1
|
Bus JD, Boumans IJMM, Engel J, Te Beest DE, Webb LE, Bokkers EAM. Circadian rhythms and diurnal patterns in the feed intake behaviour of growing-finishing pigs. Sci Rep 2023; 13:16021. [PMID: 37749122 PMCID: PMC10519948 DOI: 10.1038/s41598-023-42612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The feeding behaviour of growing-finishing pigs is an important indicator of performance, health and welfare, but this use is limited by its large, poorly-understood variation. We explored the variation in basal feed intake of individual pigs by detecting circadian rhythms, extracting features of diurnal patterns and assessing consistency over time, from day-to-day and across age. Hourly feed intake data of individual pigs (n = 110) was obtained during one growing-finishing phase, using electronic feeding stations. We applied wavelet analysis to assess rhythms and a hurdle generalised additive model to extract features of diurnal patterns. We found that circadian rhythms could be detected during 58 ± 3% (mean ± standard error) of days in the growing-finishing phase (range 0-100%), predominantly at older ages. Although the group diurnal intake pattern was alternans (small morning peak, larger afternoon peak), individual pigs showed a range of diurnal patterns that changed with age, differing mostly in the extent of night fasting and day-to-day consistency. Our results suggest that the type, day-to-day consistency and age development of diurnal patterns in feed intake show general group patterns but also differ between pigs. Using this knowledge, promising features may be selected to compare against production, health and welfare parameters.
Collapse
Affiliation(s)
- Jacinta D Bus
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands.
| | - Iris J M M Boumans
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| | - Jasper Engel
- Biometris, Wageningen University & Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Dennis E Te Beest
- Biometris, Wageningen University & Research, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Laura E Webb
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| | - Eddie A M Bokkers
- Animal Production Systems Group, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands
| |
Collapse
|
2
|
Vincent A, Dessauge F, Gondret F, Lebret B, Le Floc'h N, Louveau I, Lefaucheur L. Poor hygiene of housing conditions influences energy metabolism in a muscle type-dependent manner in growing pigs differing in feed efficiency. Sci Rep 2022; 12:7991. [PMID: 35568703 PMCID: PMC9107456 DOI: 10.1038/s41598-022-12050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
The ability of pigs to cope with inflammatory challenges may by modified by selection for residual feed intake (RFI), a measure of feed efficiency. In the current study, we evaluated skeletal muscle metabolic responses to degraded hygiene conditions in pigs divergently selected for RFI. At 82 d of age, low RFI and high RFI pigs were housed in either poor or good hygiene conditions. After a 6-week challenge, the poor hygiene conditions induced a decrease in growth performance (P < 0.001) and in plasma IGF-I concentrations (P < 0.003) in both lines. In the slow-twitch oxidative semispinalis muscle, poor hygiene conditions induced a shift towards a more oxidative metabolism and an activation of the AMPK pathway in pigs of both RFI lines. In the fast-twitch glycolytic longississimus muscle, poor hygiene conditions were associated to a less glycolytic metabolism in the HRFI line only. Poor hygiene conditions also increased the protein level of lipidation of microtubule-associated protein 1 light-chain 3β (LC3-II) in both RFI lines, suggesting an activation of the autophagy pathway. Altogether, the data revealed muscle-type specific metabolic adaptations to poor hygiene conditions, which may be related to different strategies to fuel the activated immune system.
Collapse
Affiliation(s)
- Annie Vincent
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France.
| | | | | | | | | | | | | |
Collapse
|
3
|
Patterson BM, Outhouse AC, Helm ET, Johnson L, Steadham EM, Dekkers JCM, Schwartz KJ, Gabler NK, Lonergan SM, Huff-Lonergan E. Novel Observations of Peroxiredoxin-2 Profile and Protein Oxidation in Skeletal Muscle From Pigs of Differing Residual Feed Intake and Health Status. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study’s objective was to determine the impact of a dual respiratory and enteric bacterial health challenge on the antioxidant protein peroxiredoxin-2 (Prdx-2) profile and protein oxidation in the skeletal muscle of pigs from 2 lines that were divergently selected for residual feed intake (RFI). The hypotheses were that (1) differences exist in the Prdx-2 profile between 2 RFI lines and infection status and (2) muscle from less efficient high-RFI and health-challenged pigs have greater cellular protein oxidation. Barrows (50 ± 7 kg, N = 24) from the 11th generation of the high-RFI (n = 12) and low-RFI (n = 12) Iowa State University lines were used. Pigs (n = 6 per line) were inoculated with Mycoplasma hyopneumoniae and Lawsonia intracellularis (MhLI) on day 0 post infection to induce a respiratory and enteric health challenge. Uninoculated pigs served as controls (n = 6 per line). Necropsy was at 21 d post infection. Sarcoplasmic protein oxidation, various forms of Prdx-2, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) content were determined. Neither RFI line nor infection status significantly affected protein carbonylation. Under nonreducing conditions, MhLI pigs had a greater amount of a slower-migrating GAPDH band (P = 0.017), indicating oxidative modification. Regardless of health status, the low-RFI pigs had less total Prdx-2 (P = 0.035), Prdx-2 decamer (P = 0.0007), and a higher ratio of hyperoxidized peroxiredoxin relative to Prdx-2 (P = 0.028) than the high-RFI pigs. The increased pool of active Prdx-2 in high-RFI pigs suggests greater oxidative stress in muscle in high- versus low-RFI pigs. The increase in oxidized GAPDH seen in muscle from MhLI pigs—particularly the high-RFI MhLI pigs—may be a response to the greater oxidative stress in the high-RFI MhLI. This work suggests that antioxidant proteins are important in growth and health-challenge situations.
