1
|
Fan MZ, Cheng L, Wang M, Chen J, Fan W, Jashari F, Wang W. Monomodular and multifunctional processive endocellulases: implications for swine nutrition and gut microbiome. Anim Microbiome 2024; 6:4. [PMID: 38308359 PMCID: PMC10837961 DOI: 10.1186/s42523-024-00292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Poor efficiency of dietary fibre utilization not only limits global pork production profit margin but also adversely affects utilization of various dietary nutrients. Poor efficiency of dietary nutrient utilization further leads to excessive excretion of swine manure nutrients and results in environmental impacts of emission of major greenhouse gases (GHG), odor, nitrate leaching and surface-water eutrophication. Emission of the major GHG from intensive pork production contributes to global warming and deteriorates heat stress to pigs in tropical and sub-tropical swine production. Exogenous fibre enzymes of various microbial cellulases, hemicellulases and pectinases have been well studied and used in swine production as the non-nutritive gut modifier feed enzyme additives in the past over two decades. These research efforts have aimed to improve growth performance, nutrient utilization, intestinal fermentation as well as gut physiology, microbiome and health via complementing the porcine gut symbiotic microbial fibrolytic activities towards dietary fibre degradation. The widely reported exogenous fibre enzymes include the singular use of respective cellulases, hemicellulases and pectinases as well as their multienzyme cocktails. The currently applied exogenous fibre enzymes are largely limited by their inconsistent in vivo efficacy likely due to their less defined enzyme stability and limited biochemical property. More recently characterized monomodular, multifunctional and processive endoglucanases have the potential to be more efficaciously used as the next-generation designer fibre biocatalysts. These newly emerging multifunctional and processive endoglucanases have the potential to unleash dietary fibre sugar constituents as metabolic fuels and prebiotics, to optimize gut microbiome, to maintain gut permeability and to enhance performance in pigs under a challenged environment as well as to parallelly unlock biomass to manufacture biofuels and biomaterials.
Collapse
Affiliation(s)
- Ming Z Fan
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
- One Health Institute, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| | - Laurence Cheng
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Min Wang
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Jiali Chen
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Wenyi Fan
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- Transpharmation LTD, N1M 2W3, Fergus, ON, Canada
| | - Fatmira Jashari
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
- The Canadian Food Inspection Agency Ontario Operation, N1G 4S9, Guelph, ON, Canada
| |
Collapse
|
2
|
Zhang G, Zhao J, Song X, Yang M, Wang H, Wu Y. Feeding dietary fermentable fiber improved fecal microbial composition and increased acetic acid production in a nursery pig model. J Anim Sci 2023; 101:skad260. [PMID: 37535451 PMCID: PMC10464512 DOI: 10.1093/jas/skad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
The objective of this study was to determine the fermentable fiber (FF) content of several common fibrous ingredients fed to nursery pigs, and then evaluate the effect of dietary FF level on growth performance and fecal microbial composition. In experiment 1, 54 nursery pigs were randomly allotted to be fed nine diets with six replicate pigs per diet. Dietary treatments included a corn-soybean meal basal diet and eight test diets based on a mixture of the corn-soybean meal diet and corn distillers dried grains with solubles, sunflower meal, oat bran, wheat bran, corn bran, sugar beet pulp (SBP), apple pomace (AP) or soybean hulls (SH). In experiment 2, 180 nursery pigs were housed in 30 pens (six pigs per pen) and randomly allotted to be fed five diets with different FF to total dietary fiber (TDF) ratios, which were 0.52, 0.55, 0.58, 0.61, and 0.64, respectively. Results showed that the FF content in SBP, AP, and SH was greater (P < 0.01) than that in other ingredients. Water binding capacity of fibrous ingredients was positively correlated (P < 0.05) to the digestibility of TDF, acid detergent fiber, and non-starch polysaccharides in test ingredients. Pigs fed the SBP, AP and SH diets had greater (P < 0.05) fecal acetic acid and total short-chain fatty acids (SCFAs) concentrations compared with pigs fed other diets. Fecal acetic acid and total SCFAs concentrations were positively correlated (P < 0.05) with FF content in experimental diets. Average daily weight gain and average daily feed intake of pigs quadratically increased (P < 0.01) as the ratios of FF to TDF increased. Pigs in FF64% group showed higher (P < 0.05) ACE index and fecal acetic acid concentration compared with pigs fed the dietary FF/TDF ratio of 0.52 to 0.61. Compared with the classification system of soluble dietary fiber and insoluble dietary fiber, FF could better describe the mechanism by which dietary fiber has beneficial effects on pig gut health.