1
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Harada A, Kunii M, Kurokawa K, Sumi T, Kanda S, Zhang Y, Nadanaka S, Hirosawa KM, Tokunaga K, Tojima T, Taniguchi M, Moriwaki K, Yoshimura SI, Yamamoto-Hino M, Goto S, Katagiri T, Kume S, Hayashi-Nishino M, Nakano M, Miyoshi E, Suzuki KGN, Kitagawa H, Nakano A. Dynamic movement of the Golgi unit and its glycosylation enzyme zones. Nat Commun 2024; 15:4514. [PMID: 38802491 PMCID: PMC11130159 DOI: 10.1038/s41467-024-48901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 μm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.
Collapse
Grants
- 17H0622 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02658 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K06734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H06413 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H06420 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05275 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05275 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H06413 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H06420 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05275 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Takuya Sumi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Kanda
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yu Zhang
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Koichiro M Hirosawa
- Laboratory of Cell Biophysics, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan
| | | | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Manabu Taniguchi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | - Satoshi Goto
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Toyomasa Katagiri
- Laboratory of Biofunctional Molecular Medicine, National Institute of Biomedical Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenichi G N Suzuki
- Laboratory of Cell Biophysics, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| |
Collapse
|
3
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Iwaki A, Moriwaki K, Sobajima T, Taniguchi M, Yoshimura SI, Kunii M, Kanda S, Kamada Y, Miyoshi E, Harada A. Loss of Rab6a in the small intestine causes lipid accumulation and epithelial cell death from lactation. FASEB J 2020; 34:9450-9465. [PMID: 32496646 DOI: 10.1096/fj.202000028r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 11/11/2022]
Abstract
Intestinal epithelial cells (IECs) are not only responsible for the digestion and absorption of dietary substrates but also function as a first line of host defense against commensal and pathogenic luminal bacteria. Disruption of the epithelial layer causes malnutrition and enteritis. Rab6 is a small GTPase localized to the Golgi, where it regulates anterograde and retrograde transport by interacting with various effector proteins. Here, we generated mice with IEC-specific deletion of Rab6a (Rab6a∆IEC mice). While Rab6aΔIEC mice were born at the Mendelian ratio, they started to show IEC death, inflammation, and bleeding in the small intestine shortly after birth, and these changes culminated in early postnatal death. We further found massive lipid accumulation in the IECs of Rab6a∆IEC neonates. In contrast to Rab6a∆IEC neonates, knockout embryos did not show any of these abnormalities. Lipid accumulation and IEC death became evident when Rab6a∆IEC embryos were nursed by a foster mother, suggesting that dietary milk-derived lipids accumulated in Rab6a-deficient IECs and triggered IEC death. These results indicate that Rab6a plays a crucial role in regulating the lipid transport and maintaining tissue integrity.
Collapse
Affiliation(s)
- Ayano Iwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Manabu Taniguchi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Kanda
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Grasp55 -/- mice display impaired fat absorption and resistance to high-fat diet-induced obesity. Nat Commun 2020; 11:1418. [PMID: 32184397 PMCID: PMC7078302 DOI: 10.1038/s41467-020-14912-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2020] [Indexed: 12/27/2022] Open
Abstract
The Golgi apparatus plays a central role in the intracellular transport of macromolecules. However, molecular mechanisms of Golgi-mediated lipid transport remain poorly understood. Here, we show that genetic inactivation of the Golgi-resident protein GRASP55 in mice reduces whole-body fat mass via impaired intestinal fat absorption and evokes resistance to high-fat diet induced body weight gain. Mechanistic analyses reveal that GRASP55 participates in the Golgi-mediated lipid droplet (LD) targeting of some LD-associated lipases, such as ATGL and MGL, which is required for sustained lipid supply for chylomicron assembly and secretion. Consequently, GRASP55 deficiency leads to reduced chylomicron secretion and abnormally large LD formation in intestinal epithelial cells upon exogenous lipid challenge. Notably, deletion of dGrasp in Drosophila causes similar defects of lipid accumulation in the midgut. These results highlight the importance of the Golgi complex in cellular lipid regulation, which is evolutionary conserved, and uncover potential therapeutic targets for obesity-associated diseases. The physiological roles of the Golgi reassembly-stacking protein 55 (GRASP55/GORASP55) remain largely elusive. Here, the authors show that the Golgi-resident protein GRASP55 plays a crucial role in lipid homeostasis by regulating intestinal lipid uptake.
Collapse
|
6
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
7
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
8
|
Bergen DJM, Stevenson NL, Skinner REH, Stephens DJ, Hammond CL. The Golgi matrix protein giantin is required for normal cilia function in zebrafish. Biol Open 2017; 6:1180-1189. [PMID: 28546340 PMCID: PMC5576078 DOI: 10.1242/bio.025502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the golgb1 gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate. In vitro, giantin has been implicated in Golgi organisation, biosynthetic trafficking, and ciliogenesis. Here we show that loss of function of giantin in zebrafish, using either morpholino or knockout techniques, causes defects in cilia function. Giantin morphants have fewer cilia in the neural tube and those remaining are longer. Mutants have the same number of cilia in the neural tube but these cilia are also elongated. Scanning electron microscopy shows that loss of giantin results in an accumulation of material at the ciliary tip, consistent with a loss of function of retrograde intraflagellar transport. Mutants show milder defects than morphants consistent with adaptation to loss of giantin. Summary: Morpholino knockdown of Golgb1/giantin leads to a severe cilopathy phenotype twinned with longer, misshapen cilia. Stable mutants have a very mild phenotype, indicative of compensation, but still have longer cilia.