Collapse
Affiliation(s)
| | | | - Emma T. Helm
- Iowa State University Department of Animal Science
| | | | | | | | - Kent J. Schwartz
- Iowa State University Department of Veterinary Diagnostic and Production Animal Medicine
| | | | | | | |
Collapse
|
4
|
Helm ET, Curry SM, De Mille CM, Schweer WP, Burrough ER, Gabler NK. Impact of viral disease hypophagia on pig jejunal function and integrity. PLoS One 2020; 15:e0227265. [PMID: 31910236 PMCID: PMC6946155 DOI: 10.1371/journal.pone.0227265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 01/19/2023] Open
Abstract
Pathogen challenges are often accompanied by reductions in feed intake, making it difficult to differentiate impacts of reduced feed intake from impacts of pathogen on various response parameters. Therefore, the objective of this study was to determine the impact of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) and feed intake on parameters of jejunal function and integrity in growing pigs. Twenty-four pigs (11.34 ± 1.54 kg BW) were randomly selected and allotted to 1 of 3 treatments (n = 8 pigs/treatment): 1) PRRSV naïve, ad libitum fed (Ad), 2) PRRSV-inoculated, ad libitum fed (PRRS+), and 3) PRRSV naïve, pair-fed to the PRRS+ pigs' daily feed intake (PF). At 17 days post inoculation, all pigs were euthanized and the jejunum was collected for analysis. At days post inoculation 17, PRRS+ and PF pigs had decreased (P < 0.05) transepithelial resistance compared with Ad pigs; whereas fluorescein isothiocyanate-dextran 4 kDa permeability was not different among treatments. Active glucose transport was increased (P < 0.05) in PRRS+ and PF pigs compared with Ad pigs. Brush border carbohydrase activity was reduced in PRRS+ pigs compared with PF pigs for lactase (55%; P = 0.015), sucrase (37%; P = 0.002), and maltase (30%; P = 0.015). For all three carbohydrases, Ad pigs had activities intermediate that of PRRS+ and PF pigs. The mRNA abundance of the tight junction proteins claudin 2, claudin 3, claudin 4, occludin, and zonula occludens-1 were reduced in PRRS+ pigs compared with Ad pigs; however, neither the total protein abundance nor the cellular compartmentalization of these tight junction proteins differed among treatments. Taken together, this study demonstrates that the changes that occur to intestinal epithelium structure, function, and integrity during a systemic PRRSV challenge can be partially explained by reductions in feed intake. Further, long term adaptation to PRRSV challenge and caloric restriction does reduce intestinal transepithelial resistance but does not appear to reduce the integrity of tight junction protein complexes.
Collapse
Affiliation(s)
- Emma T. Helm
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shelby M. Curry
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Carson M. De Mille
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Wesley P. Schweer
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Eric R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicholas K. Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
5
|
Liu H, Feye KM, Nguyen YT, Rakhshandeh A, Loving CL, Dekkers JCM, Gabler NK, Tuggle CK. Acute systemic inflammatory response to lipopolysaccharide stimulation in pigs divergently selected for residual feed intake. BMC Genomics 2019; 20:728. [PMID: 31610780 PMCID: PMC6792331 DOI: 10.1186/s12864-019-6127-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells. Results LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p = 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least one time point post injection relative to baseline in at least one line (n = 4 per line) (|log2(fold change)| ≥ log2(1.2); q < 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline. But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense response, immune response, and signaling were enriched in different co-expression clusters of genes responsive to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line at 24 hpi. Conclusions The pig lines divergently selected for RFI had a largely similar response to LPS stimulation. However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig’s acute systemic inflammatory response to LPS, although slight differences in intensity and duration may occur.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Kristina M Feye
- Interdepartmental Immunobiology, Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Yet T Nguyen
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, 23529, USA
| | - Anoosh Rakhshandeh