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Swine Nutrition laboratory, Wellhope Foods Co., Ltd., Shengyang 110164, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoming Song
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meiyu Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Li Z, Tang L, Liu N, Zhang F, Liu X, Jiang Q, Chen J, Ma X. Comparative Effects of Compound Enzyme and Antibiotics on Growth Performance, Nutrient Digestibility, Blood Biochemical Index, and Intestinal Health in Weaned Pigs. Front Microbiol 2021; 12:768767. [PMID: 34777322 PMCID: PMC8586506 DOI: 10.3389/fmicb.2021.768767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
This experiment aims to explore the effects of compound enzyme preparation substituting chlortetracycline on growth performance, serum immune markers, and antioxidant capacity and intestinal health in weaned piglets. A total of twenty-four 28-day-old “Duroc × Landrace × Yorkshire” weaned piglets with an average initial weight of 7.25 ± 0.25 kg were randomly divided into three groups according to their body weight, with eight replicates in each group and one pig in each replicate. The three dietary treatments were basal diet (CON), basal diet + 1,000 mg/kg compound enzyme preparation (cellulase 4,000 IU/g, α-amylase 1,000 IU/g, β-glucanase 150 IU/g, and neutral protease 3,000 IU/g, CE), and basal diet + 75 mg/kg chlortetracycline (CTC). The animal experiment lasted for 28 days and was divided into two stages: the early stage (0–14 days) and the late stage (15–28 days). The results showed that (1) compared with the CON, the CE and CTC significantly increased the ADG of weaned piglets during the early and whole period of experiment (p < 0.05), decreased the F:G in the whole experiment period (p < 0.05), and diarrhea rate in the early stage (p < 0.01). (2) Compared with the CON, the apparent total tract digestibility of ADF and NDF was significantly increased in pigs fed the CE diet in the early and late stages of experiment (p < 0.05) with no significant difference compared with the CTC. (3) Compared with the CON, the concentrations of serum IgA and SOD in weaned piglets were significantly increased in the CE group in the early stage of the experiment (p < 0.05). (4) Compared with the CON group, the acetic acid, propionic acid, and total VFA contents in cecum and colon segments were elevated in the CE group (p < 0.05) with no significant difference compared with the CTC. (5) Compared with the CON group, the villus height of duodenum and jejunum and the ratio of villus height to recess depth of ileum were increased in the CE and CTC group (p < 0.05). (6) Compared with the CON group, the abundance of Lactobacillus significantly increased (p < 0.01) while the abundance of Escherichia coli decreased in the CE group and CTC group (p < 0.01). In conclusion, CE preparation instead of CTC can significantly improve the nutrient digestibility, the immunity, antioxidant capacity, and intestinal health of pigs, which may contribute to the improved growth performance of piglets.
Collapse
Affiliation(s)
- Zhiqing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lizi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Nian Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Aranda-Aguirre E, Robles-Jimenez LE, Osorio-Avalos J, Vargas-Bello-Pérez E, Gonzalez-Ronquillo M. A systematic-review on the role of exogenous enzymes on the productive performance at weaning, growing and finishing in pigs. Vet Anim Sci 2021; 14:100195. [PMID: 34522821 PMCID: PMC8427232 DOI: 10.1016/j.vas.2021.100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Supplementation of exogenous enzymes in the general diet improves production characteristics in all stages of production. Phytases are the most supplemented enzymes in all productive stages of pigs. The inclusion of Phytases, used in the pig's diet showed an average dry matter digestibility (g/kg) 840.6 ± 25.5 in weaning, 862.5 ± 7.4 in growing and 802.0 ± 1.41 in finishing. The inclusion of xylanases used in the pig's diet showed an average in dry matter digestibility (g/kg) 829.5 ± 7.14 in weaning and 759.1 ± 6.93 in finishing stages.