Collapse
Affiliation(s)
- Dylan J M Bergen
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Roderick E H Skinner
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christina L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Teoh JJ, Iwano T, Kunii M, Atik N, Avriyanti E, Yoshimura SI, Moriwaki K, Harada A. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One 2017; 12:e0175888. [PMID: 28414797 PMCID: PMC5393877 DOI: 10.1371/journal.pone.0175888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/02/2017] [Indexed: 12/17/2022] Open
Abstract
BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs) and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL) neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR), peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5) to E17.5. The upper layer (UL) and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1) into the dorsal lateral geniculate nucleus (dLGN). The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB). In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM), and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.
Collapse
Affiliation(s)
- Jia-Jie Teoh
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Erda Avriyanti
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Dermatology and Venereology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Kim J, Noh SH, Piao H, Kim DH, Kim K, Cha JS, Chung WY, Cho HS, Kim JY, Lee MG. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR. Traffic 2016; 17:733-53. [DOI: 10.1111/tra.12403] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Shin Hye Noh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - He Piao
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Dong Hee Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Kuglae Kim
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Jeong Seok Cha
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Woo Young Chung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Hyun-Soo Cho
- Department of Systems Biology; Yonsei University College of Life Science and Biotechnology; Seoul 120-749 Korea
| | - Joo Young Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul 120-752 Korea
| |
Collapse
|
11
|
Fang J, Liu M, Zhang X, Sakamoto T, Taatjes DJ, Jena BP, Sun F, Woods J, Bryson T, Kowluru A, Zhang K, Chen X. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis. Mol Endocrinol 2015; 29:1156-69. [PMID: 26083833 DOI: 10.1210/me.2015-1012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Ming Liu
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuebao Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Takeshi Sakamoto
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Douglas J Taatjes
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Bhanu P Jena
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Fei Sun
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - James Woods
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Tim Bryson
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Anjaneyulu Kowluru
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kezhong Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuequn Chen
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
12
|
Schuberth CE, Tängemo C, Coneva C, Tischer C, Pepperkok R. Self-organization of core Golgi material is independent of COPII-mediated endoplasmic reticulum export. J Cell Sci 2015; 128:1279-93. [PMID: 25717003 DOI: 10.1242/jcs.154443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Golgi is a highly organized and dynamic organelle that receives and distributes material from and to the endoplasmic reticulum (ER) and the endocytic pathway. One open question about Golgi organization is whether it is solely based on ER-to-Golgi transport. Here, we analyzed the kinetics of Golgi breakdown in the absence of COPII-dependent ER export with high temporal and spatial resolution using quantitative fluorescence microscopy. We found that Golgi breakdown occurred in two phases. While Golgi enzymes continuously redistributed to the ER, we consistently observed extensive Golgi fragmentation at the beginning of the breakdown, followed by microtubule-dependent formation of a Golgi remnant structure (phase 1). Further Golgi disintegration occurred less uniformly (phase 2). Remarkably, cisternal Golgi morphology was lost early in phase 1 and Golgi fragments instead corresponded to variably sized vesicle clusters. These breakdown intermediates were devoid of COPI-dependent recycling material, but contained typical 'core' Golgi components. Furthermore, Golgi breakdown intermediates were able to disassemble and reassemble following cell division, indicating that they retained important regulatory capabilities. Taken together, these findings support the view that Golgi self-organization exists independently of ER-to-Golgi transport.
Collapse
Affiliation(s)
- Christian E Schuberth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany Institute of Cell Dynamics and Imaging, University of Muenster, von-Esmarch-Str. 56, 48149 Muenster, Germany Cells in Motion Cluster of Excellence (EXC1003-CiM), University of Muenster, von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Carolina Tängemo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Cvetalina Coneva
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Christian Tischer
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| |
Collapse
|
13
|
Sobajima T, Yoshimura SI, Iwano T, Kunii M, Watanabe M, Atik N, Mushiake S, Morii E, Koyama Y, Miyoshi E, Harada A. Rab11a is required for apical protein localisation in the intestine. Biol Open 2014; 4:86-94. [PMID: 25527643 PMCID: PMC4295169 DOI: 10.1242/bio.20148532] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The small GTPase Rab11 plays an important role in the recycling of proteins to the plasma membrane as well as in polarised transport in epithelial cells and neurons. We generated conditional knockout mice deficient in Rab11a. Rab11a-deficient mice are embryonic lethal, and brain-specific Rab11a knockout mice show no overt abnormalities in brain architecture. In contrast, intestine-specific Rab11a knockout mice begin dying approximately 1 week after birth. Apical proteins in the intestines of knockout mice accumulate in the cytoplasm and mislocalise to the basolateral plasma membrane, whereas the localisation of basolateral proteins is unaffected. Shorter microvilli and microvillus inclusion bodies are also observed in the knockout mice. Elevation of a serum starvation marker was also observed, likely caused by the mislocalisation of apical proteins and reduced nutrient uptake. In addition, Rab8a is mislocalised in Rab11a knockout mice. Conversely, Rab11a is mislocalised in Rab8a knockout mice and in a microvillus atrophy patient, which has a mutation in the myosin Vb gene. Our data show an essential role for Rab11a in the localisation of apical proteins in the intestine and demonstrate functional relationships between Rab11a, Rab8a and myosin Vb in vivo.
