1
|
Houston GE, Jones CK, Evans C, Otott HK, Stark CR, Bai J, Poulsen Porter EG, de Almeida MN, Zhang J, Gauger PC, Blomme AK, Woodworth JC, Paulk CB, Gebhardt JT. Evaluation of Truck Cab Decontamination Procedures following Inoculation with Porcine Epidemic Diarrhea Virus and Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2024; 14:280. [PMID: 38254449 PMCID: PMC10812598 DOI: 10.3390/ani14020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This experiment aimed to evaluate commercially available disinfectants and their application methods against porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) on truck cab surfaces. Plastic, fabric, and rubber surfaces inoculated with PEDV or PRRSV were placed in a full-scale truck cab and then treated with one of eight randomly assigned disinfectant treatments. After application, surfaces were environmentally sampled with cotton gauze and tested for PEDV and PRRSV using qPCR duplex analysis. There was a disinfectant × surface interaction (p < 0.0001), indicating a detectable amount of PEDV or PRRSV RNA was impacted by disinfectant treatment and surface material. For rubber surfaces, 10% bleach application had lower detectable amounts of RNA compared to all other treatments (p < 0.05) except Intervention via misting fumigation, which was intermediate. In both fabric and plastic surfaces, there was no evidence (p > 0.05) of a difference in detectable RNA between disinfectant treatments. For disinfectant treatments, fabric surfaces with no chemical treatment had less detectable viral RNA compared to the corresponding plastic and rubber (p < 0.05). Intervention applied via pump sprayer to fabric surfaces had less detectable viral RNA than plastic (p < 0.05). Furthermore, 10% bleach applied via pump sprayer to fabric and rubber surfaces had less detectable viral RNA than plastic (p < 0.05). Also, a 10 h downtime, with no chemical application or gaseous fumigation for 10 h, applied to fabric surfaces had less detectable viral RNA than other surfaces (p < 0.05). Sixteen treatments were evaluated via swine bioassay, but all samples failed to produce infectivity. In summary, commercially available disinfectants successfully reduced detectable viral RNA on surfaces but did not eliminate viral genetic material, highlighting the importance of bioexclusion of pathogens of interest.
Collapse
Affiliation(s)
- Grace E. Houston
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Cassandra K. Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.K.J.); (J.C.W.)
| | - Caitlin Evans
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.E.); (H.K.O.); (A.K.B.); (C.B.P.)
| | - Haley K. Otott
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.E.); (H.K.O.); (A.K.B.); (C.B.P.)
| | - Charles R. Stark
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.E.); (H.K.O.); (A.K.B.); (C.B.P.)
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Elizabeth G. Poulsen Porter
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Marcelo N. de Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA; (M.N.d.A.); (J.Z.); (P.C.G.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA; (M.N.d.A.); (J.Z.); (P.C.G.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA; (M.N.d.A.); (J.Z.); (P.C.G.)
| | - Allison K. Blomme
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.E.); (H.K.O.); (A.K.B.); (C.B.P.)
| | - Jason C. Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.K.J.); (J.C.W.)
| | - Chad B. Paulk
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA; (C.E.); (H.K.O.); (A.K.B.); (C.B.P.)
| | - Jordan T. Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
2
|
Shurson GC, Urriola PE, Schroeder DC. Biosecurity and Mitigation Strategies to Control Swine Viruses in Feed Ingredients and Complete Feeds. Animals (Basel) 2023; 13:2375. [PMID: 37508151 PMCID: PMC10376163 DOI: 10.3390/ani13142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
3
|
Mitigation of Salmonella on Food Contact Surfaces by Using Organic Acid Mixtures Containing 2-Hydroxy-4-(methylthio) Butanoic Acid (HMTBa). Foods 2023; 12:foods12040874. [PMID: 36832949 PMCID: PMC9956140 DOI: 10.3390/foods12040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Contaminated surfaces can transmit pathogens to food in industrial and domestic food-handling environments. Exposure to pathogens on food contact surfaces may take place via the cross-contamination of pathogens during postprocessing activities. Formaldehyde-based commercial sanitizers in recent years are less commonly being used within food manufacturing facilities due to consumer perception and labeling concerns. There is interest in investigating clean-label, food-safe components for use on food contact surfaces to mitigate contamination from pathogenic bacteria, including Salmonella. In this study, the antimicrobial effects of two types of organic acid mixtures containing 2-hydroxy-4-(methylthio) butanoic acid (HMTBa), Activate DA™ and Activate US WD-MAX™, against Salmonella when applied onto various food contact surfaces were evaluated. The efficacy of Activate DA (HMTBa + fumaric acid + benzoic acid) at 1% and 2% and Activate US WD-MAX (HMTBa + lactic acid + phosphoric acid) at 0.5% and 1% against Salmonella enterica (serovars Enteritidis, Heidelberg, and Typhimurium) were evaluated on six different material surfaces: plastic (bucket elevator and tote bag), rubber (bucket elevator belt and automobile tire), stainless steel, and concrete. There was a significant difference in the Salmonella log reduction on the material surfaces due to the organic acid treatments when compared to the untreated surfaces. The type of material surface also had an effect on the log reductions obtained. Stainless steel and plastic (tote) had the highest Salmonella log reductions (3-3.5 logs), while plastic (bucket elevator) and rubber (tire) had the lowest log reductions (1-1.7 logs) after treatment with Activate US WD-MAX. For Activate DA, the lowest log reductions (~1.6 logs) were observed for plastic (bucket elevator) and rubber (tire), and the highest reductions were observed for plastic (tote), stainless steel, and concrete (2.8-3.2 logs). Overall, the results suggested that Activate DA at 2% and Activate US WD-MAX at 1% are potentially effective at reducing Salmonella counts on food contact surfaces by 1.6-3.5 logs.