Supplementing exogenous enzymes in pig diets is an alternative solution to increase dietary energy and fiber digestibility to improve pig production performance at a low production cost and to reduce environmental impact with lower N and P excretions. The production stage, diet composition, enzyme source, amount and number of enzymes added, are factors to consider before using them. A database composed by 227 individual diets, resulting from 43 studies with 48 experimental records were divided in different production stages, with 19 records for weaning, 17 records for growing and 12 records for finishing. A descriptive statistical analysis of the chemical composition of the diets and enzyme doses was carried out. The data with normal distribution were analyzed calculating the mean, the minimum and maximum length, the standard deviation and the coefficient of variation. It was found that combined enzymes are the most widely reported enzyme combination in the supplementation of pigs at all stages of production. Phytases and Mannanases are commonly used at weaning and growing stages. Xylanases and Proteases have been reported to be used in all production stages. However, the highest yielding enzymes at weaning, growing and finishing stages were Phytases and Mannanases. Dietary supplementation of exogenous enzymes improves production characteristics at all stages of production. However, an improvement in growth performance and nutrient digestibility is not always observed. Future studies should focus on the interaction between production stages, composition of the diet, origin of the enzyme and the amount and number of enzymes added.
Collapse
Affiliation(s)
- Edgar Aranda-Aguirre
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México. 50000. Mexico
| | - Lizbeth E Robles-Jimenez
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México. 50000. Mexico
| | - Jorge Osorio-Avalos
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México. 50000. Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Manuel Gonzalez-Ronquillo
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario 100 Ote. Toluca, Estado de México. 50000. Mexico
| |
Collapse
|
5
|
Lessard PA, Li X, Broomhead JN, Parker MH, Bailey C, Raab RM. Properties of corn-expressed carbohydrase AC1 in swine diets and its effects on apparent ileal digestibility, performance, hematology, and serum chemistry. Heliyon 2021; 7:e07696. [PMID: 34401579 PMCID: PMC8350540 DOI: 10.1016/j.heliyon.2021.e07696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022] Open
Abstract
Carbohydrases are often incorporated into livestock feed as digestive aids to improve animal performance. AC1 is a thermostable carbohydrase with β-1,4-glucanase, endo-cellulase, and cellobiohydrolase activity. AC1 has been expressed in corn, where it accumulates in the grain for easy inclusion in animal diets. Incorporating the enzyme in high-fiber diets (corn-soy supplemented with distiller's dry grains with solubles) that were fed to 5-week-old pigs led to a trend of decreasing viscosity of the digesta as the dose of the enzyme increased (P = 0.092). AC1 also tended to increase the apparent ileal digestibility (AID) of neutral detergent fiber (P = 0.076). When fed diets containing 2126 U/kg AC1, pigs experienced no adverse effects in terms of performance metrics (body weights, average daily gain, average daily feed intake and gain-to-feed ratio), hematology, blood chemistry or general health when compared to pigs fed a control diet that lacked AC1.
