1
|
Li Z, Wang Y, Yuan P, Zhu Y, Hu P, Song T, Liu R, Liu HY, Cai D. Time-restricted feeding relieves high temperature-induced impairment on meat quality by activating the Nrf2/HO-1 pathway, modification of muscle fiber composition, and enriching the polyunsaturated fatty acids in pigs. STRESS BIOLOGY 2024; 4:39. [PMID: 39276279 PMCID: PMC11401797 DOI: 10.1007/s44154-024-00182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 09/16/2024]
Abstract
To assess the effects of a time-restricted feeding (TRF) regimen on meat quality of pigs exposed to high ambient temperature, a two-month feeding and heat treatment (HT) trial was conducted using a 2 × 2 factorial design. A total of 24 growing pigs (11.0 ± 1.9 kg) were randomly divided into four groups: thermal neutral group (NT, 24 ± 3 °C), HT group (exposed to a high temperature at 35 ± 2 °C from 11:00 to 15:00), TRF group and HT + TRF group (HT and TRF co-treatment group, n = 6 for each group). Pigs in TRF groups got access to feed within 5 h from 9:00 to14:00, while the others were fed at 6:00, 11:30, and 16:00. All pigs received the same diet during the trail. The results showed that HT increased the drip loss, shear force, lightness, and malondialdehyde production in Longissimus thoracis et lumborum (LTL) muscle. TRF reversely reduced the shear force and drip loss, accompanied by decreased intramuscular fat and increased moisture content. Enhanced fiber transformation from type 1 to type 2b and down-regulated expression of muscle growth-related genes were observed by HT, while TRF suppressed the fiber transformation and expression of muscle atrophy-related genes. Furthermore, TRF restored the diminished protein expressions of Nrf2 and HO-1 in LTL muscle by chronic HT. Accumulation of HSP70 in muscle of HT group was reduced by treatment of TRF. HT declined the expression of vital genes involved in fatty acids poly-desaturation and the proportion of (polyunsaturated fatty acids) PUFAs, mainly omega-6 in LTL muscle, while TRF group promoted the expression of poly-desaturation pathway and displayed the highest proportion of PUFAs. These results demonstrated that TRF relieved the chronic high temperature affected meat quality by the restored expression of Nrf2/HO-1 anti-oxidative cascade, modified muscle fiber composition, and enriched PUFAs in LTL muscle.
Collapse
Affiliation(s)
- Zhaojian Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yiting Wang
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yuan
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanli Zhu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ping Hu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Ma S, Cao W, Ma X, Ye X, Qin C, Li B, Liu W, Lu Q, Wu C, Fu X. Metabolomics reveals metabolites associated with hair follicle cycle in cashmere goats. BMC Vet Res 2024; 20:208. [PMID: 38760765 PMCID: PMC11100241 DOI: 10.1186/s12917-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The hair follicle is a skin accessory organ that regulates hair development, and its activity varies on a regular basis. However, the significance of metabolites in the hair follicle cycle has long been unknown. RESULTS Targeted metabolomics was used in this investigation to reveal the expression patterns of 1903 metabolites in cashmere goat skin during anagen to telogen. A statistical analysis was used to investigate the potential associations between metabolites and the hair follicle cycle. The findings revealed clear changes in the expression patterns of metabolites at various phases and in various feeding models. The majority of metabolites (primarily amino acids, nucleotides, their metabolites, and lipids) showed downregulated expression from anagen (An) to telogen (Tn), which was associated with gene expression, protein synthesis and transport, and cell structure, which reflected, to some extent, that the cells associated with hair follicle development are active in An and apoptotic in An-Tn. It is worth mentioning that the expression of vitamin D3 and 3,3',5-triiodo-L-thyronine decreased and then increased, which may be related to the shorter and longer duration of outdoor light, which may stimulate the hair follicle to transition from An to catagen (Cn). In the comparison of different hair follicle development stages (An, Cn, and Tn) or feeding modes (grazing and barn feeding), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that common differentially expressed metabolites (DEMs) (2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate) were enriched in ABC transporters. This finding suggested that this pathway may be involved in the hair follicle cycle. Among these DEMs, riboflavin is absorbed from food, and the expression of riboflavin and sugars (D-glucose and glycogen) in skin tissue under grazing was greater and lower than that during barn feeding, respectively, suggesting that eating patterns may also alter the hair follicle cycle. CONCLUSIONS The expression patterns of metabolites such as sugars, lipids, amino acids, and nucleotides in skin tissue affect hair follicle growth, in which 2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate may regulate the hair follicle cycle by participating in ABC transporters. Feeding practices may regulate hair follicle cycles by influencing the amount of hormones and vitamins expressed in the skin of cashmere goats.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
