1
|
Kristensen C, Larsen LE, Trebbien R, Jensen HE. The avian influenza A virus receptor SA-α2,3-Gal is expressed in the porcine nasal mucosa sustaining the pig as a mixing vessel for new influenza viruses. Virus Res 2024; 340:199304. [PMID: 38142890 PMCID: PMC10793167 DOI: 10.1016/j.virusres.2023.199304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Influenza A viruses (IAVs) originate from wild birds but have on several occasions jumped host barriers and are now also circulating in humans and mammals. The IAV host receptors (glycans with galactose linked to a sialic acid (SA) in an α2,3 or α2,6 linkage) are crucial host factors restricting inter-species transmission. In general, avian-origin IAVs show a preference for SA-α2,3 (avian receptor), whereas IAVs isolated from humans and pigs prefer SA-α2,6 (human receptor). N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two major SAs. Neu5Ac is expressed in all species, whereas Neu5Gc is only expressed in a limited number of domestic species such as pigs and horses, but not in humans. Despite that previous studies have shown that the IAV host receptor distribution appears to be similar in pigs and humans, none of these studies have investigated the expression of Neu5Gc-α2,6 in situ in porcine tissues. Thus, the aim of this study was to elucidate the distribution of IAV host receptors expressed in the porcine respiratory tract and relate the expression to the viral tropism of diverse host-adapted IAVs. The IAV receptor (SA-α2,3 and SA-α2,6) distribution and the presence of specifically Neu5Gc-α2,6 in the porcine nasal, tracheal, and lung tissues was investigated by lectin histochemistry. Furthermore, IAV immunohistochemistry was performed on tissues from pigs experimentally infected with IAVs, either adapted to pigs or humans, to investigate the significance of the IAV host receptors and the tropism of the diverse host-adapted IAVs. We document for the first time the expression of the avian receptor on the surface of the porcine nasal mucosa and an equal expression of Neu5Ac-α2,6 and Neu5Gc-α2,6 on the surface of the tracheal epithelium and alveoli. In all IAV-infected pigs, we found a low amount of IAV-positive cells in the trachea despite a high expression of the human receptor. Cumulatively, these findings suggest that optimal IAV replication involves a complex interplay between the viruses and their host receptors and that there might be other less clearly defined host factors that determine the site of replication.
Collapse
Affiliation(s)
- Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Kamitani Y, Kurumi H, Kanda T, Ikebuchi Y, Yoshida A, Kawaguchi K, Yashima K, Umekita Y, Isomoto H. Comparative study between histochemical mucus volume, histopathological findings, and endocytoscopic scores in patients with ulcerative colitis. Medicine (Baltimore) 2023; 102:e33033. [PMID: 36862904 PMCID: PMC9981389 DOI: 10.1097/md.0000000000033033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Ulcerative colitis (UC) causes a reduction in goblet cells. However, there have been few reports on the relationship between endoscopic and pathological findings and mucus volume. In this study, we quantitatively evaluated histochemical colonic mucus volume by fixing biopsied tissue sections taken from patients with UC in Carnoy's solution and compared it with endoscopic and pathological findings to determine whether there is a correlation between them. Observational study. A single-center, university hospital in Japan. Twenty-seven patients with UC (male/female, 16/11; mean age, 48.4 years; disease median duration, 9 years) were included in the study. The colonic mucosa of the most inflamed area and the surrounding less inflamed area were evaluated separately by local MES and endocytoscopic (EC) classification. Two biopsies were taken from each area; one was fixed with formalin for histopathological evaluation, and the other was fixed with Carnoy's solution for the quantitative evaluation of mucus via histochemical Periodic Acid Schiff and Alcian Blue staining. The relative mucus volume was significantly reduced in the local MES 1-3 groups, with worsening findings in EC-A/B/C and in groups with severe mucosal inflammation, crypt abscess, and severe reduction in goblet cells. The severity of inflammatory findings in UC by EC classification correlated with the relative mucus volume suggesting functional mucosal healing. We found a correlation between the colonic mucus volume and endoscopic and histopathological findings in patients with UC, and a stepwise correlation with disease severity, particularly in EC classification.
