1
|
Gameli PS, Huestis MA, Balloni A, Busardò FP, Carlier J. Metabolism and detection of designer benzodiazepines: a systematic review. Drug Metab Rev 2024; 56:359-384. [PMID: 39340261 DOI: 10.1080/03602532.2024.2410747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Synthesis and illicit use of designer benzodiazepines are growing concerns, with these new psychoactive substances (NPS) posing serious health consequences and new hurdles for toxicologists. Consumption marker identification and characterization is paramount in confirming their use. The benzodiazepine core structure is a fusion of benzene and a seven-membered heterocycle with two nitrogen atoms forming the diazepine ring. Minor variations on the core structure produce different classes of benzodiazepines with marked differences in physiological effects. The present review provides a comprehensive designer benzodiazepines metabolism overview and suggests suitable human consumption biomarkers for toxicology casework. A systematic literature search of PubMed®, ScopusTM, Web of ScienceTM, and Cochrane databases was conducted independently by two coauthors adhering to PRISMA guidelines. Data from 30 in vitro and in vivo models of designer benzodiazepines metabolism from January 2007 to February 2023 were included. 1,4-benzodiazepines (n = 10), 2,3-benzodiazepines (n = 1), triazolo-benzodiazepines (n = 9), and thieno-triazolo-benzodiazepines (n = 3) study design, sample pretreatment, analytical techniques, and major metabolites detected in various matrices are addressed. Metabolites following hydroxylation and phase II glucuronide conjugation were the most prevalent analytes. N-Glucuronidation of parent azole-fused benzodiazepines, and nitro-reduced and N-acetylated metabolites of nitro-containing designer benzodiazepines were also common. From these data, we propose a generic metabolic pathway for designer benzodiazepines. The sporadic illicit market presents challenges in toxicological casework and necessitates comprehensive biomarker investigations, especially in cases with legal implications. There are few metabolism data for many designer benzodiazepines, emphasizing the need for research focusing on closing these gaps.
Collapse
Affiliation(s)
- Prince S Gameli
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Severna Park, MD, USA
| | - Aurora Balloni
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Francesco P Busardò
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Jeremy Carlier
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
2
|
Casey BK, Papsun DM, Mudd A. Elucidating the potential role of microorganisms in postmortem biotransformation: a comparison of clonazolam and its metabolite in postmortem and DUID cases. J Anal Toxicol 2024; 48:550-556. [PMID: 39099108 DOI: 10.1093/jat/bkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/06/2024] Open
Abstract
Clonazolam is a designer triazolobenzodiazepine first synthesized in 1971 and is primarily used for its anxiolytic and sedative effects. It became a drug of misuse in 2012 and is known for its high potency and long duration of effect. Previous studies of nitrobenzodiazepines, such as nitrazepam, clonazepam, and flunitrazepam, as well as their metabolites, have demonstrated that bacterial species native to the gastrointestinal tract and active during postmortem (PM) decomposition are capable of affecting positivity and compound-to-metabolite ratios. Further studies have not been performed with clonazolam; however, it possesses the nitro functional group necessary for this biotransformation. To understand whether clonazolam may be similarly affected, PM cases (n = 288) and driving under the influence of drugs (DUID, n = 54) cases, positive for 8-aminoclonazolam reported by NMS Laboratories from 2020 to 2023, were selected for inclusion in this study. Concentrations of clonazolam and 8-aminoclonazolam were evaluated, and concurrent identification of parent drugs and their metabolites occurred less frequently in PM cases (n = 1, 0.30% of cases) than in DUID cases (n = 21, 38% of cases). The clonazolam concentration in one PM case was 13 ng/mL. In DUID cases, the median clonazolam concentration was 4.0 ng/mL and ranged from 2.0 to 10 ng/mL. 8-Aminoclonazolam had median concentrations of 13 and 19 ng/mL, with ranges 2.0-580 and 2.8-59 ng/mL for PM and DUID cases, respectively. Due to the ever-changing landscape of the designer benzodiazepine market, in vitro studies of PM microbial biotransformation of clonazolam are unavailable. The data reported herein provide valuable information in the absence of such studies and represent an alternative method of investigating this phenomenon as a potential cause of parent nitrobenzodiazepine to metabolite conversion.