3
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Fabrile MP, Ghidini S, Conter M, Varrà MO, Ianieri A, Zanardi E. Filling gaps in animal welfare assessment through metabolomics. Front Vet Sci 2023; 10:1129741. [PMID: 36925610 PMCID: PMC10011658 DOI: 10.3389/fvets.2023.1129741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Sustainability has become a central issue in Italian livestock systems driving food business operators to adopt high standards of production concerning animal husbandry conditions. Meat sector is largely involved in this ecological transition with the introduction of new label claims concerning the defense of animal welfare (AW). These new guarantees referred to AW provision require new tools for the purpose of authenticity and traceability to assure meat supply chain integrity. Over the years, European Union (EU) Regulations, national, and international initiatives proposed provisions and guidelines for assuring AW introducing requirements to be complied with and providing tools based on scoring systems for a proper animal status assessment. However, the comprehensive and objective assessment of the AW status remains challenging. In this regard, phenotypic insights at molecular level may be investigated by metabolomics, one of the most recent high-throughput omics techniques. Recent advances in analytical and bioinformatic technologies have led to the identification of relevant biomarkers involved in complex clinical phenotypes of diverse biological systems suggesting that metabolomics is a key tool for biomarker discovery. In the present review, the Five Domains model has been employed as a vademecum describing AW. Starting from the individual Domains-nutrition (I), environment (II), health (III), behavior (IV), and mental state (V)-applications and advances of metabolomics related to AW setting aimed at investigating phenotypic outcomes on molecular scale and elucidating the biological routes most perturbed from external solicitations, are reviewed. Strengths and weaknesses of the current state-of-art are highlighted, and new frontiers to be explored for AW assessment throughout the metabolomics approach are argued. Moreover, a detailed description of metabolomics workflow is provided to understand dos and don'ts at experimental level to pursue effective results. Combining the demand for new assessment tools and meat market trends, a new cross-strategy is proposed as the promising combo for the future of AW assessment.
Collapse
Affiliation(s)
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Adriana Ianieri
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
5
|
Yang S, Liu J, Gu Z, Liu P, Lan Q. Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks. Metabolites 2022; 12:1082. [PMID: 36355165 PMCID: PMC9699490 DOI: 10.3390/metabo12111082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Yaks have strong adaptability to extremely cold and hypoxic conditions but are susceptible to high ambient temperature when yaks are raised in low-altitude areas during the high-temperature season. Twenty-four adult male yaks with similar weights and ages were randomly divided into TN (Thermoneutral, altitude = 3464 m), LHS (Light heat stress, altitude = 1960 m), and MHS (Medium heat stress, altitude = 906 m) groups to evaluate adaptation strategies to HS. Non-targeted and targeted metabolomics were applied to investigate the effects of different extents of HS on yaks. LHS- and MHS-yaks showed higher rectal temperatures and respiratory rates than TN-yaks. MHS-yaks had higher levels of red blood cells (RBCs), hemoglobin (Hb), whole blood relative index of middle shear at a shear rate of 5 S-1 (WMS), whole blood relative index of high shear at a shear rate of 200 S-1 (WHS), Casson viscosity (CV), middle shear flow resistance at a shear rate of 5 S-1 (MSFR), and high shear flow resistance at a shear rate of 200 S-1 (HSFR) as compared to TN- and LHS-yaks. Differential metabolites and metabolic pathways, including fatty acid metabolism, lipid metabolism, glucose metabolism, and amino acid metabolism, were altered by HS. Metabolites in the glucose metabolism pathway in LHS- and MHS-yaks were lower than those in TN-yaks. However, LHS-yaks showed higher levels of metabolites in the HIF-1 signaling pathway compared to TN- and MHS-yaks. Most of the tricarboxylic acid cycle (TCA) intermediates and fatty acids were significantly decreased in MHS-yaks compared to the other two groups. As a whole, yaks raised at a low altitude (25.6 °C) suffered from severe HS, but they adapted to HS with vasodilatation for dissipating heat and the increased antioxidants and metabolite levels of energy substrates.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jinfeng Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China