Collapse
|
4
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
5
|
Galvis JA, Corzo CA, Prada JM, Machado G. Modeling between-farm transmission dynamics of porcine epidemic diarrhea virus: Characterizing the dominant transmission routes. Prev Vet Med 2022; 208:105759. [PMID: 36155353 DOI: 10.1016/j.prevetmed.2022.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
The role of transportation vehicles, pig movement between farms, proximity to infected premises, and feed deliveries has not been fully considered in the dissemination dynamics of porcine epidemic diarrhea virus (PEDV). This has limited efforts for disease prevention, control and elimination restricting the development of risk-based resource allocation to the most relevant modes of PEDV dissemination. Here, we modeled nine pathways of between-farm transmission represented by a contact network of pig movements between sites, farm-to-farm proximity (local transmission), four distinct contact networks of transportation vehicles (trucks that transport pigs from farm-to-farm and farm-to-markets, as well as trucks transporting feed and staff), the volume of animal by-products in feed diets (e.g., fat and meat-and-bone-meal) to reproduce PEDV transmission dynamics. The model was calibrated in space and time with weekly PEDV outbreaks. We investigated the model performance to identify outbreak locations and the contribution of each route in the dissemination of PEDV. The model estimated that 42.7% of the infections in sow farms were related to vehicles transporting feed, 34.5% of infected nurseries were associated with vehicles transporting pigs between farms, and for both farm types, local transmission or pig movements were the next most relevant transmission routes. On the other hand, finishers were most often (31.4%) infected via local transmission, followed by the vehicles transporting feed and pigs between farms. Feed ingredients did not significantly improve model calibration metrics, sensitivity, and specificity; therefore, it was considered to have a negligible contribution in the dissemination of PEDV. The proposed modeling framework provides an evaluation of PEDV transmission dynamics, ranking the most important routes of PEDV dissemination and granting the swine industry valuable information to focus efforts and resources on the most important transmission routes.
Collapse
Affiliation(s)
- Jason A Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Joaquín M Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Dee N, Havas K, Shah A, Singrey A, Spronk G, Niederwerder M, Nelson E, Dee S. Evaluating the effect of temperature on viral survival in plant-based feed during storage. Transbound Emerg Dis 2022; 69:e2105-e2110. [PMID: 35363949 PMCID: PMC9790369 DOI: 10.1111/tbed.14546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Viruses of veterinary significance are known to survive for extended periods in plant-based feed ingredients imported into North America. To reduce the likelihood of virus introduction, high-risk ingredients, such as oil seed meals, are stored in designated facilities for extended periods under controlled environmental conditions to minimize viral infectivity prior to use in diets. While 30 days has become a standard storage period, the required ambient temperature to inactivate viruses during this time is not known. To address the question, 1-metric tonne totes of conventional soybean meal were inoculated with PRRSV 144 lineage 1C variant and SVA prior to storage for 30 days at 23.9°C, 15.5°C or 10°C, and feeding to pigs. Virus infectivity was evaluated through detection of viral RNA in oral fluid samples, along with clinical signs. Results indicated that inactivation of both viruses occurred in soy stored at 23.9°C. In contrast, SVA infectivity was observed in soy stored at both 15.5°C and 10°C, while PRRSV 144 L1C variant infectivity was only observed in soy stored at 10°C. These results suggest that a storage period of 30 days and a temperature of 23.9°C may assist in the reduction of the risk of virus contaminated plant-based feed ingredients, such as soybean meal.
Collapse
Affiliation(s)
- Nicholas Dee
- School of Public HealthUniversity of MinnesotaMinneapolisMinnesota
| | - Karyn Havas
- Pipestone Applied ResearchPipestone Veterinary ServicesPipestoneMinnesota
| | | | - Aaron Singrey
- Department of Veterinary and Biomedical SciencesSouth Dakota State UniversityBrookingsSouth Dakota
| | - Gordon Spronk
- Pipestone Applied ResearchPipestone Veterinary ServicesPipestoneMinnesota
| | - Megan Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansas
| | - Eric Nelson
- Department of Veterinary and Biomedical SciencesSouth Dakota State UniversityBrookingsSouth Dakota
| | - Scott Dee
- Pipestone Applied ResearchPipestone Veterinary ServicesPipestoneMinnesota
| |
Collapse
|
7
|
Wu X, Liu Y, Gao L, Yan Z, Zhao Q, Chen F, Xie Q, Zhang X. Development and Application of a Reverse-Transcription Recombinase-Aided Amplification Assay for Porcine Epidemic Diarrhea Virus. Viruses 2022; 14:591. [PMID: 35336998 PMCID: PMC8948910 DOI: 10.3390/v14030591] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus currently widespread worldwide in the swine industry. Since PEDV was discovered in China in 1984, it has caused huge economic losses in the swine industry. PEDV can infect pigs of all ages, but piglets have the highest infection with a death rate as high as 100%, and the clinical symptoms are watery diarrhea, vomiting, and dehydration. At present, there is not any report on PEDV detection by RT-RAA. In this study, we developed an isothermal amplification technology by using reverse-transcription recombinase-aided amplification assay (RT-RAA) combined with portable instruments to achieve a molecular diagnosis of PEDV in clinical samples from China. By designing a pair of RT-RAA primers and probes based on the PEDV N gene, this method breaks the limitations of existing detection methods. The assay time was within 30 min at 41 °C and can detect as few as 10 copies of PEDV DNA molecules per reaction. Sixty-two clinical tissue samples were detected by RT-qPCR and RT-RAA. The positive and negative rates for the two methods were 24.19% and 75.81%, respectively. Specificity assay showed that the RT-RAA had specifically detected PEDV and was not reactive for porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), swine flu virus (SIV), or porcine Japanese encephalitis virus (JEV). The results suggested that RT-RAA had a strong specificity and high detection sensitivity when combined with a portable instrument to complete the detection under a constant temperature of 30 min, which are more suitable for preventing and controlling PEDV onsite in China.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen’s Foodstuff Group Co., Ltd., Yunfu 527439, China;
| | - Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| |
Collapse
|
8
|
Antas M, Olech M, Szczotka-Bochniarz A. Molecular characterization of porcine epidemic diarrhoea virus (PEDV) in Poland reveals the presence of swine enteric coronavirus (SeCoV) sequence in S gene. PLoS One 2021; 16:e0258318. [PMID: 34714840 PMCID: PMC8555794 DOI: 10.1371/journal.pone.0258318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5' end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.