Collapse
Affiliation(s)
| | - Xuemei Li
- Agrivida, Inc., 78E Olympia Avenue, Woburn, MA, USA
| | | | | | | | | |
Collapse
|
6
|
Perez-Palencia JY, Samuel RS, Levesque CL. Supplementation of protease to low amino acid diets containing superdose level of phytase for wean-to-finish pigs: effects on performance, postweaning intestinal health and carcass characteristics. Transl Anim Sci 2021; 5:txab088. [PMID: 34159298 PMCID: PMC8212168 DOI: 10.1093/tas/txab088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
This experiment investigated the effects of protease supplementation to low amino acid (AA) diets containing phytase on pig growth performance, postweaning intestinal health and carcass characteristics. A total of 936 weaned pigs (21 d of age, initial BW 5.87 ± 0.31 kg) were used in a 2 × 2 factorial design comparing the main effects of AA supply [standard feeding program: balanced for all nutrients with adjustment of Ca and P due to inclusion of phytase (2,500 FTU/kg in Phase 1 to 4; 500 FTU/kg in Phase 5 to 9) vs. low AA feeding program: 15% lower standardized ileal digestible lysine with relative reduction of all other essential AA] and protease level (0 vs. 0.0125%). Pens were assigned to dietary treatment according to a randomized complete block design with 26 pigs per pen and nine replicates per dietary treatment. Feed and water were provided on an ad libitum basis for all phases throughout the wean-to-finish period. Feed intake and body weight were determined every 2 wk during nursery period and monthly in the grow-finish period. Intestinal health in the first 17 d was assessed based on lactulose:mannitol ratio (L:M), serum IgA, and pen diarrhea assessment. Overall, pigs fed standard wean-to-finish diets had greater (P < 0.05) ADG and G:F than pigs fed low AA diets. Pig growth performance was not different throughout the wean-to-finish period with or without protease supplementation and with no interaction between AA supply and protease supplementation. There were no differences among dietary treatments for carcass characteristics. No difference was observed for urinary L:M and serum IgA; however, the L:M ratio was approximately 32% lower in pigs fed low AA diets + protease compared with pigs fed standard and low AA diets at d 5 and d 17 postweaning. Pigs fed protease supplemented diets had lower incidence of diarrhea (χ2 < 0.05) compared with pigs fed diets without protease. Results of the experiment indicate that dietary protease supplementation benefits intestinal health of nursery pigs.
Collapse
Affiliation(s)
- J Y Perez-Palencia
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - R S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - C L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
7
|
Park S, Li W, St-Pierre B, Wang Q, Woyengo TA. Growth performance, nutrient digestibility, and fecal microbial composition of weaned pigs fed multi-enzyme supplemented diets. J Anim Sci 2021; 98:5904448. [PMID: 32918072 DOI: 10.1093/jas/skaa306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
A study determined the effects of supplementing corn-based diets for weaned pigs with multi-enzymes on growth performance, apparent total tract digestibility (ATTD) of nutrients, fecal score, and fecal microbial composition. A total of 132 pigs (initial body weight = 7.23 kg) that had been weaned at 21 d of age and fed a drug-free nursery diet for 7 d were housed in 33 pens of 4 barrows or gilts, blocked by body weight and gender, and fed 3 experimental diets at 11 pens per diet. The diets were corn-based diet without or with multi-enzyme A or B. Multi-enzyme A supplied 4,000 U of xylanase, 150 U of β-glucanase, 3,500 U of protease, and 1,500 U of amylase per kilogram of diet. Multi-enzyme B was the same as multi-enzyme A except that it supplied amylase at 150 U/kg, and that its source of amylase was different from that of multi-enzyme A. All diets contained phytase at 1,000 U/kg. The diets were fed for 35 d in 2 phases; phase 1 for the first 14 d and phase 2 for the last 21 d of the trial. Fecal score was determined daily during the first 7 d of the trial. Fecal samples were collected from rectum of 1 pig per pen on days 2, 7, 14, and 35 of the trial for determining bacterial composition. Also, fresh fecal samples were collected from each pen on days 41 and 42 to determine ATTD of nutrients. Multi-enzyme B increased (P < 0.05) average daily gain (ADG) for phases 1 and 2. For the overall study period, multi-enzyme B increased (P < 0.05) ADG from 262 to 313 g, and average daily feed intake (ADFI) from 419 to 504 g. Multi-enzyme A increased (P < 0.05) overall