| | - Ping Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qin Lan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Zhang W, Dong Y. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta. J Exp Biol 2021; 224:272389. [PMID: 34499178 DOI: 10.1242/jeb.243031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Thermal plasticity on different time scales, including acclimation/acclimatization and heat-hardening response - a rapid adjustment for thermal tolerance after non-lethal thermal stress, can interact to improve the resilience of organisms to thermal stress. However, little is known about physiological mechanisms mediating this interaction. To investigate the underpinnings of heat-hardening responses after acclimatization in warm seasons, we measured thermal tolerance plasticity, and compared transcriptomic and metabolomic changes after heat hardening at 33 or 37°C followed by recovery of 3 or 24 h in an intertidal bivalve Sinonovacula constricta. Clams showed explicit heat-hardening responses after acclimatization in a warm season. The higher inducing temperature (37°C) caused less effective heat-hardening effects than the inducing temperature that was closer to the seasonal maximum temperature (33°C). Metabolomic analysis highlighted the elevated content of glycerophospholipids in all heat-hardened clams, which may help to maintain the structure and function of the membrane. Heat shock proteins (HSPs) tended to be upregulated after heat hardening at 37°C but not at 33°C, indicating that there was no complete dependency of heat-hardening effects on upregulated HSPs. Enhanced energy metabolism and decreased energy reserves were observed after heat hardening at 37°C, suggesting more energy costs during exposure to a higher inducing temperature, which may restrict heat-hardening effects. These results highlight the mediating role of membrane lipid metabolism, heat shock responses and energy costs in the interaction between heat-hardening response and seasonal acclimatization, and contribute to the mechanistic understanding of evolutionary change and thermal plasticity during global climate change.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.,Institute of Animal Genetic Resource, Nanjing Normal University, Nanjing 210046, China
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
7
|
Early Heat Exposure Effects on Proteomic Changes of the Broiler Liver under Acute Heat Stress. Animals (Basel) 2021; 11:ani11051338. [PMID: 34066761 PMCID: PMC8151403 DOI: 10.3390/ani11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Early heat exposure have been studied in the poultry industry as a method of reducing heat stress (HS) on poultry. However, the results of each study are inconsistent, and it has not been confirmed which mechanisms reduce HS by early heat exposure. Therefore, we tried to confirm the relaxation mechanism through proteomic analysis after applying early and acute heat exposure to broilers. The broilers were divided into three treatments, followed by CC (control group), CH (acute HS at the 35th day), and HH (early heat exposure at the fifth day and acute HS at the 35th day. Liver samples were collected and analyzed for proteomics and functional analysis. Proteins related to various functions, such as carbohydrate metabolism, fatty acid metabolism, energy metabolism, and the oxidation–reduction process, which were dramatically changed by acute HS, and were alleviated similar to the control group by early heat exposure. Through these results, the mechanism by which early heat exposure induces homeostasis during acute HS, and the possibility of the early heat exposure as a method of reducing HS were confirmed. Abstract As environmental temperatures continue to rise, heat stress (HS) is having a negative effect on the livestock industry. In order to solve this problem, many studies have been conducted to reduce HS. Among them, early heat exposure has been suggested as a method for reducing HS in poultry. In this study, we analyzed proteomics and tried to identify the metabolic mechanisms of early heat exposure on acute HS. A total of 48 chicks were separated into three groups: CC (control groups raised at optimum temperature), CH (raised with CC but exposed acute HS at the 35th day), and HH (raised with CC but exposed early heat at the fifth day and acute HS at the 35th day). After the whole period, liver samples were collected for proteomic analysis. A total of 97 differentially expressed proteins were identified by acute HS. Of these, 62 proteins recovered their expression levels by early heat exposure. We used these 62 proteins to determine the protective effects of early heat exposure. Of the various protein-related terms, we focused on the oxidative phosphorylation, fatty acid metabolism, carbohydrate metabolism, and energy production metabolism. Our findings suggest the possibility of early heat exposure effects in acute HS that may be useful in breeding or management techniques for producing broilers with high heat resistance.