Collapse
Affiliation(s)
- Marta Antas
- Department of Swine Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| | | |
Collapse
|
9
|
Evaluating the distribution of African swine fever virus within a feed mill environment following manufacture of inoculated feed. PLoS One 2021; 16:e0256138. [PMID: 34383843 PMCID: PMC8360541 DOI: 10.1371/journal.pone.0256138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
It is critical to understand the role feed manufacturing may have regarding potential African swine fever virus (ASFV) transmission, especially given the evidence that feed and/or ingredients may be potential vectors. The objective of the study was to evaluate the distribution of ASFV in a feed mill following manufacture of contaminated feed. To accomplish this, a pilot-scale feed mill consisting of a mixer, bucket elevator, and spouting was constructed in a BSL-3Ag facility. First, a batch of ASFV-free feed was manufactured, followed by a batch of feed that had an ASFV-contaminated ingredient added to feed, which was then mixed and discharged from the equipment. Subsequently, four additional ASFV-free batches of feed were manufactured using the same equipment. Environmental swabs from 18 locations within the BSL-3Ag room were collected after each batch of feed was discharged. The locations of the swabs were categorized into four zones: 1) feed contact surface, 2) non-feed contact surface < 1 meter away from feed, 3) non-feed contact surface > 1 meter from feed, and 4) transient surfaces. Environmental swabs were analyzed using a qPCR specific for the ASFV p72 gene and reported as genomic copy number (CN)/mL of environmental swab processing buffer. Genomic copies were transformed with a log10 function for statistical analysis. There was no evidence of a zone × batch interaction for log10 genomic CN/mL (P = 0.625) or cycle threshold (Ct) value (P = 0.608). Sampling zone impacted the log10 p72 genomic CN/mL (P < 0.0001) and Ct values (P < 0.0001), with a greater amount of viral genome detected on transient surfaces compared to other surfaces (P < 0.05). This study illustrates that once ASFV enters the feed mill environment it becomes widespread and movement of people can significantly contribute to the spread of ASFV in a feed mill environment.
Collapse
|
10
|
Paploski IAD, Bhojwani RK, Sanhueza JM, Corzo CA, VanderWaal K. Forecasting viral disease outbreaks at the farm-level for commercial sow farms in the U.S. Prev Vet Med 2021; 196:105449. [PMID: 34376325 DOI: 10.1016/j.prevetmed.2021.105449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Porcine epidemic diarrhea virus (PEDv) was introduced to the U.S. in 2013 and is now considered to be endemic. Like many endemic diseases, it is challenging for producers to estimate and respond to spatial and temporal variation in risk. Utilizing a regional spatio-temporal dataset containing weekly PEDv infection status for ∼15 % of the U.S. sow herd, we present a machine learning platform developed to forecast the probability of PEDv infection in sow farms in the U.S. Participating stakeholders (swine production companies) in a swine-dense region of the U.S. shared weekly information on a) PEDv status of farms and b) animal movements for the past week and scheduled movements for the upcoming week. Environmental (average temperature, humidity, among others) and land use characteristics (hog density, proportion of area with different land uses) in a 5 km radius around each farm were summarized. Using the Extreme Gradient Boosting (XGBoost) machine learning model with Synthetic Minority Over-sampling Technique (SMOTE), we developed a near real-time tool that generates weekly PEDv predictions (pertaining to two-weeks in advance) to farms of participating stakeholders. Based on retrospective data collected between 2014 and 2017, the sensitivity, specificity, positive and negative predictive values of our model were 19.9, 99.9, 70.5 and 99.4 %, respectively. Overall accuracy was 99.3 %, although this metric is heavily biased by imbalance in the data (less than 0.7 % of farms had an outbreak each week). This platform has been used to deliver weekly real-time forecasts since December 2019. The forecast platform has a built-in feature to re-train the predictive model in order to remain as relevant as possible to current epidemiological situations, or to expand to a different disease. These dynamic forecasts, which account for recent animal movements, present disease distribution, and environmental factors, will promote data-informed and targeted disease management and prevention within the U.S. swine industry.
Collapse
Affiliation(s)
| | - Rahul Kumar Bhojwani
- Department of Computer Science, University of Minnesota, Minneapolis, MN, United States
| | - Juan Manuel Sanhueza
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recuros Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cesar Agustín Corzo
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
11
|
Muckey MB, Jones CK, Woodworth JC, Paulk CB, Dritz SS, Gebhardt JT. Using environmental sampling to evaluate the effectiveness of decontamination methods to reduce detection of porcine epidemic diarrhea virus RNA on feed manufacturing surfaces. Transl Anim Sci 2021; 5:txab121. [PMID: 34377952 PMCID: PMC8346718 DOI: 10.1093/tas/txab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a possible biological hazard in feed mills. If the virus enters a feed mill, it becomes widely distributed and is difficult to decontaminate from both feed contact and non-feed contact surfaces. The objective of this study was to evaluate a variety of liquid and dry decontamination treatments that could be used to reduce the amount of PEDV found on feed manufacturing surfaces. This experiment was designed as a 5 × 10 factorial with five different feed manufacturing surfaces and 10 decontamination treatments with three replicates of each combination. Surfaces included stainless steel, solid polyethylene, woven polypropylene tote bag, rubber, and sealed concrete coupons. One mL (1×105 TCID50/mL) of stock PEDV was applied to each surface and allowed to dry completely for 60 min. Next, for decontamination requiring surface application, the application was performed and allowed 15 min contact time. The quantity of PEDV RNA was determined using quantitative reverse transcription PCR. A decontamination treatment × surface interaction was observed (P < 0.0001), indicating the efficacy of treatment is dependent upon the surface in which it is applied. Within the cement surfaces, the sodium hypochlorite resulted in the greatest (P < 0.05) cycle threshold (Ct) value, followed by formaldehyde which had a greater (P < 0.05) Ct value compared to remaining treatments. Within polyethylene, rubber, and stainless steel surfaces, the formaldehyde treated surfaces had the greatest Ct values (P < 0.05), followed by the sodium hypochlorite treatment, with other treatments all having lower Ct values (P < 0.05). For the woven polyethylene surfaces, the formaldehyde and sodium hypochlorite treatments had greater Ct values compared to all other treatments (P < 0.05). Additional research is necessary to identify the role of decontamination treatment on PEDV infectivity and develop methods for decontamination of feed manufacturing facilities.