ADG from 262 to 290 g, but did not affect ADFI. Multi-enzyme A or B did not affect ATTD of gross energy, but increased (P < 0.05) the ATTD of ether extract from 30% to 36% or 37%, respectively. Multi-enzyme A did not affect fecal score; however, multi-enzyme B tended to decrease (P = 0.09) fecal score, implying that it tended to decrease diarrhea. Firmicutes were the most abundant phylum of fecal bacteria (its relative abundance ranged from 58% to 72%). Bacteroidetes and Actinobacteria were the 2nd and 3rd most abundant phyla of fecal bacteria. Neither multi-enzyme affected fecal bacterial composition. In conclusion, the addition of multi-enzyme A or B to phytase-supplemented corn-based diet for weaned pigs can improve their growth performance and fat digestibility. However, multi-enzyme B was more effective than multi-enzyme A in terms of improving the growth performance of weaned pigs fed corn-based diet.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, South Dakota State University, Brookings, SD.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Wenting Li
- DuPont Nutrition & Biosciences, Wilmington, DE
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Qiong Wang
- DuPont Nutrition & Biosciences, Wilmington, DE
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal Science, Aarhus University, Blichers Allé, Tjele, Denmark
| |
Collapse
|
8
|
Petry AL, Patience JF. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action. J Anim Sci 2021; 98:5911008. [PMID: 32970148 PMCID: PMC7759750 DOI: 10.1093/jas/skaa318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Corn is a common energy source in pig diets globally; when financially warranted, industrial corn coproducts, such as corn distiller's dried grains with solubles (DDGS), are also employed. The energy provided by corn stems largely from starch, with some contribution from protein, fat, and non-starch polysaccharides (NSP). When corn DDGS are used in the diet, it will reduce starch within the diet; increase dietary protein, fat, and NSP levels; and alter the source profile of dietary energy. Arabinoxylans (AXs) comprise the majority of NSP in corn and its coproducts. One strategy to mitigate the antinutritive effects of NSP and improve its contribution to energy is by including carbohydrases within the diet. Xylanase is a carbohydrase that targets the β-1,4-glycosidic bonds of AX, releasing a mixture of smaller polysaccharides, oligosaccharides, and pentoses that could potentially be used by the pig. Xylanase is consistently effective in poultry production and moderately consistent in wheat-based swine diets, but its efficacy in corn-based swine diets is quite variable. Xylanase has been shown to improve the digestibility of various components of swine-based diets, but this seldom translates into an improvement in growth performance. Indeed, a review of xylanase literature conducted herein suggests that xylanase improves the digestibility of dietary fiber at least 50% of the time in pigs fed corn-based diets, but only 33% and 26% of the time was there an increase in average daily gain or feed efficiency, respectively. Intriguingly, there has been an abundance of reports proposing xylanase alters intestinal barrier integrity, inflammatory responses, oxidative status, and other health markers in the pig. Notably, xylanase has shown to reduce mortality in both high and low health commercial herds. These inconsistencies in performance metrics, and unexpected health benefits, warrant a greater understanding of the in vivo mechanism(s) of action (MOA) of xylanase. While the MOA of xylanase has been postulated considerably in the literature and widely studied in in vitro settings, in wheat-based diets, and in poultry, there is a dearth of understanding of the in vivo MOA in pigs fed corn-based diets. The purpose of this review is to explore the role of xylanase in corn-based swine diets, discuss responses observed when supplemented in diets containing corn-based fiber, suggest potential MOA of xylanase, and identify critical research gaps.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Iowa State University, Ames, IA
| |
Collapse
|
9
|
Petry AL, Huntley NF, Bedford MR, Patience JF. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J Anim Sci 2020; 98:5873899. [PMID: 32687554 PMCID: PMC7392531 DOI: 10.1093/jas/skaa233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
