1
|
Norman C, Schwelm HM, Semenova O, Reid R, Marland V, Nic Daéid N. Detection of the synthetic cathinone N,N-dimethylpentylone in seized samples from prisons. Forensic Sci Int 2024; 361:112145. [PMID: 38991327 DOI: 10.1016/j.forsciint.2024.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Drug use is prevalent in prisons with drugs associated with depressant effects found to be more prevalent than stimulants. Synthetic cathinones (SCats; often sold as "bath salts", "ecstasy", "molly", and "monkey dust") are the second largest category of new psychoactive substances (NPS) currently monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and are commonly used as substitutes for regulated stimulants, such as amphetamine, cocaine, and MDMA. N,N-dimethylpentylone (also known as dimethylpentylone, dipentylone, and bk-DMBDP) was detected for the first time in the Scottish prisons in seven powder samples seized between January and July 2023. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QToF-MS), and nuclear magnetic resonance imaging (NMR). Dimethylpentylone was detected alongside other drugs in four samples, including the novel benzodiazepine desalkylgidazepam (bromonordiazepam) and the synthetic cannabinoid receptor agonists (SCRAs) MDMB-INACA and MDMB-4en-PINACA.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK; Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden.
| | - Hannes Max Schwelm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olga Semenova
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Victoria Marland
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Ling J, Liao Y, Xiang P, Li J, Zhang W, Ding Y. A tailored ratiometric fluorescent sensor based on CdTe and MgF 2 quantum dots for trace N-ethylpentylone detection. Mikrochim Acta 2024; 191:363. [PMID: 38829464 DOI: 10.1007/s00604-024-06424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
The development of low-cost and highly sensitive ratiometric fluorescence sensor, CdTe@MIPs/MgF2, for N-Ethylpentylone (NEP) detection in wastewater samples is described. In this system, CdTe@MIPs (λex = 370, λem = 570) are employed as the receptor and response unit for NEP, with MgF2 (λex = 370, λem = 470) as the reference signal to enhance stability. Under optimal conditions, the sensor shows fluorescent quenching response at 570 nm to NEP in linear range of 2-200 nM, with LOD of 0.6 nM. The sensor also demonstrates significant selectivity for NEP over other analogues and interferents, making it ideal for practical applications in wastewater analysis. This approach is potentially more cost-effective and sensitive than conventional mass spectrometry in detecting abused substances in sewage. Additionally, the MgF2 fluorescent nano-material was first-ever developed and investigated, which may be significant in future research.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Xiangya Judicial Appraisal Center, Central South University, Changsha, 410013, Hunan, China
| | - Yingyuan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Ping Xiang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, China
| | - Jiahao Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Wenqi Zhang
- Hebei Province Public Security Department Criminal Police Corps, Shijiazhuang, Hebei, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Xiangya Judicial Appraisal Center, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol 2023; 41:25-46. [PMID: 36124107 PMCID: PMC9476408 DOI: 10.1007/s11419-022-00639-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
Collapse
Affiliation(s)
- Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Marcin Zawadzki
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Paweł Szpot
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| |
Collapse
|
4
|
Nadal-Gratacós N, Alberto-Silva AS, Rodríguez-Soler M, Urquizu E, Espinosa-Velasco M, Jäntsch K, Holy M, Batllori X, Berzosa X, Pubill D, Camarasa J, Sitte HH, Escubedo E, López-Arnau R. Structure-Activity Relationship of Novel Second-Generation Synthetic Cathinones: Mechanism of Action, Locomotion, Reward, and Immediate-Early Genes. Front Pharmacol 2021; 12:749429. [PMID: 34764870 PMCID: PMC8576102 DOI: 10.3389/fphar.2021.749429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Several new synthetic cathinones, which mimic the effect of classical psychostimulants such as cocaine or MDMA, have appeared in the global illicit drug market in the last decades. In fact, the illicit drug market is continually evolving by constantly adding small modifications to the common chemical structure of synthetic cathinones. Thus, the aim of this study was to investigate the in vitro and in vivo structure–activity relationship (SAR) of six novel synthetic cathinones currently popular as recreational drugs, pentedrone, pentylone, N-ethyl-pentedrone (NEPD), N-ethyl-pentylone (NEP), 4-methyl-pentedrone (4-MPD), and 4-methyl-ethylaminopentedrone (4-MeAP), which structurally differ in the absence or presence of different aromatic substituents and in their amino terminal group. Human embryonic kidney (HEK293) cells expressing the human isoforms of SERT and DAT were used for the uptake inhibition and release assays. Moreover, Swiss CD-1 mice were used to investigate the psychostimulant effect, rewarding properties (3, 10, and 30 mg/kg, i.p.), and the induction of immediate-early genes (IEGs), such as Arc and c-fos in the dorsal striatum (DS) and ventral striatum (VS) as well as bdnf in the medial prefrontal cortex (mPFC), of the test compounds. Our results demonstrated that all tested synthetic cathinones are potent dopamine (DA) uptake inhibitors, especially the N-ethyl analogs, while the ring-substituted cathinones tested showed higher potency as SERT inhibitors than their no ring-substituted analogs. Moreover, unlike NEP, the remaining test compounds showed clear “hybrid” properties, acting as DAT blockers but SERT substrates. Regarding the locomotion, NEP and NEPD were more efficacious (10 mg/kg) than their N-methyl analogs, which correlates with their higher potency inhibiting the DAT and an overexpression of Arc levels in the DS and VS. Furthermore, all compounds tested induced an increase in c-fos expression in the DS, except for 4-MPD, the least effective compound in inducing hyperlocomotion. Moreover, NEP induced an up-regulation of bdnf in the mPFC that correlates with its 5-HTergic properties. Finally, the present study demonstrated for the first time that NEP, 4-MPD, and 4-MeAP induce reward in mice. Altogether, this study provides valuable information about the mechanism of action and psychostimulant and rewarding properties as well as changes in the expression of IEGs related to addiction induced by novel second-generation synthetic cathinones.
Collapse
Affiliation(s)
- Nuria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Míriam Rodríguez-Soler
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Maria Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xavier Batllori
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria.,Center for Addiction Research and Science, Medical University Vienna, Vienna, Austria
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|