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Helm ET, Curry SM, De Mille CM, Schweer WP, Burrough ER, Zuber EA, Lonergan SM, Gabler NK. Impact of porcine reproductive and respiratory syndrome virus on muscle metabolism of growing pigs1. J Anim Sci 2019; 97:3213-3227. [PMID: 31212312 PMCID: PMC6667233 DOI: 10.1093/jas/skz168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is one of the most economically significant pig pathogens worldwide. However, the metabolic explanation for reductions in tissue accretion observed in growing pigs remains poorly defined. Additionally, PRRS virus challenge is often accompanied by reduced feed intake, making it difficult to discern which effects are virus vs. feed intake driven. To account for this, a pair-fed model was employed to examine the effects of PRRS challenge and nutrient restriction on skeletal muscle and liver metabolism. Forty-eight pigs were randomly selected (13.1 ± 1.97 kg BW) and allotted to 1 of 3 treatments (n = 16 pigs/treatment): 1) PRRS naïve, ad libitum fed (Ad), 2) PRRS-inoculated, ad libitum fed (PRRS+), and 3) PRRS naïve, pair-fed to the PRRS-inoculated pigs' daily feed intake (PF). At days postinoculation (dpi) 10 and 17, 8 pigs per treatment were euthanized and tissues collected. Tissues were assayed for markers of proteolysis (LM only), protein synthesis (LM only), oxidative stress (LM only), gluconeogenesis (liver), and glycogen concentrations (LM and liver). Growth performance, feed intake, and feed efficiency were all reduced in both PRRS+ and PF pigs compared with Ad pigs (P < 0.001). Furthermore, growth performance and feed efficiency were additionally reduced in PRRS+ pigs compared with PF pigs (P < 0.05). Activity of most markers of LM proteolysis (μ-calpain, 20S proteasome, and caspase 3/7) was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs, although activity of m-calpain was increased in PRRS+ pigs compared with Ad pigs (P = 0.025) at dpi 17. Muscle reactive oxygen species production was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs. However, phosphorylation of protein synthesis markers was decreased in PRRS+ pigs compared with both Ad (P < 0.05) and PF (P < 0.05) pigs. Liver gluconeogenesis was not increased as a result of PRRS; however, liver glycogen was decreased (P < 0.01) in PRRS+ pigs compared with Ad and PF pigs at both time points. Taken together, this work demonstrates the differential impact a viral challenge and nutrient restriction have on metabolism of growing pigs. Although markers of skeletal muscle proteolysis showed limited evidence of increase, markers of skeletal muscle synthesis were reduced during PRRS viral challenge. Furthermore, liver glycogenolysis seems to provide PRRS+ pigs with glucose needed to fuel the immune response during viral challenge.
Collapse
Affiliation(s)
- Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA
| | - Shelby M Curry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Wesley P Schweer
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | | | |
Collapse
|
7
|
Helm ET, Curry SM, Schwartz KJ, Lonergan SM, Gabler NK. Mycoplasma hyopneumoniae-Lawsonia intracellularis dual challenge modulates intestinal integrity and function1. J Anim Sci 2019; 97:2376-2384. [PMID: 30980078 PMCID: PMC6541822 DOI: 10.1093/jas/skz112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 01/09/2023] Open
Abstract
Lawsonia intracellularis (LI) and Mycoplasma hyopneumoniae (Mh) are 2 globally distributed pathogens that cause significant morbidity and mortality in grow-finish pigs. However, mechanisms that reduce growth and feed efficiency during LI and Mh infection are poorly defined. We hypothesized that reductions in performance are partially due to declines in intestinal function and integrity; thus, this study aimed to evaluate intestinal function and integrity of pigs during a 21-d Mh and LI dual challenge (MhLI). Littermate pairs of barrows (48.1 ± 6.7 kg BW) were selected; 1 pig from each pair was assigned to either MhLI challenge or nonchallenge treatments (n = 12). Pigs were individually housed, fed a corn-soybean diet, and allowed to acclimate for 21 d prior to inoculation. On days postinoculation (dpi) 0, MhLI pigs were dual inoculated with LI and Mh. On dpi 21, all pigs were euthanized for ileal and colon tissue collection. Formalin-fixed tissues were clinically scored and morphology analyzed, frozen tissues assayed for digestive enzyme activities, and fresh tissues mounted into modified Ussing Chambers to assess active nutrient transport, barrier integrity, and bacterial translocation. Data were analyzed using the Mixed Procedure of SAS with treatment as a fixed effect, age and start BW as covariates, and litter as a random effect. Compared with controls, MhLI pigs had decreased ADG (38%, P < 0.001), ADFI (25%, P < 0.001), and G:F (19%, P = 0.012). The MhLI dual challenge did not alter ileum morphology or transepithelial resistance (P > 0.10); however, ex vivo mucosal to serosal translocation of S. Typhimurium in the colon was increased (60%, P = 0.003) in MhLI pigs compared with controls. Additionally, MhLI pigs had increased ileal glucose transport (30%, P = 0.05) and decreased sucrase activity (30%, P = 0.049) compared with controls. This MhLI challenge antagonized intestinal function and integrity, and this may be a contributing factor to reduced pig performance.
Collapse
Affiliation(s)
- Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA
| | - Shelby M Curry
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Kent J Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | |
Collapse
|