The experimental objective was to investigate the impact of xylanase on the bioavailability of energy, oxidative status, and gut function of growing pigs fed a diet high in insoluble fiber and given a longer adaptation time than typically reported. Three replicates of 20 gilts with an initial body weight (BW) of 25.43 ± 0.88 kg were blocked by BW, individually housed, and randomly assigned to one of four dietary treatments: a low-fiber control (LF) with 7.5% neutral detergent fiber (NDF), a 30% corn bran without solubles high-fiber control (HF; 21.9% NDF), HF + 100 mg/kg xylanase (HF + XY; Econase XT 25P), and HF + 50 mg/kg arabinoxylan-oligosaccharide (HF + AX). Gilts were fed ad libitum for 36 d across two dietary phases. Pigs and feeders were weighed on days 0, 14, 27, and 36. On day 36, pigs were housed in metabolism crates for a 10-d period, limit fed (80% of average ad libitum intake), and feces and urine were collected the last 72 h to determine the digestible energy (DE) and metabolizable energy (ME). On day 46, serum and ileal and colonic tissue were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment, time, and treatment × time as fixed effects. There was a significant treatment × time interaction for BW, average daily gain (ADG), and gain to feed (G:F; P < 0.001). By design, BW at day 0 did not differ; at day 14, pigs fed LF were 3.5% heavier, and pigs fed HF + XY, when compared with HF, were 4% and 4.2% heavier at days 27 and 36, respectively (P < 0.001). From day 14 to 27 and day 27 to 36, when compared with HF, HF + XY improved ADG by 12.4% and 10.7% and G:F by 13.8% and 8.8%, respectively (P < 0.05). Compared with LF, HF decreased DE and ME by 0.51 and 0.42 Mcal/kg, respectively, but xylanase partially mitigated that effect by increasing DE and ME by 0.15 and 0.12 Mcal/kg, over HF, respectively (P < 0.05). Pigs fed HF + XY had increased total antioxidant capacity in the serum and ileum (P < 0.05) and tended to have less circulating malondialdehyde (P = 0.098). Pigs fed LF had increased ileal villus height, and HF + XY and HF + AX had shallower intestinal crypts (P < 0.001). Pigs fed HF + XY had increased ileal messenger ribonucleic acid abundance of claudin 4 and occludin (P < 0.05). Xylanase, but not AX, improved the growth performance of pigs fed insoluble corn-based fiber. This was likely a result of the observed increase in ME, improved antioxidant capacity, and enhanced gut barrier integrity, but it may require increased adaptation time to elicit this response.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
10
|
Wellington MO, Hamonic K, Krone JEC, Htoo JK, Van Kessel AG, Columbus DA. Effect of dietary fiber and threonine content on intestinal barrier function in pigs challenged with either systemic E. coli lipopolysaccharide or enteric Salmonella Typhimurium. J Anim Sci Biotechnol 2020; 11:38. [PMID: 32318266 PMCID: PMC7158091 DOI: 10.1186/s40104-020-00444-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background The independent and interactive effects of dietary fiber (DF) and threonine (Thr) were investigated in growing pigs challenged with either systemic E. coli lipopolysaccharide (LPS) or enteric Salmonella Typhimurium (ST) to characterise their effect on intestinal barrier function. Results In experiment 1, intestinal barrier function was assessed via oral lactulose and mannitol (L:M) gavage and fecal mucin analysis in pigs challenged with E. coli LPS and fed low fiber (LF) or high fiber (HF) diets with graded dietary Thr. Urinary lactulose recovery and L:M ratio increased (P < 0.05) during the LPS inoculation period in LF fed pigs but not in HF fed pigs. Fecal mucin output was increased (P < 0.05) in pigs fed HF compared to LF fed pigs. In experiment 2, RT-qPCR, ileal morphology, digesta volatile fatty acid (VFA) content, and fecal mucin output were measured in Salmonella Typhimurium challenged pigs, fed LF or HF diets with standard or supplemented dietary Thr. Salmonella inoculation increased (P < 0.05) fecal mucin output compared to the unchallenged period. Supplemental Thr increased fecal mucin output in the HF-fed pigs (Fib × Thr; P < 0.05). Feeding HF increased (P < 0.05) VFA concentration in cecum and colon. No effect of either Thr or fiber on expression of gene markers was observed except a tendency (P = 0.06) for increased MUC2 expression with the HF diet. Feeding HF increased goblet cell numbers (P < 0.05). Conclusion Dietary fiber appears to improve barrier function through increased mucin production capacity (i.e., goblet cell numbers, MUC2 gene expression) and secretion (i.e., fecal mucin output). The lack of effect of dietary Thr in Salmonella-challenged pigs provides further evidence that mucin secretion in the gut is conserved and, therefore, Thr may be limiting for growth under conditions of increased mucin production.