Collapse
Affiliation(s)
- Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Iwano
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sotaro Mushiake
- Department of Pediatrics, Nara Hospital, Kinki University School of Medicine, Ikoma, Nara, 630-0293, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
14
|
Soonthornsit J, Yamaguchi Y, Tamura D, Ishida R, Nakakoji Y, Osako S, Yamamoto A, Nakamura N. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus. Exp Cell Res 2014; 328:325-39. [PMID: 25257606 DOI: 10.1016/j.yexcr.2014.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.
Collapse
Affiliation(s)
- Jeerawat Soonthornsit
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Yamaguchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Daisuke Tamura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryuichi Ishida
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Nakakoji
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Shiho Osako
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Akitsugu Yamamoto
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Nobuhiro Nakamura
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
15
|
Abstract
Protein trafficking within the secretory pathway of mammalian cells is amenable to analysis by biochemical methods. This can be achieved by monitoring posttranslational modifications that occur naturally within the secretory pathway, or by measuring the delivery of cargo to the cell surface or extracellular medium. These approaches can be combined with additional manipulations such as specific temperature blocks that permit analysis of distinct trafficking steps. Biochemical analysis is advantageous in that it permits both a sensitive and quantitative measure of trafficking along the pathway. The methods discussed in this chapter permit the analysis of trafficking of both endogenous cargo proteins and ectopically expressed model cargos, which can be followed using either Western blotting or metabolic pulse-chase approaches. These methods are relatively straightforward and suitable for use in most modern cell biology laboratories. In addition to the well-established methods that we describe here in detail, we also refer to the development of more recent tailored approaches that add further to the arsenal of tools that can be used to assess trafficking in the secretory pathway.
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
16
|
Sato T, Iwano T, Kunii M, Matsuda S, Mizuguchi R, Jung Y, Hagiwara H, Yoshihara Y, Yuzaki M, Harada R, Harada A. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Sci 2013; 127:422-31. [PMID: 24213529 PMCID: PMC3898603 DOI: 10.1242/jcs.136903] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis.
Collapse
Affiliation(s)
- Takashi Sato
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nakai W, Kondo Y, Saitoh A, Naito T, Nakayama K, Shin HW. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Mol Biol Cell 2013; 24:2570-81. [PMID: 23783033 PMCID: PMC3744953 DOI: 10.1091/mbc.e13-04-0197] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane. Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Waka Nakai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem 2011; 286:11569-78. [PMID: 21239483 DOI: 10.1074/jbc.m110.201442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arfaptins (arfaptin-1 and arfaptin-2/POR1) were originally identified as binding partners of the Arf small GTPases. Both proteins contain a BAR (Bin/Amphiphysin/Rvs) domain, which participates in membrane deformation. Here we show that arfaptins associate with trans-Golgi membranes. Unexpectedly, Arl1 (Arf-like 1), but not Arfs, determines the trans-Golgi association of arfaptins. We also demonstrate that arfaptins interact with Arl1 through their BAR domain-containing region and compete for Arl1 binding with golgin-97 and golgin-245/p230, both of which also bind to Arl1 through their GRIP (golgin-97/RanBP2/Imh1p/p230) domains. However, arfaptins and these golgins show only limited colocalization at the trans-Golgi. Time-lapse imaging of cells overexpressing fluorescent protein-tagged arfaptins and golgin-97 reveals that arfaptins, but not golgin-97, are included in vesicular and tubular structures emanating from the Golgi region. These observations indicate that arfaptins are recruited onto trans-Golgi membranes by interacting with Arl1, and capable of inducing membrane deformation via their BAR domains.