Collapse
Affiliation(s)
| | | | - Anna Mudd
- Texas Department of Public Safety Crime Lab, Austin, TX 78752, United States
| |
Collapse
|
3
|
Wu D, Fu L. Recent findings and advancements in the detection of designer benzodiazepines: a brief review. Arh Hig Rada Toksikol 2023; 74:224-231. [PMID: 38146763 PMCID: PMC10750316 DOI: 10.2478/aiht-2023-74-3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/27/2023] Open
Abstract
This review article takes a closer look at a new class of psychoactive substances called designer benzodiazepines (DBZs) and the challenges of their detection. These are adinazolam, clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, phenazepam, and pyrazolam. They are central nervous system depressants and sedatives that can cause psychomotor impairment and increase the overdose risk when combined with other sedatives. DBZs undergo phase I and II metabolism similar to traditional benzodiazepines, but their specific metabolic pathways and the influence of genetic polymorphisms are yet to be clarified. Advances in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enhanced the method's sensitivity for DBZs and their metabolites in biological samples and coupled with improved blood sampling methods require less blood for drug monitoring. Further research should focus on elucidating their pharmacokinetic properties and metabolism in humans, especially in view of genetic polymorphisms and drug interactions that could inform clinical treatment choices. Even though we have witnessed important advances in DBZ detection and measurement, further refinements are needed to expand the scope of detectable DBZs and their metabolites. All this should help toxicological research to better identify and characterise the risks of chronic and polydrug abuse and facilitate clinical, forensic, and regulatory responses to this growing issue.
Collapse
Affiliation(s)
- Dihua Wu
- Hangzhou Dianzi University College of Materials and Environmental Engineering, Hangzhou, China
| | - Li Fu
- Hangzhou Dianzi University College of Materials and Environmental Engineering, Hangzhou, China
| |
Collapse
|
4
|
Papsun DM, Chan-Hosokawa A, Lamb ME, Logan B. Increasing prevalence of designer benzodiazepines in impaired driving: A 5-year analysis from 2017 to 2021. J Anal Toxicol 2023; 47:668-679. [PMID: 37338191 DOI: 10.1093/jat/bkad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Designer benzodiazepine (DBZD) use has been increasing over the past decade and poses a threat to human health and safety, particularly when involved in driving under the influence of drug (DUID) cases. Over a 5-year period between 2017 and 2021, there were 1,145 reported DBZDs in 805 blood samples submitted from law enforcement agencies for DUID testing. Eleven different DBZDs were detected, including three metabolite pairs: etizolam/alpha-hydroxyetizolam, clonazolam/8-aminoclonazolam, diclazepam/delorazepam, flualprazolam, flubromazolam, flubromazepam, bromazolam and bromazepam. Etizolam/alpha-hydroxyetizolam (n = 485) and flualprazolam (n = 149) were the most frequently detected DBZDs, at 60% and 18%, respectively. Driving behavior, standardized field sobriety test performance and physical observations of individuals suspected of DUIDs, whose blood sample was toxicologically confirmed for one or more DBZDs, were consistent with the effects caused by central nervous system depressants. Each DBZD has its own unique timeline, and toxicology testing had to be frequently updated to reflect the state of the novel psychoactive substance market. DBZDs play a role in impaired driving and can be the sole intoxicant in DUID cases.
Collapse
Affiliation(s)
| | | | | | - Barry Logan
- NMS Laboratories, 200 Welsh Rd, Horsham, PA 19044, USA
- Center for Forensic Science Research & Education, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| |
Collapse
|
5
|
Al Bahri AA, Hamnett HJ. Etizolam and Its Major Metabolites: A Short Review. J Anal Toxicol 2023; 47:216-226. [PMID: 36477341 DOI: 10.1093/jat/bkac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Etizolam is a benzodiazepine (BZD). Etizolam is structurally different from BZDs as a thiophene replaces the benzene ring and a triazole ring is fused to the diazepine ring, but etizolam's pharmacological profile is similar. Etizolam has been used to treat anxiety and panic disorders, to reduce depressive and somatization symptoms and to induce muscle relaxation. Etizolam is used recreationally due to its reinforcing and sedative effects. Etizolam is available in tablet or powder form or administered on blotter paper that can be placed on the tongue for oral absorption. Etizolam metabolizes into two major metabolites: α-hydroxyetizolam and 8-hydroxyetizolam, and all three compounds can be detected in different biological specimens using various common analytical techniques such as immunoassay, chromatography and mass spectrometry. Etizolam is a controlled drug in many countries around the globe but is approved for medical use in some countries, such as Japan, South Korea and Italy. This work is a collation and review of available literature on etizolam to help improve the fundamental understanding of its toxicology, outline best analytical practice, and aid interpretation of toxicology results.