Collapse
Affiliation(s)
- Mary B Muckey
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan KS 66506, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan KS 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan KS 66506, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan KS 66506, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Shurson GC, Urriola PE, van de Ligt JLG. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound Emerg Dis 2021; 69:4-30. [PMID: 34171167 DOI: 10.1111/tbed.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Prions and certain endoparasites, bacteria, and viruses are internationally recognized as types of disease-causing biological agents that can be transmitted from contaminated feed to animals. Historically, foodborne biological hazards such as prions (transmissible spongiform encephalopathy), endoparasites (Trichinella spiralis, Toxoplasma gondii), and pathogenic bacteria (Salmonella spp., Listeria monocytogenes, Escherichia coli O157, Clostridium spp., and Campylobacter spp.) were major food safety concerns from feeding uncooked or improperly heated animal-derived food waste and by-products. However, implementation of validated thermal processing conditions along with verifiable quality control procedures has been effective in enabling safe use of these feed materials in animal diets. More recently, the occurrence of global Porcine Epidemic Diarrhea Virus and African Swine Fever Virus epidemics, dependence on international feed ingredient supply chains, and the discovery that these viruses can survive in some feed ingredient matrices under environmental conditions of trans-oceanic shipments has created an urgent need to develop and implement rigorous biosecurity protocols that prevent and control animal viruses in feed ingredients. Implementation of verifiable risk-based preventive controls, traceability systems from origin to destination, and effective mitigation procedures is essential to minimize these food security, safety, and sustainability threats. Creating a new biosafety and biosecurity framework will enable convergence of the diverging One Health components involving low environmental impact and functional feed ingredients that are perceived as having elevated biosafety risks when used in animal feeds.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Shurson GC, Palowski A, van de Ligt JLG, Schroeder DC, Balestreri C, Urriola PE, Sampedro F. New perspectives for evaluating relative risks of African swine fever virus contamination in global feed ingredient supply chains. Transbound Emerg Dis 2021; 69:31-56. [PMID: 34076354 DOI: 10.1111/tbed.14174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
There are no published reports indicating that the African swine fever virus (ASFV) has been detected in feed ingredients or complete feed. This is primarily because there are only a few laboratories in the world that have the biosecurity and analytical capabilities of detecting ASFV in feed. Several in vitro studies have been conducted to evaluate ASFV concentration, viability and inactivation when ASFV was added to various feed ingredients and complete feed. These inoculation studies have shown that some feed matrices support virus survival longer than others and the reasons for this are unknown. Current analytical methodologies have significant limitations in sensitivity, repeatability, ability to detect viable virus particles and association with infectivity. As a result, interpretation of findings using various measures may lead to misleading conclusions. Because of analytical and technical challenges, as well as the lack of ASFV contamination data in feed supply chains, quantitative risk assessments have not been conducted. A few qualitative risk assessments have been conducted, but they have not considered differences in potential scenarios for ASFV contamination between various types of feed ingredient supply chains. Therefore, the purpose of this review is to provide a more holistic understanding of the relative potential risks of ASFV contamination in various global feed ingredient supply chains and provide recommendations for addressing the challenges identified.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Amanda Palowski
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cecilia Balestreri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Elijah CG, Trujillo JD, Jones CK, Kwon T, Stark CR, Cool KR, Paulk CB, Gaudreault NN, Woodworth JC, Morozov I, Gallardo C, Gebhardt JT, Richt JA. Effect of mixing and feed batch sequencing on the prevalence and distribution of African swine fever virus in swine feed. Transbound Emerg Dis 2021; 69:115-120. [PMID: 34076951 PMCID: PMC9291899 DOI: 10.1111/tbed.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
It is critical to have methods that can detect and mitigate the risk of African swine fever virus (ASFV) in potentially contaminated feed or ingredients bound for the United States. The purpose of this work was to evaluate feed batch sequencing as a mitigation technique for ASFV contamination in a feed mill, and to determine if a feed sampling method could identify ASFV following experimental inoculation. Batches of feed were manufactured in a BSL-3Ag room at Kansas State University's Biosafety Research Institute in Manhattan, Kansas. First, the pilot feed manufacturing system mixed, conveyed, and discharged an ASFV-free diet. Next, a diet was manufactured using the same equipment, but contained feed inoculated with ASFV for final concentration of 5.6 × 104 TCID50 /g. Then, four subsequent ASFV-free batches of feed were manufactured. After discharging each batch into a collection container, 10 samples were collected in a double 'X' pattern. Samples were analysed using a qPCR assay for ASFV p72 gene then the cycle threshold (Ct) and Log10 genomic copy number (CN)/g of feed were determined. The qPCR Ct values (p < .0001) and the Log10 genomic CN/g (p < .0001) content of feed samples were impacted based on the batch of feed. Feed samples obtained after manufacturing the ASFV-contaminated diet contained the greatest amounts of ASFV p72 DNA across all criteria (p < .05). Quantity of ASFV p72 DNA decreased sequentially as additional batches of feed were manufactured, but was still detectable after batch sequence 4. This subsampling method was able to identify ASFV genetic material in feed samples using p72 qPCR. In summary, sequencing batches of feed decreases concentration of ASFV contamination in feed, but does not eliminate it. Bulk ingredients can be accurately evaluated for ASFV contamination by collecting 10 subsamples using the sampling method described herein. Future research is needed to evaluate if different mitigation techniques can reduce ASFV feed contamination.