Collapse
|
8
|
Miretti S, Lecchi C, Ceciliani F, Baratta M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front Vet Sci 2020; 7:578193. [PMID: 33392281 PMCID: PMC7775535 DOI: 10.3389/fvets.2020.578193] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through the post-transcriptional regulation of gene expression. An intriguing aspect in identifying these molecules as biomarkers is derived from their role in cell-to-cell communication, their active secretion from cells into the extracellular environment, their high stability in body fluids, and their ease of collection. All these features confer on miRNAs the potential to become a non-invasive tool to score animal welfare. There is growing interest in the importance of miRNAs as biomarkers for assessing the welfare of livestock during metabolic, environmental, and management stress, particularly in ruminants, pigs, and poultry. This review provides an overview of the current knowledge regarding the potential use of tissue and/or circulating miRNAs as biomarkers for the assessment of the health and welfare status in these livestock species.
Collapse
Affiliation(s)
- Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
9
|
Zhang S, Gao H, Yuan X, Wang J, Zang J. Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures. Animals (Basel) 2020; 10:ani10111953. [PMID: 33114083 PMCID: PMC7690825 DOI: 10.3390/ani10111953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Most of the studies focusing on energy partition patterns of growing pigs and the related mechanisms raised at different ambient temperatures were carried out during the 1970s to the early 2000s. With the rapid developments in pig breeding, research updates on such topics concerning modern growing pigs have been absent in the last decade. Therefore, this study focused on the energy partition patterns of modern growing pigs with different bodyweights at gradient-ambient temperatures and investigated the underlying changes in plasma metabolites under such conditions. Modern growing pigs at heavier bodyweight were more sensitive to high temperatures on energy intake and partition. At high ambient temperatures, most of the identified metabolites altered are associated with decreased fatty acid oxidation, increased lipid formation, and increased protein degradation. The findings of this study will provide possible solutions to precisely formulate diets for modern growing pigs raised at different ambient temperatures, and can help to improve our knowledge on potential mechanisms of thermoregulation in modern pig breeds. Abstract This study explores the energy partition patterns of modern growing pigs at 25 kg and 65 kg raised at gradient-ambient temperatures. It also investigates the underlying changes in plasma under such conditions, based on the integrative analysis of indirect calorimetry and non-target metabolomics profiling. Thirty-six barrows with initial BW of 26.4 ± 1.9 kg and 24 barrows with initial BW of 64.2 ± 3.1 kg were successively allotted to six respiration chambers with ambient temperatures set as 18 °C, 21 °C, 23 °C, 27 °C, 30 °C, and 32 °C, and four respiration chambers with ambient temperatures set as 18 °C, 23 °C, 27 °C, and 32 °C, respectively. Each pig was kept in an individual metabolic crate and consumed feed ad libitum, then transferred into the respiration chamber after a 7-day adaptation period for 5-day indirect calorimetry assay and 1-day fasting. As the ambient temperature increased from 18 °C to 32 °C, the voluntary feed intake, metabolizable energy intake, nitrogen intake, and retention, total heat production, and energy retention as a protein of growing pigs at 25 kg and 65 kg all linearly decreased (p < 0.05), with greater coefficients of variation for pigs at 65 kg when temperatures changed from 18 °C to 32 °C. The cortisol and thyroid hormone levels in the plasma of 25 kg pigs linearly decreased as the ambient temperature increased from 18 °C to 32 °C (p < 0.05), and 13 compounds were identified through metabolomics analysis, including up-regulated metabolites involved in fatty acid metabolism, such as adrenic acid and down-regulated metabolites involved in amino acid metabolism, such as spermidine at 32 °C. These results suggested that modern growing pigs at heavier bodyweight were more sensitive to high temperatures on energy intake and partition. Most of the identified metabolites altered at high ambient temperatures are associated with suppressed fatty acid oxidation and elevated lipogenesis and protein degradation.