Collapse
Affiliation(s)
- Michael O Wellington
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kimberley Hamonic
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Jack E C Krone
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- 2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Daniel A Columbus
- 1Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9 Canada.,2Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
11
|
Boyd RD, Zier-Rush CE, Moeser AJ, Culbertson M, Stewart KR, Rosero DS, Patience JF. Review: innovation through research in the North American pork industry. Animal 2019; 13:2951-2966. [PMID: 31426881 PMCID: PMC6874321 DOI: 10.1017/s1751731119001915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
This article involved a broad search of applied sciences for milestone technologies we deem to be the most significant innovations applied by the North American pork industry, during the past 10 to 12 years. Several innovations shifted the trajectory of improvement or resolved significant production limitations. Each is being integrated into practice, with the exception being gene editing technology, which is undergoing the federal approval process. Advances in molecular genomics have been applied to gene editing for control of porcine reproductive and respiratory syndrome and to identify piglet genome contributions from each parent. Post-cervical artificial insemination technology is not novel, but this technology is now used extensively to accelerate the rate of genetic progress. A milestone was achieved with the discovery that dietary essential fatty acids, during lactation, were limiting reproduction. Their provision resulted in a dose-related response for pregnancy, pregnancy maintenance and litter size, especially in maturing sows and ultimately resolved seasonal infertility. The benefit of segregated early weaning (12 to 14 days of age) was realized for specific pathogen removal for genetic nucleus and multiplication. Application was premature for commercial practice, as piglet mortality and morbidity increased. Early weaning impairs intestinal barrier and mucosal innate immune development, which coincides with diminished resilience to pathogens and viability later in life. Two important milestones were achieved to improve precision nutrition for growing pigs. The first involved the updated publication of the National Research Council nutrient requirements for pigs, a collaboration between scientists from America and Canada. Precision nutrition advanced further when ingredient description, for metabolically available amino acids and net energy (by source plant), became a private sector nutrition product. The past decade also led to fortuitous discoveries of health-improving components in ingredients (xylanase, soybeans). Finally, two technologies converged to facilitate timely detection of multiple pathogens in a population: oral fluids sampling and polymerase chain reaction (PCR) for pathogen analysis. Most critical diseases in North America are now routinely monitored by oral fluid sampling and prepared for analysis using PCR methods.
Collapse
Affiliation(s)
- R. D. Boyd
- Hanor Company, 128 W KY Ave, Franklin, KY 42134, USA
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27695, USA
| | - C. E. Zier-Rush
- Rush Consulting, 373 Saint Martin Cir, Richmond Hill, GA 31324, USA
| | - A. J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, East Lansing, MI 48824, USA
| | - M. Culbertson
- Global Product Development, Genus PIC USA, 100 Bluegrass Commons Blvd, Hendersonville, TN 37075, USA
| | - K. R. Stewart
- Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA
| | - D. S. Rosero
- The Hanor Company, 4005 E. Owen K. Garriott, Enid, OK 73701, USA
| | - J. F. Patience
- Department of Animal Science, Iowa State University, 1221 Kildee Hall, Ames, IA 50011, USA
| |
Collapse
|
12
|
Li Q, Burrough ER, Gabler NK, Loving CL, Sahin O, Gould SA, Patience JF. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs1. J Anim Sci 2019; 97:2139-2153. [PMID: 30888017 PMCID: PMC6488326 DOI: 10.1093/jas/skz093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of a source of dietary soluble (SF) and insoluble fiber (IF) without or with exogenous carbohydrases (xylanase, β-glucanase, and pectinase) on diarrhea incidence, selected immune responses, and growth performance in enterotoxigenic Escherichia coli (ETEC)-challenged pigs. Sixty weaned pigs (6.9 ± 0.1 kg BW, ~23 d of age) were blocked by initial BW and placed in individual pens. Pens were randomly assigned to one of six treatments (n = 10 per treatment), including a nonchallenged control (NC), a positive challenge control (PC), the PC + a soluble fiber diet (10% sugar beet pulp) without (SF-) or with carbohydrases (SF+), and PC + an