Collapse
Affiliation(s)
- Catherine Grace Elijah
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| | - Charles R Stark
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Konner R Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| | - Carmina Gallardo
- Animal Health Research Centre, Instituto Nacional de Investigación y Technología Agraria y Alimentaria, Madrid, Spain
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jürgen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Gebhardt JT, Dritz SS, Jones CK, Woodworth JC, Paulk CB. Lessons learned from preliminary monitoring for African swine fever virus in a region of ongoing transmission. J Am Vet Med Assoc 2021; 258:35-38. [PMID: 33314976 DOI: 10.2460/javma.258.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lachapelle V, Racicot M, Comeau G, Rhouma M, Leroux A, Noubissie OW, Provost F, Zanabria R, Gaucher ML, Costa M, Chorfi Y, Holley R, Smillie J, Bosch ML, Dumas A, Brockhoff E, Collins S, Snelgrove P, Quessy S. Expert Elicitation To Estimate the Feed Safety Impact of Criteria Included in the Canadian Food Inspection Agency Risk Assessment Model for Feed Mills. J Food Prot 2021; 84:611-627. [PMID: 33232460 DOI: 10.4315/jfp-20-371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 01/23/2023]
Abstract
ABSTRACT The Canadian Food Inspection Agency is developing an Establishment-based Risk Assessment (ERA) model for commercial and on-farm mills involved in the manufacture, storage, packaging, labeling, or distribution of livestock feed (ERA-Feed Mill model). This model will help inform the allocation of inspection resources on the basis of feed safety risk, including animal health and food safety risk. In a previous study, 34 risk factors, grouped into inherent, mitigation, and compliance clusters, along with assessment criteria were selected. The objective of this current study was to estimate the relative risk (RR) of the 203 assessment criteria on the basis of the impact on feed safety to design an ERA-Feed Mill model algorithm. Furthermore, the intent of this study was to assess the maximum increase or decrease of risk obtained when multiple criteria belonging to a same cluster were identified in a specific feed mill. To do so, a two-round face-to-face expert elicitation was conducted with 28 Canadian feed experts. Results showed no significant association between respondent profiles (years of experience and work sector) and estimated RR. Uniformity of answers between experts improved between rounds. Criteria having the highest increase in risk (median RR ≥ 4) included the presence of materials prohibited to be fed to ruminants in a facility that produces ruminant feed, the presence of multiple livestock species on-site, and historical noncompliances related to the inspection of the feed mill's process control and end-product control programs. Risk mitigation criteria having the highest impact on decreasing the risk were the implementation of feed safety certifications, the use of dedicated manufacturing lines (prohibited materials or medications), and having a hazard sampling plan in place for finished feed. The median RR assigned to each criterion and cluster will be used to build an algorithm of the Canadian Food Inspection Agency's ERA-Feed Mill model. HIGHLIGHTS
Collapse
Affiliation(s)
- Virginie Lachapelle
- Canadian Food Inspection Agency, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Manon Racicot
- Canadian Food Inspection Agency, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2.,(ORCID: https://orcid.org/0000-0002-5003-5901 [M. Racicot])
| | - Geneviève Comeau
- Canadian Food Inspection Agency, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Mohamed Rhouma
- Canadian Food Inspection Agency, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2.,Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Alexandre Leroux
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | | | - France Provost
- Canadian Food Inspection Agency, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Romina Zanabria
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Marie-Lou Gaucher
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Marcio Costa
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Younès Chorfi
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Rick Holley
- University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg, Manitoba, Canada R3T 2N2
| | - John Smillie
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - My-Lien Bosch
- Animal Nutrition Association of Canada, 300 Sparks Street, Suite 330, Ottawa, Ontario, Canada K1R 7S3
| | - André Dumas
- Center for Aquaculture Technologies Canada, 20 Hope Street, P.O. Box 388, Souris, Prince Edward Island, Canada C0A 2B0
| | - Egan Brockhoff
- Canadian Pork Council, 900-220 Laurier Avenue West, Ottawa, Ontario, Canada K1P 5Z9
| | - Stephanie Collins
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, 58 Sipu Road, Truro, Nova Scotia, Canada B2N 5E3; and
| | - Phil Snelgrove
- Canadian Food Inspection Agency, 59 Camelot Drive, Ottawa, Ontario, Canada K1A 0Y9
| | - Sylvain Quessy
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| |
Collapse
|
17
|
Rhouma M, Lachapelle V, Comeau G, Quessy S, Zanabria R, Provost F, Italiano C, Holley R, Smillie J, Brockhoff E, Bosch ML, Collins S, Dumas A, Chorfi Y, Costa M, Gaucher ML, Racicot M. Identification and selection of animal health and food safety-related risk factors to be included in the Canadian Food Inspection Agency's risk assessment model for livestock feed mills. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Lerner AB, Cochrane RA, Gebhardt JT, Dritz SS, Jones CK, DeRouchey JM, Tokach MD, Goodband RD, Bai J, Porter E, Anderson J, Gauger PC, Magstadt DR, Zhang J, Bass B, Karnezos T, de Rodas B, Woodworth JC. Effects of medium chain fatty acids as a mitigation or prevention strategy against porcine epidemic diarrhea virus in swine feed. J Anim Sci 2020; 98:5843591. [PMID: 32447386 PMCID: PMC7281870 DOI: 10.1093/jas/skaa159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Feed has been shown to be a vector for viral transmission. Four experiments were conducted to: 1) determine if medium chain fatty acids (MCFA) are effective mitigants when applied to feed both pre- and post-porcine epidemic diarrhea virus (PEDV) inoculation measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), 2) evaluate varying levels and combinations of MCFA measured by qRT-PCR, and 3) evaluate selected treatments in bioassay to determine infectivity. In exp. 1, treatments were arranged in a 2 × 2 + 1 factorial with main effects of treatment (0.3% commercial formaldehyde [CF] product, Sal CURB [Kemin Industries, Inc.; Des Moines, IA], or 1% MCFA blend (Blend) of 1:1:1 C6:C8:C10 [PMI, Arden Hills, MN]) and timing of application (pre- or post-inoculation with PEDV) plus a positive control (PC; feed inoculated with PEDV and no treatment). All combinations of treatment and timing decreased detectable PEDV compared with the PC (P < 0.05). Pre-inoculation treatment elicited decreased magnitude of PEDV detection (cycle threshold value) compared with post-inoculation (P = 0.009). Magnitude of PEDV detection was decreased for CF compared with Blend (P < 0.0001). In exp. 2, pre-inoculation treatments consisted of: 1) PC, 2) 0.3% CF, 3 to 5) 0.125% to 0.33% C6:0, 6 to 8) 0.125% to 0.33% C8:0, 9 to 11) 0.125% to 0.33% C10:0, and 12 to 15) 0.125% to 0.66% C5:0. Treating feed with 0.33% C8:0 resulted in decreased (P < 0.05) PEDV detection compared with all other treatments. Increasing concentration of each individual MCFA decreased PEDV detectability (P < 0.042). In exp. 3, pre-inoculation treatments consisted of: 1) PC, 2) 0.3% CF, 3 to 7) 0.25% to 1% Blend, 8 to 10) 0.125% to 0.33% C6:0 + C8:0, 11 to 13) 0.125% to 0.33% C6:0 + C10:0, and 14 to 16) 0.125% to 0.33% C8:0 + C10:0. Treating feed with CF, 0.5% Blend, 0.75% Blend, 1% Blend, all levels of C6:0+C8:0, 0.25% C6:0 + 0.25% C10:0, 0.33% C6:0 + 0.33% C10:0, 0.25% C8:0 + 0.25% C10:0, or 0.33% C8:0 + 0.33% C10:0 elicited decreased detection of PEDV compared with PC (P < 0.05). Increasing concentration of each MCFA combination decreased PEDV detectability (linear, P < 0.012). In exp. 4, feed was treated pre-inoculation with: 1) no treatment (PC), 2) 0.3% CF, 3) 0.5% Blend, or 4) 0.3% C8:0 and analyzed via qRT-PCR and bioassay. Adding 0.5% Blend or 0.3% C8:0 resulted in decreased PEDV compared with PC and only PC resulted in a positive bioassay. Therefore, MCFA can decrease detection of PEDV in feed. Further, inclusion of lower levels of MCFA than previously evaluated are effective against PEDV.
Collapse
Affiliation(s)
- Annie B Lerner
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | | - Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Elizabeth Porter
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joe Anderson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | | | | | | | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
19
|
Abstract
Global pork production has largely adopted on-farm biosecurity to minimize vectors of disease transmission and protect swine health. Feed and ingredients were not originally thought to be substantial vectors, but recent incidents have demonstrated their ability to harbor disease. The objective of this paper is to review the potential role of swine feed as a disease vector and describe biosecurity measures that have been evaluated as a way of maintaining swine health. Recent research has demonstrated that viruses such as porcine epidemic diarrhea virus and African Swine Fever Virus can survive conditions of transboundary shipment in soybean meal, lysine, and complete feed, and contaminated feed can cause animal illness. Recent research has focused on potential methods of preventing feed-based pathogens from infecting pigs, including prevention of entry to the feed system, mitigation by thermal processing, or decontamination by chemical additives. Strategies have been designed to understand the spread of pathogens throughout the feed manufacturing environment, including potential batch-to-batch carryover, thus reducing transmission risk. In summary, the focus on feed biosecurity in recent years is warranted, but additional research is needed to further understand the risk and identify cost-effective approaches to maintain feed biosecurity as a way of protecting swine health.
Collapse
|
20
|
Puente H, Randazzo W, Falcó I, Carvajal A, Sánchez G. Rapid Selective Detection of Potentially Infectious Porcine Epidemic Diarrhea Coronavirus Exposed to Heat Treatments Using Viability RT-qPCR. Front Microbiol 2020; 11:1911. [PMID: 32973701 PMCID: PMC7472829 DOI: 10.3389/fmicb.2020.01911] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) cause severe respiratory, enteric, and systemic infections in a wide range of hosts, including humans and animals. Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of porcine epidemic diarrhea (PED), a highly contagious intestinal disease affecting pigs of all ages. In this study, we optimized a viability real-time reverse transcriptase polymerase chain reaction (RT-qPCR) for the selective detection of infectious and heat-inactivated PEDV. PEMAX™, EMA™, and PMAxx™ photoactivable dyes along with PtCl4 and CDDP platinum compounds were screened as viability markers using two RT-qPCR assays: firstly, on PEDV purified RNA, and secondly on infectious and thermally inactivated virus suspensions. Furthermore, PMAxx™ pretreatment matched the thermal inactivation pattern obtained by cell culture better than other viability markers. Finally, we further optimized the pretreatment by coupling viability markers with Triton X-100 in inoculated serum resulting in a better estimation of PEDV infectivity than RT-qPCR alone. Our study has provided a rapid analytical tool based on viability RT-qPCR to infer PEDV infectivity with potential application for feed and feed ingredients monitoring in swine industry. This development would allow for greater accuracy in epidemiological surveys and outbreak investigations.
Collapse
Affiliation(s)
- Héctor Puente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
21
|
Dee SA, Niederwerder MC, Patterson G, Cochrane R, Jones C, Diel D, Brockhoff E, Nelson E, Spronk G, Sundberg P. The risk of viral transmission in feed: What do we know, what do we do? Transbound Emerg Dis 2020; 67:2365-2371. [PMID: 32359207 PMCID: PMC7754325 DOI: 10.1111/tbed.13606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified in 2014 during the porcine epidemic diarrhoea virus epidemic in North America. Since the identification of this novel risk factor, scientists have conducted numerous studies to understand its relevance. Over the past few years, the body of scientific evidence supporting the reality of this risk has grown substantially. In addition, numerous papers describing actions and interventions designed to mitigate this risk have been published. Therefore, the purpose of this paper is to review the literature on the risk of feed (what do we know) and the protocols developed to reduce this risk (what do we do) in an effort to develop a comprehensive document to raise awareness, facilitate learning, improve the accuracy of risk assessments and to identify knowledge gaps for future studies.