Collapse
Affiliation(s)
- Abdul Aziz Al Bahri
- Forensic Toxicologist Specialist, Forensic Science Laboratory, PO Box 446, Muscat, 113, Oman
| | - Hilary J Hamnett
- Associate Professor in Forensic Science, School of Chemistry, University of Lincoln, Green Lane, Lincoln, Lincolnshire, LN6 7DL, UK
| |
Collapse
|
6
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
7
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
8
|
Thakur D, Dubey NP, Singh R. A Review on Spike and Recovery Method in Analytical Method Development and Validation. Crit Rev Anal Chem 2022; 54:2053-2071. [PMID: 36463526 DOI: 10.1080/10408347.2022.2152275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In multidisciplinary science, Analytical approaches based on spike and recovery (SAR) play a substantial role in analytical testing. The spike and recovery method is an important technique for analyzing and accessing the accuracy of analytical methods. The goal of this review seeks to provide clarity on the role of SAR methods in the forensic science discipline. Recent literature has been searched from numerous databases like Google, Web of Sciences, Scopus, PubMed, Google Scholar, and SciFinder. Websites like Science Direct are critically explored to gather scientific reports related to SAR utility. This review discusses the applications and current role of the SAR methods in Forensic Toxicology. It is suggested as one of the major parameters in the validation of the analytical method. SAR methodology is extremely important for the identification and quantitation of analytes in the sample matrix. Moreover, the extension of SAR methods to any scientific discipline is equally important for quality assurance. All relevant processes like method development and its optimization, quality control, and assurance rely on SAR-based studies. However, the method requires better apprehension and needs to be utilized using standard guidelines.
Collapse
Affiliation(s)
- Diksha Thakur
- Department of Forensic Science, M.D. University, Rohtak, Haryana, India
| | - Neeti Prakash Dubey
- Chemistry and Toxicology, Regional Forensic Science Laboratory, Mandi, Himachal Pradesh, India
| | - Rajvinder Singh
- Department of Forensic Science, M.D. University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Moore C, Hammers J, Marshall P. Clonazolam Intoxication Case Report: Danger of Designer Benzodiazepines. Am J Forensic Med Pathol 2022; 43:372-375. [PMID: 36281064 DOI: 10.1097/paf.0000000000000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Clonazolam is a derivative of the Xanax active ingredient, alprazolam. Classified as a designer benzodiazepine, clonazolam availability has been rising because of its circulation on illegal internet drug markets and marginal cost in comparison to its parent analogs. Clonazolam's accessibility encourages abuse prevalence and use of designer benzodiazepines. In our case, a 14-year-old male was found unresponsive the morning after ingesting multiple tablets believed to be Xanax. Toxicology testing indicated 140 ng/mL of 8-aminoclonazolam, a clonazolam metabolite, in the decedent's system. Alprazolam was not identified. Pathological analysis determined cerebral and respiratory depression to be the mechanism of death, resulting from acute clonazolam intoxication. This case presents the first death induced by clonazolam alone. Current literature identifies a gap in designer benzodiazepine confirmatory testing and a lack of awareness within the forensic and medical communities. Knowledge of designer benzodiazepines is needed to better understand their potency and to help prevent future intoxications. We present this case to aid in the recognition of novel benzodiazepines by medical examiners and coroners, to encourage their consideration in suspected Xanax and other substance related investigations, and to be aware of the capabilities of toxicological testing to improve novel benzodiazepine identification and subsequent interpretation.