Collapse
Affiliation(s)
- Zhiqiu Man
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Tanimoto K, Suzuki K, Jokitalo E, Sakai N, Sakaguchi T, Tamura D, Fujii G, Aoki K, Takada S, Ishida R, Tanabe M, Itoh H, Yoneda Y, Sohda M, Misumi Y, Nakamura N. Characterization of YIPF3 and YIPF4, cis-Golgi Localizing Yip Domain Family Proteins. Cell Struct Funct 2011; 36:171-85. [DOI: 10.1247/csf.11002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kouji Tanimoto
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Kurumi Suzuki
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki
| | - Noriko Sakai
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Tomoaki Sakaguchi
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Daisuke Tamura
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Gourou Fujii
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Kenji Aoki
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Saya Takada
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Ryuichi Ishida
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University
| | - Masako Tanabe
- Department of Life Science, Graduate School of Engineering and Resource Science, Akita University
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University
| | - Hideaki Itoh
- Department of Life Science, Graduate School of Engineering and Resource Science, Akita University
| | - Yukio Yoneda
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
| | - Miwa Sohda
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences
| | - Yoshio Misumi
- Department of Cell Biology, Fukuoka University School of Medicine
| | - Nobuhiro Nakamura
- Graduate School of Natural Science and Technology and School of Pharmacy, Kanazawa University
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University
| |
Collapse
|
20
|
Schoberer J, Runions J, Steinkellner H, Strasser R, Hawes C, Osterrieder A. Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 2010; 11:1429-44. [PMID: 20716110 PMCID: PMC3039244 DOI: 10.1111/j.1600-0854.2010.01106.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
Abstract
Herein, we report the stepwise transport of multiple plant Golgi membrane markers during disassembly of the Golgi apparatus in tobacco leaf epidermal cells in response to the induced expression of the GTP-locked Sar1p or Brefeldin A (BFA), and reassembly on BFA washout. The distribution of fluorescent Golgi-resident N-glycan processing enzymes and matrix proteins (golgins) with specific cis-trans-Golgi sub-locations was followed by confocal microscopy during disassembly and reassembly. The first event during Golgi disassembly was the loss of trans-Golgi enzymes and golgins from Golgi membranes, followed by a sequential redistribution of medial and cis-Golgi enzymes into the endoplasmic reticulum (ER), whilst golgins were relocated to the ER or cytoplasm. This event was confirmed by fractionation and immuno-blotting. The sequential redistribution of Golgi components in a trans-cis sequence may highlight a novel retrograde trafficking pathway between the trans-Golgi and the ER in plants. Release of Golgi markers from the ER upon BFA washout occurred in the opposite sequence, with cis-matrix proteins labelling Golgi-like structures before cis/medial enzymes. Trans-enzyme location was preceded by trans-matrix proteins being recruited back to Golgi membranes. Our results show that Golgi disassembly and reassembly occur in a highly ordered fashion in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| | - Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
21
|
The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect Immun 2010; 79:402-13. [PMID: 20937765 DOI: 10.1128/iai.00688-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is a Gram-negative obligate intracellular bacterium. After internalization, this bacterium replicates in a large parasitophorous vacuole that has features of both phagolysosomes and autophagosomal compartments. We have previously demonstrated that early after internalization Coxiella phagosomes interact with both the endocytic and the autophagic pathways. In this report, we present evidence that the Coxiella-replicative vacuoles (CRVs) also interact with the secretory pathway. Rab1b is a small GTPase responsible for the anterograde transport between the endoplasmic reticulum and the Golgi apparatus. We present evidence that Rab1b is recruited to the CRV at later infection times (i.e., after 6 h of infection). Interestingly, knockdown of Rab1b altered vacuole growth, indicating that this protein was required for the proper biogenesis of the CRV. In addition, overexpression of the active GTPase-defective mutant (GFP-Rab1b Q67L) affected the development of the Coxiella-replicative compartment inhibiting bacterial growth. On the other hand, disruption of the secretory pathway by brefeldin A treatment or by overexpression of Sar1 T39N, a defective dominant-negative mutant of Sar1, affected the typical spaciousness of the CRVs. Taken together, our results show for the first time that the Coxiella-replicative niche also intercepts the early secretory pathway.
Collapse
|
22
|
Stepanchick A, Breitwieser GE. The cargo receptor p24A facilitates calcium sensing receptor maturation and stabilization in the early secretory pathway. Biochem Biophys Res Commun 2010; 395:136-40. [PMID: 20361938 DOI: 10.1016/j.bbrc.2010.03.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/28/2010] [Indexed: 12/30/2022]
Abstract
The calcium sensing receptor (CaSR) is a Family 3/C G protein-coupled receptor with slow and partial targeting to the plasma membrane in both native and heterologous cells. We identified cargo receptor family member p24A in yeast two-hybrid screens with the CaSR carboxyl terminus. Interactions were confirmed by immunoprecipitation of either p24A or CaSR in transiently transfected HEK293 cells. Only the immaturely glycosylated form of CaSR interacts with p24A. Dissociation likely occurs in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) or cis-Golgi, since only the uncleaved form of a CaSR mutant sensitive to the trans-Golgi enzyme furin was co-immunoprecipitated with p24A. p24A and p24A(DeltaGOLD) significantly increased total and plasma membrane CaSR protein but p24A(FF/AA) did not. The CaSR carboxyl terminus distal to T868 is required for differential sensitivity to p24A and its mutants. Interaction with p24A therefore increases CaSR stability in the ER and enhances plasma membrane targeting. Neither wt Sar1p or the T39N mutant increased CaSR maturation or abundance while the H79G mutant increased abundance but prevented maturation of CaSR. These results suggest that p24A is the limiting factor in CaSR trafficking in the early secretory pathway, and that cycling between the ER and ERGIC protects CaSR from degradation.