Collapse
Affiliation(s)
- Yu Kamitani
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
- * Correspondence: Hiroki Kurumi, Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan (e-mail: )
| | - Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yuichiro Ikebuchi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Koichiro Kawaguchi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Kazuo Yashima
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Fodor CC, McCorkell R, Muench G, Cobo ER. Systemic murine cathelicidin CRAMP safely attenuated colonic neutrophil infiltration in pigs. Vet Immunol Immunopathol 2022; 249:110443. [PMID: 35640361 DOI: 10.1016/j.vetimm.2022.110443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Post-weaning diarrheic colitis, often caused by enteropathogens, are severe and potentially lethal diseases in young pigs. Conventional treatment with antibiotics is problematic due to increasing prevalence of multi-drug resistant bacteria. Few alternative treatments exist, so development of antibiotic-free therapies is urgently needed for livestock. Cathelicidin peptides, produced by epithelial cells and neutrophils, are microbicidal compounds capable of modulating innate immune and inflammatory responses. However, the effects of exogenous cathelicidin on gut homeostasis is poorly understood in pigs. We administered the murine cathelicidin CRAMP systemically to healthy pigs, to establish the peptide's safety and assess its ability to modulate colonic mucosal defenses. A single intraperitoneal injection of CRAMP was well tolerated up to two weeks and pigs remained clinically healthy. CRAMP caused some alteration of mucus glycosylation patterns in the colon by increasing sialylated mucins (P < 0.05) and decreased neutrophil influx close to the epithelium (P < 0.001). This study supports further investigation of CRAMP as an immunomodulatory treatment for infectious colitis in pigs.
Collapse
Affiliation(s)
- Cristina C Fodor
- Microbiology and Infectious Diseases Graduate Program, Cumming School of Medicine, University of Calgary, Canada
| | - Robert McCorkell
- Interim Dean Veterinary Medicine, University of Calgary, Representing the DVM Class of 2022, Canada
| | - Greg Muench
- Assistant University Veterinarian, Animal Care Unit, University of Calgary, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
4
|
Boeckman JX, Sprayberry S, Korn AM, Suchodolski JS, Paulk C, Genovese K, Rech RR, Giaretta PR, Blick AK, Callaway T, Gill JJ. Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci Rep 2022; 12:5024. [PMID: 35323827 PMCID: PMC8943154 DOI: 10.1038/s41598-022-08446-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Post-weaning enteropathies in swine caused by pathogenic E. coli, such as post-weaning diarrhea (PWD) or edema disease (ED), remain a significant problem for the swine industry. Reduction in the use of antibiotics over concerns of antibiotic resistance and public health concerns, necessitate the evaluation of effective antibiotic alternatives to prevent significant loss of livestock and/or reductions in swine growth performance. For this purpose, an appropriate piglet model of pathogenic E. coli enteropathy is required. In this study, we attempted to induce clinical signs of post-weaning disease in a piglet model using a one-time acute or lower daily chronic dose of a pathogenic E. coli strain containing genes for both heat stable and labile toxins, as well as Shiga toxin. The induced disease state was monitored by determining fecal shedding and colonization of the challenge strain, animal growth performance, cytokine levels, fecal calprotectin, histology, fecal metabolomics, and fecal microbiome shifts. The most informative analyses were colonization and shedding of the pathogen, serum cytokines, metabolomics, and targeted metagenomics to determine dysbiosis. Histopathological changes of the gastrointestinal (GI) tract and tight junction leakage as measured by fecal calprotectin concentrations were not observed. Chronic dosing was similar to the acute regimen suggesting that a high dose of pathogen, as used in many studies, may not be necessary. The piglet disease model presented here can be used to evaluate alternative PWD treatment options.