Collapse
Affiliation(s)
- Scott A Dee
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gil Patterson
- Center for Animal Health in Appalachia, Lincoln Memorial University, Harrogate, TN, USA
| | - Roger Cochrane
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA
| | - Cassie Jones
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Diego Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Eric Nelson
- Department of Veterinary Science, South Dakota State University, Brookings, SD, USA
| | - Gordon Spronk
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA
| | | |
Collapse
|
22
|
Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res 2020; 286:198045. [PMID: 32502552 PMCID: PMC7266596 DOI: 10.1016/j.virusres.2020.198045] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
23
|
Cochrane RA, Dritz SS, Woodworth JC, Stark CR, Saensukjaroenphon M, Gebhardt JT, Bai J, Hesse RA, Poulsen EG, Chen Q, Gauger PC, Derscheid RJ, Zhang J, Tokach MD, Main RG, Jones CK. Assessing the effects of medium-chain fatty acids and fat sources on PEDV infectivity. Transl Anim Sci 2020; 4:txz179. [PMID: 32289114 PMCID: PMC7107285 DOI: 10.1093/tas/txz179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/27/2019] [Indexed: 11/12/2022] Open
Abstract
The overall objective of this study was to compare the efficacy of medium-chain fatty acids (MCFA) to other common fat sources to minimize the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination in a pig bioassay. Treatments were feed with mitigants inoculated with PEDV after application and were: 1) positive control with no chemical treatment; 2) 0.325% commercially available formaldehyde-based product; 3) 1% blend of 1:1:1 caproic (C6), caprylic (C8), and capric acids (C10) and applied with an aerosolizing nozzle; 4) treatment 3 applied directly into the mixer without an aerosolizing nozzle; 5) 0.66% caproic acid; 6) 0.66% caprylic acid; 7) 0.66% capric acid; 8) 0.66% lauric acid; 9) 1% blend of 1:1 capric and lauric acids; 10) 0.3% commercially available dry C12 product; 11) 1% canola oil; 12) 1% choice white grease; 13) 2% coconut oil; 14) 1% coconut oil; 15) 2% palm kernel oil; 16) 1% palm kernel oil; 17) 1% soy oil and four analysis days (0, 1, 3, and 7 post inoculation) as well as 1 treatment of PEDV-negative feed without chemical treatment. There was a treatment × day interaction (P < 0.002) for detectable PEDV RNA. The magnitude of the increase in Ct value from d 0 to 7 was dependent upon the individual treatments. Feed treated with individual MCFA, 1% MCFA blend, or commercial-based formaldehyde had fewer (P < 0.05) detectable viral particles than all other treatments. Commercial-based formaldehyde, 1% MCFA, 0.66% caproic, 0.66% caprylic, and 0.66% capric acids had no evidence of infectivity 10-d old pig bioassay, while there was no evidence the C12 commercial product or longer chain fat sources inhibited PEDV infectivity. Interestingly, pigs given the coconut oil source with the highest composition of caprylic and capric only showed signs of infectivity on the last day of bioassay. These data suggest some MCFA have potential for reducing post feed manufacture PEDV contamination.
Collapse
Affiliation(s)
- Roger A Cochrane
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Charles R Stark
- Department of Grain Sciences and Industry, Kansas State University, Manhattan, KS
| | | | - Jordan T Gebhardt
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Jianfa Bai
- Veterinary Diagnostic Lab, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Richard A Hesse
- Veterinary Diagnostic Lab, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Elizabeth G Poulsen
- Veterinary Diagnostic Lab, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Qi Chen
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Phillip C Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Rachel J Derscheid
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jianqiang Zhang
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Michael D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Rodger G Main
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| |
Collapse
|
24
|
Jones C, Stewart S, Woodworth J, Dritz S, Paulk C. Validation of sampling methods in bulk feed ingredients for detection of swine viruses. Transbound Emerg Dis 2020; 67:1-5. [PMID: 31403747 PMCID: PMC7003878 DOI: 10.1111/tbed.13326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022]
Abstract
Animal feed can be contaminated with fomites carrying swine viruses and subsequently be a vehicle for viral transmission. This contamination may not be evenly distributed, and there is no validated sampling method for detection of viruses in animal feed or ingredients. The purpose of this experiment was to evaluate the sensitivity of ingredient sampling methods for detection of porcine epidemic diarrhoea virus (PEDV). No animals were used in this experiment, so approval from an animal ethics committee was not necessary. Thirteen kg soybean meal was used in a 2 × 2 factorial plus a control, with 2 doses of PEDV (Low: 103 TCID50 /g versus High: 105 TCID50 /g) and two sample types (individual probes versus composite sample). Soybean meal was confirmed PEDV negative, then loaded into individual, 1-kg polyethylene tote bags with PEDV introduced after loading the first 100 g. There were six replicates per PEDV dose plus a control. Ten individual probes or one composite sample per bag were created and analysed for PEDV via qRT-PCR. The interaction, dose and sample type were significant for both PEDV presence and quantity. No control samples had detectable PEDV. At the low dose, no PEDV RNA was detected in individual probes or composite samples, but was confirmed in 100% (32.4 Ct ) of the inoculant samples. This is likely due to loss of sensitivity during the analysis process, which has been previously reported to cause a loss up to 10 Ct when detecting PEDV in feed or ingredients. At the high dose, only 37% (37.7 Ct ) of the probes had detectable PEDV RNA. Composite samples were more sensitive (p < .05), with PEDV RNA detected in 100% of samples (35.7 Ct ). In summary, sampling bulk ingredients for PEDV should include compositing at least 10 individual samples. Future research is needed to identify alternative methods that have a similar sensitivity, but require less time and effort to collect such a sample.