Collapse
Affiliation(s)
- Ann Stepanchick
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822-2604, USA
| | | |
Collapse
|
23
|
Shindiapina P, Barlowe C. Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:1530-45. [PMID: 20200224 PMCID: PMC2861612 DOI: 10.1091/mbc.e09-07-0605] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Secretory proteins are exported from the ER at specialized regions known as transitional ER (tER). COPII proteins are enriched at tER sites, but mechanisms underlying assembly and maintenance are unclear. This study characterizes tER sites in Saccharomyces cerevisiae and probes protein and lipid requirements for tER site structure and function. Secretory proteins are exported from the endoplasmic reticulum (ER) at specialized regions known as the transitional ER (tER). Coat protein complex II (COPII) proteins are enriched at tER sites, although the mechanisms underlying tER site assembly and maintenance are not understood. Here, we investigated the dynamic properties of tER sites in Saccharomyces cerevisiae and probed protein and lipid requirements for tER site structure and function. Thermosensitive sec12 and sec16 mutations caused a collapse of tER sites in a manner that depended on nascent secretory cargo. Continual fatty acid synthesis was required for ER export and for normal tER site structure, whereas inhibition of sterol and ceramide synthesis produced minor effects. An in vitro assay to monitor assembly of Sec23p-green fluorescent protein at tER sites was established to directly test requirements. tER sites remained active for ∼10 min in vitro and depended on Sec12p function. Bulk phospholipids were also required for tER site structure and function in vitro, whereas depletion of phophatidylinositol selectively inhibited coat protein complex II (COPII) budding but not assembly of tER site structures. These results indicate that tER sites persist through relatively stringent treatments in which COPII budding was strongly inhibited. We propose that tER site structures are stable elements that are assembled on an underlying protein and lipid scaffold.
Collapse
Affiliation(s)
- Polina Shindiapina
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
24
|
Nakamura N. Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. J Pharmacol Sci 2010; 112:255-64. [PMID: 20197635 DOI: 10.1254/jphs.09r03cr] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
GM130 is a peripheral membrane protein strongly attached to the Golgi membrane and is isolated from the detergent and salt resistant Golgi matrix. GM130 is rich in coiled-coil structures and predicted to take a rod-like shape. Together with p115, giantin, and GRASP65, GM130 facilitates vesicle fusion to the Golgi membrane as a vesicle "tethering factor". GM130 is also involved in the maintenance of the Golgi structure and plays a major role in the disassembly and reassembly of the Golgi apparatus during mitosis. Emerging evidence suggests that GM130 is involved in the control of glycosylation, cell cycle progression, and higher order cell functions such as cell polarization and directed cell migration. This creates the potential for novel Golgi-targeted drugs and treatments for various diseases including glycosylation defects, immune diseases, and cancer.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Cell Biology, Division of Life Science, Graduate School of Natural Science and Technologies, Kanazawa University, Japan.
| |
Collapse
|
25
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
26
|
Osterrieder A, Hummel E, Carvalho CM, Hawes C. Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:405-22. [PMID: 19861656 DOI: 10.1093/jxb/erp315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An inducible system has been established in Nicotiana tabacum plants allowing controlled expression of Sar1-GTP and thus the investigation of protein dynamics after inhibition of endoplasmic reticulum (ER) to Golgi transport. Complete Golgi disassembly and redistribution of Golgi markers into the ER was observed within 18-24h after induction. At the ultrastructural level Sar1-GTP expression led to a decrease in Golgi stack size followed by Golgi fragmentation and accumulation of vesicle remnants. Induction of Sar1-GTP resulted in redistribution of the green fluorescent protein (GFP)-tagged Arabidopsis golgins AtCASP and GC1 (golgin candidate 1, an Arabidopsis golgin 84 isoform) into the ER or cytoplasm, respectively. Additionally, both fusion proteins were observed in punctate structures, which co-located with a yellow fluorescent protein (YFP)-tagged version of Sar1-GTP. The Sar1-GTP-inducible system is compared with constitutive Sar1-GTP expression and brefeldin A treatment, and its potential for the study of the composition of ER exit sites and early cis-Golgi structures is discussed.
