nitrogen at 75, 100, and 125%, was in subplots. The results revealed that the planting spacing at 40 cm significantly (p ≤ 0.01) increased plant height, number of fruiting branches per plant, number of bolls per plant, boll weight (BW), lint percentage (L%), seed cotton yield (SCY), lint cotton yield (LCY), seed index and lint index by 165.68 cm, 20.92, 23.93, 3.75 g, 42.01%, 4.24 ton/ha, 5.16 ton/ha, 12.05, 7.86, respectively, as average in both seasons. The application of N fertilizer rate at 125% caused a maximum increase in growth and yield parameters i.e., plant height (169.08 cm), number of vegetative branches (2.67), number of fruiting branches per plant (20.82), number bolls per fruiting branch (1.39), number of bolls per plant (23.73), boll weight (4.1 g), lint percent (41.9%), seed index (11.8 g), and lint index (8.2), while the plants treated with 100% N rates exhibited highest seed cotton yield (4.3 ton/ha) and lint cotton yield (5.6 ton/ha), as average in both seasons. Combining plant spacing at 40 cm between plants with a 100% N fertilizer rate recorded the highest lint cotton yield (5.67 ton/ha), while the highest seed cotton yield (4.43 and 4.50 ton/ha) was obtained from 125% N fertilizer rate under planting spacing 20 and 40 cm, respectively. Conclusively, a wide density (40 cm) with 125% N is a promising option for improved biomass, cotton growth, yield, physiological traits, and fiber quality.
Collapse
Affiliation(s)
- Ibrahim A. E. Ibrahim
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | | | - Fouad H. Saleh
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Aly A. A. El-Banna
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|