Collapse
Affiliation(s)
- Caley Moore
- From the Forensic Science and Law Program, Duquesne University, Pittsburgh, PA
| | | | | |
Collapse
|
10
|
Wachełko O, Szpot P, Tusiewicz K, Nowak K, Chłopaś-Konowałek A, Zawadzki M. An ultra-sensitive UHPLC-QqQ-MS/MS method for determination of 54 benzodiazepines (pharmaceutical drugs, NPS and metabolites) and z-drugs in biological samples. Talanta 2022; 251:123816. [DOI: 10.1016/j.talanta.2022.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
|
11
|
Mastrovito R, Trail C, Lino M, Cervantes A, Chan-Hosokawa A, Strathmann F, Logan B. Determination of Cross-Reactivity of Novel Psychoactive Substances with Drug Screen Immunoassays Kits in Whole Blood. J Anal Toxicol 2021; 46:726-731. [PMID: 34791285 DOI: 10.1093/jat/bkab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study was to examine the impact of 59 novel psychoactive compounds on common enzyme-linked immunosorbent assay (ELISA) testing kits. Concentrations above and below the individual kit reporting limits in each class were measured. Compounds that exhibited cross-reactivity were then spiked individually using a seven-point response curve to determine the level of cross-reactivity. Diclazepam, delorazepam, phenazepam, flualprazolam, bromazolam, adinazolam, 3-methoxy-PCP, 3-hydroxy-PCP (3-OH-PCP), phenylfentanyl, para-methylacetylfentanyl and para-fluorofuranylfentanyl were determined to cross-react in the respective kits below. Herein, we detail the cross-reactivity that was observed with the above novel psychoactive substances on Immunalysis Benzodiazepine (BEN), Phencyclidine (PCP), Fentanyl (FEN), Buprenorphine (BUP), Opiates (OPI) and Oxycodone (OXY) Direct ELISA kits.
Collapse
Affiliation(s)
| | - Cherie Trail
- NMS Labs, 200 Welsh Rd, Willow Grove, PA 19044, USA
| | - Marjola Lino
- NMS Labs, 200 Welsh Rd, Willow Grove, PA 19044, USA
| | | | | | | | - Barry Logan
- NMS Labs, 200 Welsh Rd, Willow Grove, PA 19044, USA
| |
Collapse
|
12
|
Kleis J, Hess C, Germerott T, Roehrich J. Sensitive Screening of New Psychoactive Substances in Serum Using Liquid-Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J Anal Toxicol 2021; 46:592-599. [PMID: 34125215 DOI: 10.1093/jat/bkab072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023] Open
Abstract
Analysis of new psychoactive substances (NPS) still pose a challenge for many institutions due to the number of available substances and the constantly changing drug market. Both new and well-known substances keep appearing and disappearing on the market, making it hard to adapt analytical methods in a timely manner. In this study we developed a qualitative screening approach for serum samples by means of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Samples were measured in data-dependent auto-MS/MS mode and identified by fragment spectra comparison, retention time and accurate mass. Approximately 500 NPS, including 195 synthetic cannabinoids, 180 stimulants, 86 hallucinogens, 26 benzodiazepines and 7 others were investigated. Serum samples were fortified to 1 ng/mL and 10 ng/mL concentrations to estimate approximate limits of identification. Samples were extracted using solid-phase extraction with non-endcapped C18 material and elution in two consecutive steps. Benzodiazepines were eluted in the first step, while substances of other NPS subclasses were distributed among both extracts. To determine limits of identification, both extracts were combined. 96 % (470/492) of investigated NPS were detected in 10 ng/mL samples and 88 % (432/492) were detected in 1 ng/mL samples. Stimulants stood out with higher limits of identification, possibly due to instability of certain methcathinone derivatives. However, considering relevant blood concentrations, the method provided sufficient sensitivity for stimulants as well as other NPS subclasses. Data-dependent acquisition was proven to provide high sensitivity and reliability when combined with an information-dependent preferred list, without losing its untargeted operation principle. Summarizing, the developed method fulfilled its purpose as a sensitive untargeted screening for serum samples and allows uncomplicated expansion of the spectral library to include thousands of targets.
Collapse
Affiliation(s)
- J Kleis
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - C Hess
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - T Germerott
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Roehrich
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Abstract
In recent years, there has been an emergence of numerous novel drugs. Such toxicity may occur in both adolescents and adults. This article discusses the opioid epidemic and several emerging opioids, including buprenorphine, loperamide, fentanyl, fentanyl derivatives, and others. Kratom, a plant occasionally used for opiate detoxification, along with the sedatives etizolam and phenibut, will be discussed. Lastly, this article discusses the phenethylamines and marijuana.
Collapse
Affiliation(s)
- Michael Levine
- Department of Emergency Medicine, University of California, Los Angeles, 924 Westwood Boulevard Suite 300, Los Angeles, CA 90095, USA.
| | - Frank Lovecchio
- Department of Emergency Medicine, Arizona State University, College of Health Solutions, Valleywise Health, 2601 East Roosevelt, Phoenix, AZ 85006, USA
| |
Collapse
|