Collapse
Affiliation(s)
- Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | | | |
Collapse
|
27
|
Saitoh A, Shin HW, Yamada A, Waguri S, Nakayama K. Three homologous ArfGAPs participate in coat protein I-mediated transport. J Biol Chem 2009; 284:13948-13957. [PMID: 19299515 DOI: 10.1074/jbc.m900749200] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ArfGAP1 is a prototype of GTPase-activating proteins for ADP-ribosylation factors (ARFs) and has been proposed to be involved in retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER) by regulating the uncoating of coat protein I (COPI)-coated vesicles. Depletion of ArfGAP1 by RNA interference, however, causes neither a discernible phenotypic change in the COPI localization nor a change in the Golgi-to-ER retrograde transport. Therefore, we also examined ArfGAP2 and ArfGAP3, closely related homologues of ArfGAP1. Cells in which ArfGAP1, ArfGAP2, and ArfGAP3 are simultaneously knocked down show an increase in the GTP-bound ARF level. Furthermore, in these cells proteins resident in or cycling through the cis-Golgi, including ERGIC-53, beta-COP, and GM130, accumulate in the ER-Golgi intermediate compartment, and Golgi-to-ER retrograde transport is blocked. The phenotypes observed in the triple ArfGAP knockdown cells are similar to those seen in beta-COP-depleted cells. Both the triple ArfGAP- and beta-COP-depleted cells accumulate characteristic vacuolar structures that are visible under electron microscope. Furthermore, COPI is concentrated at rims of the vacuolar structures in the ArfGAP-depleted cells. On the basis of these observations, we conclude that ArfGAP1, ArfGAP2, and ArfGAP3 have overlapping roles in regulating COPI function in Golgi-to-ER retrograde transport.
Collapse
Affiliation(s)
- Akina Saitoh
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akane Yamada
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima City, Fukushima 960-1295, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences and Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
Nishimoto-Morita K, Shin HW, Mitsuhashi H, Kitamura M, Zhang Q, Johannes L, Nakayama K. Differential effects of depletion of ARL1 and ARFRP1 on membrane trafficking between the trans-Golgi network and endosomes. J Biol Chem 2009; 284:10583-92. [PMID: 19224922 DOI: 10.1074/jbc.m900847200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARFRP1 and ARL1, which are both ARF-like small GTPases, are mammalian orthologs of yeast Arl3p and Arl1p, respectively. In yeast, Arl3p targeted to trans-Golgi network (TGN) membranes activates Arl1p, and the activated Arl1p in turn recruits a GRIP domain-containing protein; this complex regulates retrograde transport to the TGN and anterograde transport from the TGN. In the present study, using RNA interference-mediated knockdown of ARFRP1 and ARL1, we have examined whether the orthologs of Arl3p-Arl1p-GRIP story serve similar functions in mammalian cells. However, we have unexpectedly found differential roles of ARL1 and ARFRP1. Specifically, ARL1 and ARFRP1 regulate retrograde transport of Shiga toxin to the TGN and anterograde transport of VSVG from the TGN, respectively. Furthermore, we have obtained evidence suggesting that a SNARE complex containing Vti1a, syntaxin 6, and syntaxin 16 is involved in Shiga toxin transport downstream of ARL1.
Collapse
Affiliation(s)
- Kirika Nishimoto-Morita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, Auld DS, Oliver B. COPI complex is a regulator of lipid homeostasis. PLoS Biol 2009; 6:e292. [PMID: 19067489 PMCID: PMC2586367 DOI: 10.1371/journal.pbio.0060292] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022] Open
Abstract
Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.
Collapse
Affiliation(s)
- Mathias Beller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Max-Planck-Institut für biophysikalische Chemie, Abteilung für Molekulare Entwicklungsbiologie, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail: (M. Beller); (C. Sztalryd); (B. Oliver)
| | - Carole Sztalryd
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- GRECC/Geriatrics, Veterans Affairs Medical Center, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (M. Beller); (C. Sztalryd); (B. Oliver)
| | - Noel Southall
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ming Bell
- GRECC/Geriatrics, Veterans Affairs Medical Center, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Herbert Jäckle
- Max-Planck-Institut für biophysikalische Chemie, Abteilung für Molekulare Entwicklungsbiologie, Göttingen, Germany
| | - Douglas S Auld
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (M. Beller); (C. Sztalryd); (B. Oliver)
| |
Collapse
|
30
|
Schroder LA, Ortiz MV, Dunn WA. The membrane dynamics of pexophagy are influenced by Sar1p in Pichia pastoris. Mol Biol Cell 2008; 19:4888-99. [PMID: 18768759 DOI: 10.1091/mbc.e07-09-0868] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.
Collapse
Affiliation(s)
- Laura A Schroder
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | |
Collapse
|
31
|
ICA69 is a novel Rab2 effector regulating ER–Golgi trafficking in insulinoma cells. Eur J Cell Biol 2008; 87:197-209. [DOI: 10.1016/j.ejcb.2007.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/22/2007] [Accepted: 11/22/2007] [Indexed: 11/24/2022] Open
|
32
|
Diao A, Frost L, Morohashi Y, Lowe M. Coordination of Golgin Tethering and SNARE Assembly. J Biol Chem 2008; 283:6957-67. [DOI: 10.1074/jbc.m708401200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S, Tsukita S. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 2007; 313:3472-85. [PMID: 17698061 DOI: 10.1016/j.yexcr.2007.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 12/28/2022]
Abstract
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.