Collapse
Affiliation(s)
- Justin X Boeckman
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Sarah Sprayberry
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Abby M Korn
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Chad Paulk
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Kenneth Genovese
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,School of Veterinary Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna K Blick
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Todd Callaway
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, USA. .,Center for Phage Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol 2021; 50 Suppl 1:6-17. [PMID: 34514619 PMCID: PMC9292158 DOI: 10.1111/vcp.13031] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
The gut microbiome is an important immune and metabolic organ. Intestinal bacteria produce various metabolites that influence the health of the intestine and other organ systems, including kidney, brain, and heart. Changes in the microbiome in diseased states are termed dysbiosis. The concept of dysbiosis is constantly evolving and includes changes in microbiome diversity and/or structure and functional changes (eg, altered production of bacterial metabolites). Molecular tools are now the standard for microbiome analysis. Sequencing of microbial genes provides information about the bacteria present and their functional potential but lacks standardization and analytical validation of methods and consistency in the reporting of results. This makes it difficult to compare results across studies or for individual clinical patients. The Dysbiosis Index (DI) is a validated quantitative PCR assay for canine fecal samples that measures the abundance of seven important bacterial taxa and summarizes the results as one single number. Reference intervals are established for dogs, and the DI can be used to assess the microbiome in clinical patients over time and in response to therapy (eg, fecal microbiota transplantation). In situ hybridization or immunohistochemistry allows the identification of mucosa‐adherent and intracellular bacteria in animals with intestinal disease, especially granulomatous colitis. Future directions include the measurement of bacterial metabolites in feces or serum as markers for the appropriate function of the microbiome. This article summarizes different approaches to the analysis of gut microbiota and how they might be applicable to research studies and clinical practice in dogs and cats.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
English CJ, Botwright NA, Adams MB, Barnes AC, Wynne JW, Lima PC, Cook MT. Immersion challenge of naïve Atlantic salmon with cultured Nolandella sp. and Pseudoparamoeba sp. did not increase the severity of Neoparamoeba perurans-induced amoebic gill disease (AGD). JOURNAL OF FISH DISEASES 2021; 44:149-160. [PMID: 33314290 DOI: 10.1111/jfd.13319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Amoebic gill disease (AGD) is one of the main health issues impacting farmed Atlantic salmon. Neoparamoeba perurans causes AGD; however, a diversity of other amoeba species colonizes the gills and there is little understanding of whether they are commensal or potentially involved in different stages of gill disease development. Here, we conduct in vivo challenges of naïve Atlantic salmon with cultured Nolandella sp. and Pseudoparamoeba sp. to investigate their pathogenicity to Atlantic salmon gills. Additionally, we assessed whether the presence of Nolandella sp. and Pseudoparamoeba sp. influences the onset and/or severity of N. perurans-induced AGD. All three strains attached and multiplied on the gills according to qPCR analysis. Furthermore, minor gross gill lesions and histological changes were observed post-exposure. While N. perurans was found associated with classical AGD lesions, Nolandella sp. and Pseudoparamoeba sp. were not found associated with lesion sites and these lesions did not meet the expected composite of histopathological changes for AGD. Moreover, the presence of these non-N. perurans species did not significantly increase the severity of AGD. This trial provides evidence that cultured Nolandella sp. and Pseudoparamoeba sp. do not induce AGD and do not influence the severity of AGD during the early stages of development.
Collapse
Affiliation(s)
- Chloe J English
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
- Livestock & Aquaculture, CSIRO, Bribie Island Research Centre, Woorim, Qld, Australia
| | - Natasha A Botwright
- Livestock & Aquaculture, CSIRO, Queensland Biosciences Precinct, Brisbane, Qld, Australia
| | - Mark B Adams
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tas, Australia
| | - Andrew C Barnes
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - James W Wynne
- Livestock & Aquaculture, CSIRO, Hobart, Tas, Australia
| | - Paula C Lima
- Livestock & Aquaculture, CSIRO, Queensland Biosciences Precinct, Brisbane, Qld, Australia
| | - Mathew T Cook
- Livestock & Aquaculture, CSIRO, Queensland Biosciences Precinct, Brisbane, Qld, Australia
| |
Collapse
|
7
|
Tran ENH, Day CJ, McCartney E, Poole J, Tse E, Jennings MP, Morona R. Shigella flexneri Targets Human Colonic Goblet Cells by O Antigen Binding to Sialyl-Tn and Tn Antigens via Glycan-Glycan Interactions. ACS Infect Dis 2020; 6:2604-2615. [PMID: 32926786 DOI: 10.1021/acsinfecdis.0c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Shigella flexneri targets colonic cells in humans to initiate invasive infection processes that lead to dysentery, and direct interactions between their lipopolysaccharide O antigens and blood group A related glycans are involved in the cell adherence interactions. Here, we show that treatment with Tn and sialyl-Tn glycans, monoclonal antibodies and lectins reactive to Tn/sialyl-Tn, and luteolin (a Tn antigen synthesis inhibitor) all significantly inhibited S. flexneri adherence and invasion of cells in vitro. Surface plasmon resonance analysis showed that lipopolysaccharide O antigen had a high affinity interaction with Tn/sialyl-Tn. Immunofluorescence probing of human colon tissue with antibodies detected expression of Tn/sialyl-Tn by MUC2 producing goblet cells (GCs), and S. flexneri incubated with human colon tissue colocalized with GCs. Our findings demonstrate that S. flexneri targets GCs in the human colonic crypts via glycan-glycan interactions, establishing new insight into the infection process in humans.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Erin McCartney
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Edmund Tse
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Renato Morona
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|