IF diet (15% corn distillers dried grains with solubles) without (IF-) or with carbohydrases (IF+). The control diet was primarily based on corn and soybean meal with 13.5% whey powder. The two sources of fiber were added at the expense of cornstarch in the control diet. Pigs were orally inoculated with 6 mL hemolytic F18 ETEC (~3.5 × 109 cfu/mL) or sham infected with 6 mL phosphate-buffered saline on day 7 (0 d postinoculation, dpi) postweaning. All ETEC challenged pigs were confirmed to be genetically susceptible to F18 ETEC. Pigs had free access to feed and water throughout the 14-d trial. Pig BW and feed intake were recorded on dpi -7, 0, and 7 or 8. Fecal swabs were collected on dpi -7, 0, 1, 2, 3, 5, and 7 or 8 to evaluate hemolytic E. coli shedding. Fecal score was visually ranked daily postchallenge to evaluate diarrhea incidence. Blood samples were collected on dpi -1, 3, and 7 or 8 at necropsy and intestinal tissues were collected at necropsy. Pigs on PC had lower dpi 1 to 7 ADG and ADFI than those on NC (P < 0.05). Compared with PC pigs, SF+ pigs had greater ADG during both pre- and postchallenge period (P < 0.05). The IF- increased postchallenge diarrhea incidence compared with PC (P < 0.05). Pigs on SF- had lower ileal E. coli attachment than PC (P < 0.05). The SF+ reduced haptoglobin and IF+ reduced C-reactive protein on dpi 3 compared with PC (P < 0.05). Compared with PC pigs, SF+ pigs tended to have lower ileal tumor necrosis factor alpha and greater ileal occludin (OCLN) mRNA (P < 0.10) and had greater (P < 0.05) colonic OCLN mRNA levels. Collectively, IF- increased incidence of diarrhea and fecal E. coli shedding compared with PC. The SF+ pigs had improved growth compared with PC pigs, likely due in part to a reduction in inflammatory intermediates.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
13
|
Li Q, Schmitz-Esser S, Loving CL, Gabler NK, Gould SA, Patience JF. Exogenous carbohydrases added to a starter diet reduced markers of systemic immune activation and decreased Lactobacillus in weaned pigs1. J Anim Sci 2019; 97:1242-1253. [PMID: 30590571 PMCID: PMC6396408 DOI: 10.1093/jas/sky481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023] Open
Abstract
Although the impact of carbohydrases on performance and nutrient utilization has been well studied, their effects on immune status and intestinal microbiota are less known in pigs. This study aimed to evaluate the impact of xylanase (X) and a carbohydrase enzyme blend (EB; cellulase, ß-glucanase, and xylanase) on the immune profile of the intestine and peripheral system as well as intestinal microbes and microbial metabolites of weaned pigs fed higher fiber diets. Pigs (n = 460; 6.43 ± 0.06 kg BW; F25 × 6.0 Genetiporc) were blocked by initial BW. Pens (n = 48; 12 per treatment; 9 or 10 pigs per pen) were randomly assigned to 1 of 4 dietary treatments, including a higher fiber control diet (CON) and the CON supplemented with 0.01% X, 0.01% EB, or both enzymes (X + EB), arranged in a 2 × 2 factorial. The diets were based on corn, soybean meal, corn distillers dried grains with solubles, and wheat middlings. After 7-d adaptation to the environment, pigs were fed experimental diets ad libitum for 28 d. Blood samples were collected from the same pig within each pen on days 0, 7, 14, and 28. Intestinal tissues and digesta were collected on day 28. Bacteria 16S rRNA gene copy numbers were quantified using qPCR. The mRNA levels of colonic IL-17, occludin (OCLN), and claudin 3 (CLDN3) were greater in pigs fed diets with X + EB, but not X or EB, compared with those fed CON (P < 0.05). The EB in the diet reduced plasma IL-8 over the 28-d trial compared with diets without EB (P < 0.05). There was an X × EB interaction on plasma tumor necrosis factor α and IL-1ß (P < 0.05); their levels were decreased when X and EB were added together, but not individually, compared with CON. The EB decreased cecal propionate, butyrate, and total volatile fatty acids (P < 0.05). Pigs fed X had lower ileal Lactobacillus and greater ileal and cecal Enterobacteriaceae compared with those fed unsupplemented diets (P < 0.05). The EB decreased Lactobacillus (P < 0.05) and tended to decrease (P = 0.065) Enterobacteriaceae in the colon compared with diets without EB. In conclusion, the addition of X and EB together decreased systemic markers of immune activation, potentially diverting energy and nutrients towards growth. The EB reduced colonic Lactobacillus and cecal total volatile fatty acids, probably due to improved prececal fiber and starch degradation and thus reduced substrate availability in the large intestine. These data corroborated previously observed enhanced growth in pigs fed EB-supplemented diets.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|