Collapse
Affiliation(s)
- Junko Yamane
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kirk SJ, Ward TH. COPII under the microscope. Semin Cell Dev Biol 2007; 18:435-47. [PMID: 17693103 DOI: 10.1016/j.semcdb.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Transport through the secretory pathway begins with COPII regulation of ER export. Driven by the Sar1 GTPase cycle, cytosolic COPII proteins exchange on and off the membrane at specific sites on the ER to regulate cargo exit. Here recent developments in COPII research are discussed, particularly the use of live-cell imaging, which has revealed surprising insights into the coat's role. The seemingly static ER exit sites are in fact highly dynamic, and the ability to visualise trafficking processes in intact living cells has highlighted the adaptable nature of COPII in cargo transport and the emerging roles of auxiliary factors.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
35
|
Kim HS, Takahashi M, Matsuo K, Ono Y. Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Genes Cells 2007; 12:421-34. [PMID: 17352745 DOI: 10.1111/j.1365-2443.2007.01055.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The structural organization and position of the Golgi apparatus are highly regulated by microtubule cytoskeleton and microtubule motor proteins. The mechanisms linking these proteins to the Golgi apparatus remain elusive. Here, we found that centrosome and Golgi-localized PKN associated protein (CG-NAP) was localized to the Golgi apparatus in a microtubule-dependent manner. Microtubule-binding experiments revealed that CG-NAP possessed two microtubule-binding domains. We also found that CG-NAP was well co-localized with cytoplasmic dynein subunits during recovery from the on-ice treatment of cells that induced dissociation of CG-NAP from the Golgi. Similar co-localization was observed during recovery from the acetate treatment, which has been reported to inhibit the dynein-mediated transport. CG-NAP was co-immunoprecipitated with a dynactin subunit p150(Glued). Expressing the p150(Glued)-binding region of CG-NAP fused with mitochondria-targeting sequence induced recruitment of mitochondria to the pericentriolar area, suggesting that this region interacts with functional cytoplasmic dynein in vivo. Moreover, over-expression of this region caused fragmentation of the Golgi similar to that of dynamitin. These results suggest that CG-NAP is recruited to the minus ends of microtubules by interacting with cytoplasmic dynein, thereby localizes to the Golgi apparatus in a microtubule-dependent manner and possibly involved in the formation of the Golgi near the centrosomes.
Collapse
Affiliation(s)
- Hon-Song Kim
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
36
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
37
|
Watson P, Townley AK, Koka P, Palmer KJ, Stephens DJ. Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 2006; 7:1678-87. [PMID: 17005010 PMCID: PMC1761133 DOI: 10.1111/j.1600-0854.2006.00493.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.
Collapse
|
38
|
Mogelsvang S, Howell KE. Global approaches to study Golgi function. Curr Opin Cell Biol 2006; 18:438-43. [PMID: 16781854 DOI: 10.1016/j.ceb.2006.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 06/05/2006] [Indexed: 01/07/2023]
Abstract
Enormous insights into Golgi function have been provided by yeast genetics, biochemical assays and immuno-labeling methods and the emerging picture is of a very complex organelle with multiple levels of regulation. Despite many elegant experimental approaches, it remains unclear what mechanisms transport secretory proteins and lipids through the Golgi, and even the basic structure of the organelle is debated. Recently, new, global approaches such as proteomics and functional genomics have been applied to study the Golgi and its matrix. The data produced reveals great complexity and has potential to help address major unresolved questions concerning Golgi function.
Collapse
Affiliation(s)
- Soren Mogelsvang
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
39
|
Abstract
Coiled-coil and multisubunit tethers have emerged as key regulators of membrane traffic and organellar architecture. The restricted subcellular localization of tethers and their ability to interact with Rabs and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) suggests that tethers participate in determining the specificity of membrane fusion. An accepted model of tether function considers them molecular “bridges” that link opposing membranes before SNARE pairing. This model has been extended by findings in various experimental systems, suggesting that tethers may have other functions. Recent reports implicate tethers in the assembly of SNARE complexes, cargo selection and transit, cytoskeletal events, and localized attachment of regulatory proteins. A concept of tethers as scaffolding machines that recruit protein components involved in varied cellular responses is emerging. In this model, tethers function as integration switches that simultaneously transmit information to coordinate distinct processes required for membrane traffic.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Dept. of Cell Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., Birmingham, AL 35294, USA.
| | | |
Collapse
|
40
|
Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 2005; 118:4039-48. [PMID: 16129887 DOI: 10.1242/jcs.02524] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a small GTPase with significant similarity to the ARF family. However, little is known about the function of ARFRP1 in mammalian cells, although knockout mice of its gene are embryonic lethal. In the present study, we demonstrate that ARFRP1 is associated mainly with the trans-Golgi compartment and the trans-Golgi network (TGN) and is an essential regulatory factor for targeting of Arl1 and GRIP domain-containing proteins, golgin-97 and golgin-245, onto Golgi membranes. Furthermore, we show that, in concert with Arl1 and GRIP proteins, ARFRP1 is implicated in the Golgi-to-plasma membrane transport of the vesicular stomatitis virus G protein as well as in the retrograde transport of TGN38 and Shiga toxin from endosomes to the TGN.