Collapse
Affiliation(s)
- Cassandra Jones
- Department of Animal Sciences and IndustryKansas State UniversityManhattanKansas
| | - Savannah Stewart
- Department of Animal Sciences and IndustryKansas State UniversityManhattanKansas
| | - Jason Woodworth
- Department of Animal Sciences and IndustryKansas State UniversityManhattanKansas
| | - Steve Dritz
- Department of Diagnostic Medicine/PathobiologyKansas State UniversityManhattanKansas
| | - Chad Paulk
- Department of Grain Science and IndustryKansas State UniversityManhattanKansas
| |
Collapse
|
25
|
Gebhardt JT, Cochrane RA, Woodworth JC, Jones CK, Niederwerder MC, Muckey MB, Stark CR, Tokach MD, DeRouchey JM, Goodband RD, Bai J, Gauger PC, Chen Q, Zhang J, Main RG, Dritz SS. Evaluation of the effects of flushing feed manufacturing equipment with chemically treated rice hulls on porcine epidemic diarrhea virus cross-contamination during feed manufacturing. J Anim Sci 2018; 96:4149-4158. [PMID: 30052979 PMCID: PMC6162582 DOI: 10.1093/jas/sky295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Various strategies have been proposed to mitigate potential risk of porcine epidemic diarrhea virus (PEDV) transmission via feed and feed ingredients. Wet disinfection has been found to be the most effective decontamination of feed mill surfaces; however, this is not practical on a commercial feed production scale. Another potential mitigation strategy would be using chemically treated rice hulls flushed through the feed manufacturing equipment. Therefore, the objective of this study was to determine the effects of medium-chain fatty acids (MCFA) or formaldehyde-treated rice hull flush batches as potential chemical mitigation strategies for PEDV during feed manufacturing. Feed without evidence of PEDV RNA contamination was inoculated with PEDV. Based on polymerase chain reaction analysis, this feed had a cycle threshold (Ct) = 30.2 and was confirmed infective in bioassay. After manufacturing the PEDV-positive feed, untreated rice hulls, formaldehyde-treated rice hulls, 2% MCFA- (a 1:1:1 blend of hexanoic, octanoic, and decanoic acid) treated rice hulls, or 10% MCFA-treated rice hulls were flushed through laboratory scale mixers. For the untreated rice hulls, 3 of 6 samples had detectable PEDV RNA, whereas 1 of 6 formaldehyde-treated rice hull flush samples and 2 of 6 of the 2% MCFA rice hull flush samples had detectable PEDV RNA. However, PEDV RNA was not detected in any of the 10% MCFA rice hull flush samples. Then, rice hulls treated with 10% MCFA were mixed and discharged through a production scale mixer and bucket elevator following PEDV-positive feed. No rice hull flush or feed samples from the mixer following chemically treated rice hull flush had detectible PEDV RNA. However, one 10% MCFA rice hull sample collected from the bucket elevator discharge spout had detectible PEDV RNA. Dust collected following mixing of PEDV contaminated feed had detectable PEDV RNA (Ct = 29.4) and was infectious. However, dust collected immediately after the 10% MCFA rice hull flush batch had a reduced quantity of PEDV RNA (Ct = 33.7) and did not cause infection. Overall, the use of rice hull flushes effectively reduced the quantity of detectible RNA present after mixing a batch of PEDV-positive feed. Chemical treatment of rice hulls with formaldehyde or 10% MCFA provided additional reduction in detectible RNA. Finally, dust collected after manufacturing PEDV-inoculated feed has the potential to serve as a vector for PEDV transmission.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Roger A Cochrane
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Mary B Muckey
- Department of Grain Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Charles R Stark
- Department of Grain Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Philip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Qi Chen
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Rodger G Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| |
Collapse
|
26
|
Trudeau MP, Verma H, Urriola PE, Sampedro F, Shurson GC, Goyal SM. Survival of porcine epidemic diarrhea virus (PEDV) in thermally treated feed ingredients and on surfaces. Porcine Health Manag 2017; 3:17. [PMID: 28932412 PMCID: PMC5604292 DOI: 10.1186/s40813-017-0064-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infection with Porcine Epidemic Diarrhea Virus (PEDV) causes vomiting, diarrhea, and dehydration in young pigs. The virus made its first appearance in the U.S. in 2013, where it caused substantial neonatal mortality and economic losses in the U.S. pork industry. Based on outbreak investigations, it is hypothesized that the virus could be transmitted through contaminated feed or contaminated feed surfaces. This potential risk created a demand for research on the inactivation kinetics of PEDV in different environments. Therefore, the objective of this study was to evaluate the survival of PEDV in 9 different feed ingredients when exposed to 60, 70, 80, and 90 °C, as well as the survival on four different surfaces (galvanized steel, stainless steel, aluminum, and plastic). RESULTS Overall, there were no differences (P > 0.05) in virus survival among the different feed matrices studied when thermally processed at 60 to 90 °C for 5, 10, 15, or 30 min. However, the time necessary to achieve a one log reduction in virus concentration was less (P < 0.05) when ingredients were exposed to temperatures from 70 °C (3.7 min), 80 °C (2.4 min), and 90 °C (2.3 min) compared with 60 °C (4.4 min). The maximum inactivation level (3.9 log) was achieved when heating all ingredients at 90 °C for 30 min. There were no differences in the amount of time necessary to cause a one log reduction in PEDV concentration among the different surfaces. CONCLUSIONS The results of this study showed that PEDV survival among the 9 feed ingredients evaluated was not different when exposed to thermal treatments for up to 30 min. However, different combinations of temperature and time resulted in achieving a 3 to 4 log reduction of PEDV in all feed ingredients evaluated. Finally, PEDV survival was similar on galvanized steel, stainless steel, aluminum and plastic.
Collapse
Affiliation(s)
- Michaela P Trudeau
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave, Falcon Heights, MN 55108 USA
| | - Harsha Verma
- Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108 USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave, Falcon Heights, MN 55108 USA
| | - Fernando Sampedro
- Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108 USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, 1988 Fitch Ave, Falcon Heights, MN 55108 USA
| | - Sagar M Goyal
- Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108 USA
| |
Collapse
|