Collapse
|
10
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
11
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
12
|
Fang W, Wen X, Meng Q, Liu L, Xie J, Zhang H, Everaert N. Running Head: Heat Affects Cholesterol and Bile Acid Alterations in Cholesterol and Bile Acids Metabolism in Large White Pigs during Short-Term Heat Exposure. Animals (Basel) 2020; 10:E359. [PMID: 32102194 PMCID: PMC7070487 DOI: 10.3390/ani10020359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Heat stress influences lipid metabolism independently of nutrient intake. It is not well understood how cholesterol and bile acid (BA) metabolism are affected by heat stress. To investigate the alterations of cholesterol and bile acids when pigs are exposed to short term heat stress, 24 Large White pigs (63.2 ± 9.5 kg body weight, BW) were distributed into one of three environmental treatments: control conditions (CON, 23 °C with ad libitum intake; n = 8), heat stress conditions (HS, 33 °C with ad libitum intake; n = 8), or pair-fed conditions (PF, 23 °C with the same amount to the feed consumed by the HS; n = 8) for three days. Compared with CON pigs, HS pigs reduced the average daily feed intake and average daily gain by 55% and 124%, respectively, and significantly increased rectal temperatures by 0.9 °C and respiration rates more than three-fold. The serum total cholesterol (TC), low-density lipoprotein-cholesterol, and triglycerides (TG) increased (p < 0.05), while hepatic TC, TG, and mRNA of 3-hydroxy-3-methylglutaryl-CoA reductase were reduced on day 3. Furthermore, liver taurine-conjugated BAs (TCBAs), including taurolithocholic acid, taurochenodeoxycholic acid (TCDCA), tauroursodeoxycholic acid, taurohyodeoxycholic acid, and taurocholic acid were elevated in HS pigs compared to CON and PF pigs (p < 0.05), and the level of chenodeoxycholic acid was more significant in the PF group than in the CON and HS groups. The concentration of ursodeoxycholic acid in the serum was higher in HS pigs than CON and PF pigs (p < 0.05), and TCDCA was increased in HS pigs compared with PF pigs (p < 0.05). Altogether, short-term HS reduced hepatic cholesterol levels by decreasing cholesterol synthesis, promoting cholesterol to TCBAs conversion, and cholesterol release to serum in growing pigs. This independently reduced feed intake might serve as a mechanism to protect cells from damage during the early period.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching, and Research Unit, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.F.); (X.W.); (Q.M.); (L.L.)
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching, and Research Unit, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
13
|
Liu G, Magnuson AD, Sun T, Tolba SA, Starkey C, Whelan R, Lei XG. Supplemental methionine exerted chemical form-dependent effects on antioxidant status, inflammation-related gene expression, and fatty acid profiles of broiler chicks raised at high ambient temperature1. J Anim Sci 2019; 97:4883-4894. [PMID: 31710661 PMCID: PMC6915222 DOI: 10.1093/jas/skz348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023] Open
Abstract
This study was to explore metabolic effects of two forms and concentrations of supplemental methionine in grower and finisher diets for broiler chickens raised at high temperature. Male Cornish cockerel chicks (total = 360, day-old) were divided into four groups (10 pens/treatment, 9 chicks/pen) and fed with 100% or 130% required methionine in the diets as DL-methionine (DL-MET) or 2-hydroxy-4-(methylthio)butanoate (HMTBA). The room was maintained at 4 to 13 °C above the suggested thermoneutral temperature. The higher concentration of both DL-MET and HMTBA enhanced (P < 0.05) hepatic GSH concentrations of the growers and plasma ferric reducing ability of the finishers. The DL-MET-fed growers had greater (P < 0.05%) muscle GSH and hepatic unsaturated fatty acid concentrations than those fed HMTBA. Expression of inflammation-related genes in the liver of finishers was affected (P < 0.05) by interaction effects of the methionine form and concentration. In conclusion, effects of the extra methionine supplementation on the high ambient temperature-related metabolic responses of broilers varied with their age and(or) tissue and the methionine form.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Animal Science, Cornell University, Ithaca, NY
| | | | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Samar A Tolba
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Charles Starkey
- Department of Poultry Science, Auburn University, Auburn, AL
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|
14
|
Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR. Genetic Selection for Thermotolerance in Ruminants. Animals (Basel) 2019; 9:E948. [PMID: 31717903 PMCID: PMC6912363 DOI: 10.3390/ani9110948] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
| | - Surinder S. Chauhan
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brendan Cullen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Iain J. Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| |
Collapse
|