Collapse
Affiliation(s)
- Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The organization and sorting of proteins within the Golgi stack to establish and maintain its cis to trans polarization remains an enigma. The function of Golgi compartments involves coat assemblages that facilitate vesicle traffic, Rab-tether-SNAP receptor (SNARE) machineries that dictate membrane identity, as well as matrix components that maintain structure. We have investigated how the Golgi complex achieves compartmentalization in response to a key component of the coat complex I (COPI) coat assembly pathway, the ARF1 GTPase, in relationship to GTPases-regulating endoplasmic reticulum (ER) exit (Sar1) and targeting fusion (Rab1). Following collapse of the Golgi into the ER in response to inhibition of activation of ARF1 by Brefeldin A, we found that Sar1- and Rab1-dependent Golgi reformation took place at multiple peripheral and perinuclear ER exit sites. These rapidly converged into immature Golgi that appeared as onion-like structures composed of multiple concentrically arrayed cisternae of mixed enzyme composition. During clustering to the perinuclear region, Golgi enzymes were sorted to achieve the degree of polarization within the stack found in mature Golgi. Surprisingly, we found that sorting of Golgi enzymes into their subcompartments was insensitive to the dominant negative GTP-restricted ARF1 mutant, a potent inhibitor of COPI coat disassembly and vesicular traffic. We suggest that a COPI-independent, Rab-dependent mechanism is involved in the rapid reorganization of resident enzymes within the Golgi stack following synchronized release from the ER, suggesting an important role for Rab hubs in directing Golgi polarization.
Collapse
Affiliation(s)
- Serguei I Bannykh
- Department of Pathology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
42
|
Lupashin V, Sztul E. Golgi tethering factors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:325-39. [PMID: 15979505 DOI: 10.1016/j.bbamcr.2005.03.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Transport of cargo to, through and from the Golgi complex is mediated by vesicular carriers and transient tubular connections. In this review, we describe vesicle tethering events with the understanding that similar events occur during transport via larger structures. Tethering factors can be generally divided into a group of coiled-coil proteins and a group of multi-subunit complexes. Current evidence suggests that these factors function in a variety of membrane-membrane tethering events at the Golgi complex, interact with SNARE molecules, and are regulated by small GTPases of the Rab and Arl families.
Collapse
Affiliation(s)
- Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Biomed 261-2, Slot 505, 200 South Cedar St, Little Rock, AR 72205, USA.
| | | |
Collapse
|
43
|
Yoshimura SI, Yoshioka K, Barr FA, Lowe M, Nakayama K, Ohkuma S, Nakamura N. Convergence of Cell Cycle Regulation and Growth Factor Signals on GRASP65. J Biol Chem 2005; 280:23048-56. [PMID: 15834132 DOI: 10.1074/jbc.m502442200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together with other Golgi matrix components, GRASP65 contributes to the stacking of Golgi cisternae in interphase cells. During mitosis, GRASP65 is heavily phosphorylated, and in turn, cisternal stacking is inhibited leading to the breakdown of the Golgi apparatus. Here we show that GRASP65 is phosphorylated on serine 277 in interphase cells, and this is strongly enhanced in response to the addition of serum or epidermal growth factor. This is directly mediated by ERK suggesting that GRASP65 has some role in growth factor signal transduction. Phosphorylation of Ser-277 is also dramatically increased during mitosis, however this is mediated by Cdk1 and not by ERK. The microinjection of recombinant GRASP65 without N-terminal myristoylation or a peptide fragment containing Ser-277 into the cytosol of normal rat kidney cells inhibits passage through mitosis. This effect is abolished when Ser-277 is replaced with alanine suggesting the phosphorylation of Ser-277 plays an important role in cell cycle regulation. The convergence of cell cycle regulation and growth factor signals on GRASP65 Ser-277 suggests that GRASP65 may function as a signal integrator controlling the cell growth.
Collapse
Affiliation(s)
- Shin-ichiro Yoshimura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Shin HW, Morinaga N, Noda M, Nakayama K. BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol Biol Cell 2004; 15:5283-94. [PMID: 15385626 PMCID: PMC532010 DOI: 10.1091/mbc.e04-05-0388] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARF-triggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. BIG2 is one of brefeldin A-inhibited guanine nucleotide exchange factors for the ARF GTPases and is associated mainly with the trans-Golgi network. In the present study, we have revealed that another population of BIG2 is associated with the recycling endosome and found that expression of a catalytically inactive BIG2 mutant, E738K, selectively induces membrane tubules from this compartment. We also have shown that BIG2 has an exchange activity toward class I ARFs (ARF1 and ARF3) in vivo and inactivation of either ARF exaggerates the BIG2(E738K)-induced tubulation of endosomal membranes. These observations together indicate that BIG2 is implicated in the structural integrity of the recycling endosome through activating class I ARFs.
Collapse
Affiliation(s)
- Hye-Won Shin
- Faculty of Pharmaceutical Sciences, Kanazawa University, Ishikawa 920-0934, Japan
| | | | | | | |
Collapse
|